
HANS - HUJI’s Autonomous Navigation System

Yair Movshovitz, yairmov@cs.huji.ac.il, 040469710,
Keren Haas, keren ha@cs.huji.ac.il, 015666209,
Dror Shalev, drorl01@cs.huji.ac.il, 032175994

Advisors:
Prof. Jeff Rosenschein1, jeff@cs.huji.ac.il,

Nir Pochter1, nirp@cs.huji.ac.il,
Dr. Zinovi Rabinovich1, nomad@cs.huji.ac.il

September 15, 2008

1Hebrew University of Jerusalem Israel

Abstract

Building autonomous robots that can operate in various scenarios has long been a goal of research
in Artificial Intelligence. Recent progress has been made on space exploration systems, and systems
for autonomous driving. In line with this work, we present HANS, an autonomous mobile robot
that navigates the Givat Ram campus of the Hebrew University. We have constructed a wheel-based
platform that holds various sensors. Our system’s hardware includes a GPS, compass, and digital
wheel encoders for localizing the robot within the campus area. Sonar is used for fast obstacle
avoidance. It also employs a video camera for vision-based path detection. HANS’ software uses a
wide variety of probabilistic methods and machine learning techniques, ranging from particle filters
for robot localization to Gaussian Mixture Models and Expectation Maximization for its vision
system. Global path planning is performed on a GPS coordinate database donated by MAPA Ltd.,
and local path planning is implemented using the A* algorithm on a local grid map constructed by
the robot’s sensors.

Introduction

Even before John McCarthy coined the term Artificial Intelligence (A.I.) in the famous 1956 Dart-
mouth Conference[1], researchers of A.I. have been interested in the notion of Intelligent Agents -
Entities which observe and act rationally upon an environment. While this definition includes a
broad spectrum of beings, such as web crawlers and software bidders in online auctions, the most
intuitive way of perceiving an agent might be that of an autonomous mobile robot. A robot is a
physical agent which uses different sensors (e.g. laser range finder, video camera) to observe its
surroundings and actuators to modify the environment (e.g. motors, robotic arm).

There are various definitions for an Autonomous Robot, a straight forward definition is that of
a robot which can perform its task without continuous human assistance. Such a definition raises
the question - are modern day Industrial robot manipulators autonomous? Such robots, apart from
being stationary, work in controlled environments. Very little changes in the environment that is
not a direct outcome of the robot’s actions. There is almost no variation in the situations the robot
faces, and the entire environment was designed to enable smooth operation of the robot. These
environments are called Structured. When we talk about autonomous robots in the rest of this
report we consider a stricter definition:

Definition 1 A robot is called autonomous if it can perform its task without continuous human
assistance in an unstructured environment.

To achieve this feat a robot must be able to overcome the inhereted uncertainty of working in
the physical world. There are various aspects in which the uncertainty can be manifested:

The environment itself is unpredictable, it is dynamic and much more complex than those an
industrial robot can expect to face, the situations and scenarios the robot may encounter are much
harder to predict when designing the robot.

The robot’s sensors & actuators are another cause of uncertainty. The sensors are limited in
what they can perceive and are affected by their physical properties. For example, a sonar range
finder trasmits a high frequency sound pulse in a defined direction and listens for the reflection of
the pulse from objects in the surroundings. While the transmitted pulse moves through the air it
broadens, after a couple of meters the pulse is very wide and therefore gives a very rough estimate of
the location of objects in its path. The actuators are a source of uncertainty as well, the robot relies
on them for moving around and modifing the environment but their actions are never precise, motors
have acceleration and deceleration behaviors which differ between cold and hot motors. Breaking
and slippage also affect the correctness of the robot’s motion.

Another source of uncertainty comes from the way a robot models its world. The environment is
too complex for the software to model it precisely so the robot uses generalizations, approximations,
and heuristics to be able to hold a simplified version of the world in its memory and perform
calculations on this model.

All these require that the robot be able to handle unknown situations thus making the task of
building such an agent very demanding.

Related Work

Robotic development has been going on for more than a hundred years. As early as 1868 Zadoc P.
Dederick published a patent for a “steam operated man”[2] and 20 years later Edison came out with

1

Figure 1: The top two finalists in the 2005 DARPA Grand Challenge. On the left is Sandstrom from

Carnegie Mellon which arrived at second place. On the right is Stanley which won the race and 2M$ for

Stanford.

a talking doll[3]. These, however, were very far from the modern idea of an autonomous robot. In
1986 Brooks[4] proposed a new paradigm of developing robots, which soon became quite popular,
called Behavior Based Robotics. The idea was to view a robot as made up of different behaviors each
performing a different task. Managing these behaviors are various mediators which handle cases in
which two or more behaviors contradict each other (e.g. a planning behavior which wants the robot
to move to a desired spot in front of it and an obstacle avoidance behavior which tells it to stop
because an obstacle was detected also in front of it). In 2005 DARPA (Defense Advanced Research
Projects Agency), the central research and development organization for the U.S Department of
Defense held a robotic contest called “The Grand Challenge”[5] which was a 175 mile desert race
for autonomous vehicles. Several teams completed the course and the Stanford robot, Stanley, won
the race[6]. Figure 1 shows the top two competitors in the 2005 Grand Challenge. In recent years
a new subfield of robotics called Probabilistic Robotics[7] has gained popularity. The core idea in
Probabilistic Robotics is to employ probabilistic techniques for making decisions and representing
information. This approach tackles head-on that inherited uncertainty in unstructured environments
mentioned above and in many cases out performs any method which only takes into account a single
“best guess” as to what should be done.

Our Project

Our project’s goal was to build an autonomous mobile robot capable of navigating the Givaat Ram
campus in a safe manner without any human assistance. In designing our robot we have used ideas
both from Behavior Based Robotics and from Probabilistic Robotics. As we have set out to prove
that autonomousy is achievable even within the scope of an undergraduate project we measure our
success as the amount of different behaviors our robot can perform and the amount of integration
between the different behaviors.

We have constructed a wheeled based robot that is able to drive on walkways and paved roads.
The robot motors and its sensors are controlled using a Motorola microcontroller which resides in an
integrated circuit we have built. Higher level abilities are achieved using an onboard laptop which
performs all the vision tasks and complex statistical methods. We have written software modules
for localizing the robot within the campus area, planning its route, detecting drivable areas using a
video camera, and avoiding obstacles.

The rest of this report is organized as follows. An in-depth summery of the project’s design,
robot hardware, and software modules is provided in Methods. The Results section gives a detailed
explanation of the performance of various behaviors, and the Conclusions section ends the report
with a final discussion and possible future improvements.

2

Methods

Chassis & electronics

HANS was designed and built under the constraint that it should perform its mission while its total
cost should stay under 1000$. HANS’s body is made of PVC plates connected with PVC pipes. It
has two front wheels powered by two 12v electrical engines allowing it to achieve a speed of 1km per
hour depending on the environmental conditions. Power supply is provided by a 12V/4amp battery
allowing one hour travel time. An external power supply can be connected for indoor testing.

HANS’s sensor package consists of a GPS, wheel encoders (which can count the wheels’ cycles), a
digital compass, sonar range finder and a digital camera. A Motorola HC-11 microcontroller controls
the engines, sonar, compass, and wheel encoders. The package is shown in Figure 2.

High level processing (decision making, image processing, localization, etc’) is done by a laptop
connected to the microcontroller by a serial cable.

After HANS was fully assembled and tested with most of its software modules, a commercial
robot, Pioneer 2DX was found in one of the faculty storerooms. We used this opportunity to test
the portability of our software and to implement more advanced obstacle avoidance modules using
the Pioneer’s 8-sonar array. The two robot platforms are displayed in Figure 3.

Architectural overview

When we came to design HANS’s architecture and software, we had to deal with the issue of how
to control an autonomous robot. Defiantly, the robot has multiple tasks that have to be carried out
simultaneously while maintaining correct priorities among them (for example, the robot should not
hit a wall while planning the global path to its goal).

First we defined how the robot should be controlled. In order to reduce the load on the laptop
we decided that the low level control would be carried out by a microcontroller. The microcontroller
is responsible for executing drive commands and operating the sonar, wheel encoders and compass.
High level control is done by the laptop, which is responsible for the complete operation of the robot,
and for the robot-human interaction.

Figure 2: HANS’s sensor package. (1) GPS. (2) Digital compass. (3) Wheel encoder circuit. (4) Sonar

range finder. (5) Digital camera.

3

Figure 3: The two robot platforms used in this work. On the left - HANS based on the platform built by

the team. On the right - HANS based on Pioneer 2DX.

We decided to implement HANS’s control and operation based on the behavior based robotics
paradigm[4], The main idea is that HANS’s different capabilities and tasks are considered as human
behaviors. As a human tries to reach its goal (e.g. go to work in the morning) it needs to constantly
map its surroundings using his natural sensors, avoid hitting people or obstacles, while operating
his body. In a similar manner, HANS needs to comprehend its surroundings using its sensors, and
filter its different desires according to the current situation (reaching the final goal as quickly as
possible might not be in line with not hitting the nearest wall), resulting in the correct command to
its motors.

Figure 4 shows HANS’s high level control in an abstract way. All inputs are colored pink, differ-
ent behaviors, desires or data processing activities are colored gray and physical actions are colored
green.

The main tasks the robot should carry out at all times are:

• Interpret sensor data.

• Plan a global path to its goal destination.

• Localize itself in the world.

• Build a local map of obstacles in its close vicinity.

• Plan a local path to reach the next waypoint in the global route.

• Find a drivable path in its surroundings.

• Execute local path.

• Avoid hitting obstacles of any kind.

Some of these behaviors might contradict each other from time to time, e.g. reaching the next
waypoint according to the planned local path, might not be in line with the fact that a garbage can
stands on the path. In such cases, modules that are called mediators, settle the disagreements and
chose the most appropriate behavior (plan a new local path for example). Figure 14 in the Appendix
section shows Hans’s modules in more detail. Explanations of each module are also presented in the
Appendix.

To implement the low level control we used the ICC11 IDE which allows programming in C and
HC11 targeted compilation. High level control was developed using the player/stage robotic de-
velopment framework which offers agreed interfaces, communication services, implemented utilities
and a simulation environment. We used C++ for writing the different modules in the player/stage
environment, JAVA for DB interface and MATLAB for probabilistic computations and image pro-
cessing.

4

Figure 4: Abstraction of HANS’s high level control diagram. Pink modules - inputs, gray modules -

behaviors & data processing, green modules - physical actions.

State Estimation: Localization

The problem of determining a robot’s position in the world (or pose, in robotics terms) is a central
issue in robotics. Before the robot can make any intelligent plans it has to know where it is. In order
to find its location the robot relies on its various sensors (GPS, Wheel encoders, etc’). However,
simply using the sensors isn’t enough to get good location estimates, the reason for this is that the
sensors are noisy (skidding of the wheels can cause mistakes in the encoders count, the GPS has an
inherent error of about 10m, etc’). These small errors accumulate over time and quickly lead to false
pose (Figure 5). Self localization techniques are used to compensate for these errors by comparing
the acquired sensor data with the expected sensor readings. The sensors we used in our system were:
GPS, compass, and wheel encoders.

The method we used to estimate the location of the robot in the world is called Particle-Filtering,
which is a Bayesian estimation method. The main idea of Bayesian filtering is to estimate a proba-
bility density function (pdf) over the state space, conditioned on the sensor data. The state space,
in our case, is the space of all GPS coordinates on earth. The Particle-Filter localization algorithm
represents a robot’s belief (of its location) by a set of weighted particles. The weight of each particle
is the quality of that specific particle, in other words, the probability of that particle being the real
location of the robot. After each movement of the robot, we perform several actions:

1. All the particles are modified according to the model of the previous stage – we know the pdf
of the system at the previous time step and then we model the effect of the action to obtain a
prior of the pdf at the current time (this step is the prediction).

2. Random noise is added to all the particles in order to simulate the effect of sensor noise.

3. Each particle’s weight is re-calculated based on the latest sensory data (this is the update
step). The new weight is the probability P (Zt|Xt) where Xt is the location represented by the
particle and Zt is the sensors’ measurements.

4. The particles are re-sampled in a way that particles with small weights (low probability) are
eliminated.

5. The estimation is obtained by the weighted sum of all the particles.

The process of prediction → update is repeated on each robot movement. The re-sampling step
ensures that the algorithm converges. Both the accuracy and the efficiency of the algorithm are
dependent on the number of particles, when using more particles we can get a better estimation, but
the time to calculate each step increases. In our implementation we used an adaptive method which
determines the number of particles according to the confidence the algorithm has of its location [22].

One of the difficulties of using this algorithm is to build the sensor model (i.e., to calculate
P (Zt|Xt)). We did this by modeling this probability as a Gaussian, where the parameters of the
Gaussian were determined by doing field experiments.

5

Figure 5: The problem of localization. Each dot is a possible robot location. As the robot moves the

uncertainty in location grows as a result of the accumulative nature of the sensors’ error.

Planning

The main goal of our robot is to be able to get to a given destination autonomously. In order to
achieve this task it needs a way to plan a path to its destination. To plan the path from the start
point, which is the current position as calculated by the localization module, to the destination,
we used GIS (Geographic Information System) data donated to our project by MAPA Ltd. [23].
We used the geographic information of Givaat-Ram to build a GIS database using PostgreSQL DB
[24]. The path planning task was divided into two modules: global path planning and local path
planning.

Global Path Planning

The role of the global path planning module is to calculate a path between the starting position and
the destination, based only on the GIS data stored in our DB. From that information, we construct a
weighted graph in which nodes represent crossroads in the campus, edges represent paths, and each
edge’s weight represents the length of road between two crossroads. Using the Dijkstra algorithm we
find the shortest path in the graph, which correlates to the shortest route to the destination point.
Figure 6 illustrates the global path planning process.

Local Path Planning

The global path planner outputs a list of GPS coordinates the robot should pass on its way to
the destination point. These checkpoints are typically distant 20 − 30 meters from each other. To
calculate the path between the points outputted by the global path planning module, a local path
planning technique is required. The local planner considers the location of roads, buildings, obstacles
etc’. For that purpose we build a map of the local area of the robot using data gathered from the
database, sonar, and vision system (the localization algorithm is used to determine the area to be
mapped). The local map is rebuilt after every 10-20 meters. The optimal local path is found using
the A* algorithm which is a fast search algorithm that uses heuristics in order to speed up the
search. We needed a faster search strategy than Dijkstra in the local path planner because, unlike
the global scenario, the local path is recalculated each time an unmapped obstacle is detected which
blocks areas that were considered free just a moment ago.

Vision

As our robot can only drive on walkways and paved paths, we needed a way to distinguish between
drivable and non-drivable areas. HANS is suited with a front facing video camera and we decided
that it will be used as our main tool for this task.

6

Figure 6: Global Path planning process. GIS data donated by MAPA Ltd. is transformed into a GIS

Database. A graph representing the campus is constructed from the DB. The Dijkstra algorithm is used to

find the shortest path in the graph.

The notion of using computer vision to detect roads is not new, as early as 1988 Thorpe et. al.[8]
presented a color based system for automatic vehicle road following. In 1995 Pomerleau[9] suggested
another road following vehicle which broke down the problem into three stages 1) sampling of the
image, 2) determining the road curvature, and 3) determining the lateral offset of the vehicle relative
to the lane center. Since then there has been much research on this problem and many ideas have
been tested ([11, 13, 12, 10, 6] just to name a few). However this problem is difficult and still remains
an active area of research.

The problem our robot faces is even more difficult than that of road following vehicle. Vehicles
can expect to only drive on paved roads, which always have similar color and texture. HANS needs to
detect paved roads, stoned walkways and paths. These can come at any possible color! Furthermore,
the robot can switch between different types of roads in a single run. Lighting conditions also play
a factor in vision based road detection as the robot can be used in different times of day when the
color and intensity of the light varies.

With these difficulties in mind, we designed and implemented a vision system for HANS. Figure
7 illustrates the process of detecting road areas within an image (that is, segmenting the image into
two parts - road and non-road.). Our system has four main steps, we elaborate in detail on each
step below:

1. Sampling pixels.

2. Learning models.

3. Building image graph.

4. Segmenting the image using the graph.

Sampling the pixels

The first step in detecting drivable areas is to build two data sets of pixels on which learning can
be done. One data set holds pixels that will be used to learn a Road Model, and the second data
set’s pixels will be used to learn a Non-Road Model. There are two types of strategies for building
such data sets, offline - where the data set is built in advance, and online - where the data set is
built dynamically during the robot’s regular activities. We have implemented this stage of the vision
process in both ways:

• Offline - A database of road images from around the campus was gathered, we wrote an
application which allows a user to manually define areas which are part of a road/path, and
used it to compile the two data sets.

• Online - On each new frame that arrives as input to the algorithm we heuristically define two
rectangled areas, one (at the bottom of the image) which indicates a good probability for being
part of the road, and the other (at the top) which indicates a good probability to be part of
the background. Figure 8 shows one input frame with the described selections. We use the

7

Figure 7: Vision system flow diagram. First we sample pixels to obtain a data set in which we can perform

the learning process. Then we learn the parameters of two Gaussian Mixture Models using the data set.

We use the GMMs to assign road and non road probabilities for each pixel. After that we build the image

graph using the calculated probabilities, and finally we segment the image by cutting the graph.

Figure 8: (A) Heuristically building data sets. The red (bottom) rectangle is used as the road data set.

The blue (top) rectangle is used as the non-road data set for this single frame. (B) A frame after detecting

the road. The area overlaid with red is the road , everything else is the background .

pixels from the bottom rectangle as the road data set, and the ones from the top rectangle as
the non-road data set.

In our tests we have found that both methods work adequately and give a good assessment as to
where is the road (see the Results section). The offline version is slightly faster and more accurate,
but is less robust as it is dependent on the images in its database and so can only detect paths which
are similar to those that are represented in it. The online version is more general, capable of coping
with unexpected types of roads/paths but, as mentioned, a little less accurate. As the two methods
both provided good results we decided to keep both, and the decision on which to use is now up to
the user, which can change the behavior as a parameter of the system.

Learning the Gaussian Mixture Models

The second step of our algorithm requires us to extract relevant data from the two data sets of
pixels gathered in the previous stage. In our case this means learning the typical color of the
road/background and save it in a way that will enable us to quickly and easily make decisions about
the classification of unknown pixels.

All objects in the image (the road being no exception) are comprised of a variety of colors
distributed around a main color, for example the sky in Figure 8 holds a number of shades of the
color blue, i.e. each pixel in the sky area has an RGB value which is close to blue. This leads us
towards modeling the road/background as a Gaussian centered around the typical color of the object.
This may work for very simple types of objects, but more realistic objects are usually comprised
from a number of different colors. So a more general way of modeling the road/background is by
using a Gaussian Mixture Model, i.e., a set of gaussians, each with a weight factor that indicates
how much the object leans towards that color. Formally, Let Ir be the 3 dimensional vector of the
color values of pixel r in the current frame. We model the road globally using a Gaussian Mixture
Model:

Proad(Ir) =
L∑
k=1

wk · PG(Ir|µk, σk)

Where PG is a normal distribution and wk, µk, σk are its weight, mean and variance. L is the
number of components in the GMM. That is, the probability of a pixel Ir being part of the road
area is the (weighted) sum of probabilities for it to be part of the color gaussians comprising the

8

road. Similarly we define Pbg(Ir) as the probability of a pixel r being part of the background. We
now need to learn the GMM’s parameters, namely wk, µk, σk and L. A popular way for learning
Gaussian Mixture Models is by using the EM algorithm[14]. This gives us the weights, means, and
variances but a decision needs to be made about the maximum number of gaussians. We have found
that road objects usually contain about 4 different colors, and background areas are slightly more
complex. To be on the safe side we used a version of EM that uses component annealing, L is
initially set to a relatively large value (we used L = 10) and trivial components are discarded during
the learning.

Building the image graph and segmenting the image

The road extraction problem can be viewed as a labeling procedure, where each pixel r should be
labeled as either road (1) or background (0) . In [15] it was shown that the labeling problem can
be solved using min-cut if it is stated as an energy minimization problem. To solve the problem we
used a method similar to [17], we created a graph as follows: we defined a source and a sink (road
and background) and for each pixel r in the image we defined a node Nr. Each node is connected
to the source and to the sink. There is also a connection between each two nodes that represent
neighboring pixels in the image (4 neighbors). For each pixel r we defined a color term:

ColorTerm(xr) =

{
−logProad(Ir) xr = 0
−logPbg(Ir) xr = 1

The color term is the cost of assigning r with the label xr. In min-cut notation this is the cost
of removing the edge between Nr and the source/sink. For each two adjacent pixels r; s we also
defined a contrast term:

ContrastTerm(xr, xs) = |xr − xs| · e−β·dr,s

where dr,s = ‖Ir − Is‖2 is the L2 norm of the color differences and β = E[‖Ir − Is‖2]−1. The
contrast term is the cost of assigning r with the label xr and s with xs. This is the cost of performing
the cut in the graph between Nr and Ns. The desired labeling can now be achieved by cutting the
graph in two, each connected component corresponds to one of the labels. To cut the graph we used
the implementation of the min-cut algorithm in [16]. Figure 8 shows the outcome of the segmentation
procedure on a typical frame (see the Results section for an in-depth analysis).

After the road and background areas have been selected accurately the output needs to be
forwarded to the local planning algorithm, this requires the image to be projected to a coordinate
system of a bottom facing camera in order for distances to be measured correctly. This stage
has not been implemented yet, it involves using consecutive frames from the video input and the
approximated speed of the robot to estimate distance in the picture and then to project the image
according to these distances.

Obstacle avoidance

As the robot carries sensitive hardware that must be protected, it needs to guarantee that no
collisions occure with objects in the environment. Such collisions may happen if the output of the
local planning algorithm or the vision algorithm produce erroneous decisions as a consequence of
bad sensor readings. Even in a perfect world, where the sensors contain no noise, and both the local
planning and path detection algorithms work with 100% accuracy, there is always a risk of sudden
appearance of objects due to the dynamic nature of the campus environment - people (or cats) may
cross the path of the robot. To guarantee a risk free ride, we have built a failsafe mechanism that
uses the robot’s sonar range finder for fast obstacle avoidance. As the sonar works at a much higher
frequency than both the vision and planning algorithms, it provides a fast way of detecting both
static and dynamic obstacles.

9

There are numerous works on the subject of obstacle avoidance using range finding sensors,
[19, 18] are two popular methods, however, these methods are aimed for indoor robot obstacle
avoidance which is more complex than outdoor scenarios (there are more obstacles and they occupy
a larger percentage of the area) and so they are computationally “heavier” than is actually needed
in our case, especially when the robot has already planned a safe route to the closest check point
and only needs the avoidance behavior as a failsafe.

For our build-it-yourself version of HANS, which has only a single front facing sonar, we have
implemented a simple obstacle detection mechanism which halts the robot when it gets too close to
an object. Trying to make more complex decisions according to this single sensor will undoubtedly
lead to undesired behavior of the robot, but there is no absolute need for making such actions - if the
obstacle is dynamic (e.g. a cat) it will probably be on its way in a moment or two, so, if the robot
can wait patiently, the road will be cleared for it without it needing to act. If however the object is
static and for some reason has not been mapped until now, it will be mapped in the following few
seconds by the vision system, and the local path will then be re-calculated.

For the HANS version that runs on the PIONEER 2DX, which has an array of 8 sonar range
finders, we have implemented a slightly more complex behavior, in which, when the robot encounters
an obstacle, it turns to the “path of least resistance”, i.e., turns towards the direction in which sonar
readings indicate the longest free distance, and moves in that direction. Again, after a moment or
two, the local path is re-calculated and the new route can be followed. The benefit of this technique
is that the new route is likely to pass through the stated “path of least resistance” and so in most
cases the robot will seamlessly avoid the obstacle.

Current status

HANS’s original plan turned out to be pretty ambitious for a three person team over 3 semesters.
After consulting with our advisors, we decided to continue the development of each module inde-
pendently and leave their integration as the last step. Following this plan we managed to implement
(and fully test) all the planned modules and have integrated most of them. However, several of the
modules have not been integrated yet. For example, the vision module is implemented and tested,
but still doesn’t update the local map. We estimate we have completed 80% of the original plan.
The table in Figure 9 presents all the modules of the project and shows the status of each one. On
July 30th the HANS project won an excellence award as one of the three top engineering projects
of 2008 in the Hebrew University of Jerusalem.

Figure 9: Current status of software modules.

10

Results

localization

In order to test our Localization technique we ran two types of tests: Simulated tests and field tests.
We wanted to be sure that our algorithm improves the position estimate of the robot when compared
with only using the sensor data.

In order to be able to compare the performance of localizing using data from only one sensor
(GPS, odometry etc’) versus localizing using the Particle Filter method, we developed a simulation
program that creates a random path and the (noisy) sensor readings that correspond to it. At each
run of the simulation, the robot moves 300 steps. Figure 10 (A & B) shows a localization result
of a simulation run when only considering one type of sensor at a time. Each sensor has its own
shortcomings. The GPS, while producing readings that are guaranteed to be no further than 10m
from the correct position, has no memory of past readings. It therefore has a tendency of creating
non-continuous paths. The odometry (i.e., wheel encoders) reading, on the other hand, produce a
smooth path, but its errors accumulate and cause a drift from the ground truth data. Figure 10
(C) shows a simulated localization run when using the Particle Filter algorithm. It is visible that
this technique benefits from the data provided by both sensors and overcomes their shortcomings.
It produces a smooth path and its error does not accumulate.

We quantified the consistency of our algorithm, by running the simulation 100 times on different
paths. We defined an error measure as the distance between the true path and the estimated one.
From the results in Figure 11 it can be seen that the Particle Filter technique not only reduces the
mean error but also produces consistent results.

After getting satisfying results from the simulation we tested our algorithm in the “real world”.
As no ground truth could be gathered in these tests (even the GIS data base has an approximate
error of 1.8m) our tests were mainly visual sanity tests. We inserted the localization data into
Google Earth and verified that the estimated path corresponds to the path the robot traversed in
the field test.

Figure 10: Localization results from simulation runs, blue crosses indicate the true path while green circles

show the estimated path. (A) GPS estimate. (B) Odometry estimate. (C) Particle Filter estimation.

11

Figure 11: Localization statistics when using the Particle Filter algorithm. (A) The variance of the error

in each of the simulation runs. Notice that the algorithm produces a stable error. (B) Comparison of the

average error over 100 simulation runs between using a single sensor (blue and green bars) and using a

Particle Filter estimate (red bar).

Figure 12: Typical frames from a test run. The robot can expect to have people and other dynamic objects

in the frame. Notice the change of paths in the right most image.

(1) Original frame. (2) The labeling mask when using maximum likelihood from the GMMs. (3) The labeling

mask when also using min-cut. (4) The labeling of road areas (in red) is overlaid upon the original frame.

Vision

While some modules, such as the localization process, can be analyzed statistically, the vision module
has no ground truth to which we can compare our results, nor can we run simulation of it. Thus we
present our results as best we can using sample frames from our test runs. The reader is encouraged
to view our full length videos of the vision module1. The road finding process produced good results
on various types of sequences, mainly on such where the road colors are uniformly distributed.
Figure 12 shows the results of the vision module on a number of typical frames from various test
runs. Notice how the algorithm handles static/dynamic obstacles in the frame, and also how it
copes well with a change in color and texture when switching between paths. When experimenting
we found that, while the system is quite robust for small to medium illumination changes, errors in
labeling can occur when shadows are involved. In the Conclusions section we talk about a possible
solution to this problem.

1For supplementary material visit http://sites.google.com/site/hanssupplementarymaterial/

Figure 13: Shadows can cause mistakes in the road (marked in red) finding process.

12

Obstacle avoidance

Due to time limitations, and since the obstacle avoidance module was planned and used mainly as
a safety measure, its testing was constructed as a series of sanity tests. Both HANS I and HANS II
were tested indoors and outdoors in various scenarios (environments containing walls, chairs, boxes,
people, etc’) for their ability to stop moving when encountering an obstacle, without crashing into
it. Both showed 100% success in avoiding the obstacles, even in scenarios when the obstacle was
suddenly placed in their path. Since HANS II has an 8-sonar array, the obstacle avoidance module
implemented for it was more complex, based on the ”path of least resistance” approach as was
described in the Methods section. We didn’t quantitatively test whether the direction chosen by
the robot after encountering an obstacle is always the path with the longest distance to obstacles.
Nonetheless, HANS II was able to cross each obstacle maze it faced during the sanity tests without
hitting any obstacles. Video demonstrations of HANS I simple obstacle avoidance and HANS II
”path of least resistance” are available in the supplementary material web page.

13

Conclusions

We have set out to show that robotic research has reached a point where the algorithms and
paradigms which are popular today are robust enough to allow the building of autonomous physical
agents without using sophisticated and expensive, specialized, components. All our sensors, motors,
and other electronic parts have been bought as off-the-shelf items, which are available to anyone
with an internet connection. The total cost of the materials was approx. 1000$, on top of which we
have used a laptop that was available from one of our advisors.

We have built a mobile robotic platform which is able to drive on walkways and paved paths
carrying an onboard laptop. Our software is able to localize the robot in the campus area, plan paths
to desired locations, find drivable areas using a video camera, and avoid obstacles while performing
these tasks.

We believe that the modules we have presented in this report demonstrate how to create building
blocks of an autonomous robot. When combining these blocks into a single, real-time, system we get
a robot which has all the capabilities we need for autonomous navigation in a campus area. As was
mentioned in the Current Status section, most of the modules have already been integrated with
each other and work, in real-time, together.

Future Work

There are a number of directions in which future work can improve the capabilities of our system.
First, the integration of all modules into the system should be done.

In our localization module more data can be extracted from the GPS (such as the number of
satellites it is connected to) and the importance given to its readings can be modified accordingly.
Another improvement can be to build an image database of buildings around the campus, and using
them to assist in location estimation, thus creating a sort of visual memory of the robot, this memory
can also be updated during actual robot runs.

In the vision system, work can be done on both accuracy and speed. As of this day the system
works at approx. 4 frames per second, this is acceptable as the robot itself is not very fast, but if
the frame rate would be increased the robot will be able to detect obstacles and other environment
changes in a safer manner. As was discussed in the Results section, shadows sometimes cause
mistakes in the path detection process. There are a number of techniques for shadow detection and
removal ([20] is a good example) and these can be used as a pre process of the path finding module.

When detecting obstacles our local path planner simply re-calculates the path from scratch
using A*. A faster approach would be to only modify the current plan, as is done in the D* light
algorithm[21].

Acknowledgments

First we would like to thank our advisors Jeff, Nir, & Zinovi for their guidance throughout the process
of designing and building our robot. The team would also like to express their sincere gratitude to
Doron First for the time and effort spent helping us with various hardware issues. Lastly we would
like to thank MAPA Ltd. for their donation of the GIS data of the Givat Ram campus.

14

Bibliography

[1] http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

[2] http://davidbuckley.net/DB/HistoryMakers/1868DederickSteamMan.htm

[3] http://davidbuckley.net/DB/HistoryMakers/1890EdisonTalkingDoll.htm

[4] Brooks, R. A robust layered control system for a mobile robot

[5] http://www.darpa.mil/grandchallenge05/index.html

[6] Thrun et al. Stanley, the robot that won the DARPA Grand Challenge.

[7] Sebastian Thrun, Wolfram Burgard, Dieter Fox. Probabilistic Robotics.

[8] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer. Vision and Navigation for the Carnegie-Mellon
Navlab.

[9] Dan Pomerleau. RALPH: rapidly adapting lateral position handler.

[10] Ohno and Tsubouchi, A mobile robot campus walkway following with daylight-change-proof
walkway color image segmentation.

[11] 12. Ernst D. Dickmanns. Vehicle Capable of Dynamic Vision.

[12] Guilherme N. DeSouza and Avinash C. Kak. Vision for mobile robot navigation: A survey.

[13] 14. Massimo Bertozzi, Alberto Broggi, Alessandra Fascioli. Vision-based intelligent vehicles:
State of the art and perspectives.

[14] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum Likelihood from Incomplete Data via
the EM Algorithm.

[15] Yuri Boykov and Vladimir Kolmogorov. An ex- perimental comparison of min-cut/max- ow
algo- rithms for energy minimization in vision.

[16] Y. Boykov and M. Pi. Jolly. Interactive graph cuts for optimal boundary & region segmentation
of objects in n-d images.

[17] Jian Sun, Weiwei Zhang, Xiaoou Tang and Heung-Yeung Shum. Background Cut.

[18] Ulrich, I. and Borenstein, J., 1998, VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots.

[19] J. Minguez, L. Montano. Nearness Diagram Navigation (ND): Collision Avoidance in Trouble-
some Scenarios.

[20] Graham D. Finlayson, Mark S. Drew, and Cheng Lu. Intrinsic Images by Entropy Minimization.

[21] Sven Koenig, Maxim Likhachev. D* Lite.

[22] Vandi Verma, Sebastian Thrun, Reid Simmons. Variable Resolution Particle Filter.

[23] http://www.gisrael.co.il/

[24] http://www.postgresql.org/

15

Appendix

The following list provides detailed explanations for all the modules shown in Figure 14:

1. Motor – Gets either an angle to turn or a distance to travel and moves the robot accordingly.

2. Sonar – Provides distance to closest object in front of the robot.

3. Camera – Outputs frames.

4. Compass – Outputs the direction the robot is facing.

5. GPS – Outputs a GPS reading, but in grid coordinates.

6. Dist – Returns distance traveled in a straight line since last reading.

7. DB – Holds GIS data and returns intersections/road data upon request.

8. Anti Collide – Failsafe mechanism. Stops the robot if there is an object less then X cm away.

9. Lane Process – Gets a raw image data and calculates probabilities for each pixel to be a
road/non road pixel. Outputs the probability matrix.

10. Obstacle + edge detect – Looks at a probability matrix and tries to find objects, road edges
etc’ in it.

11. Grid map – Holds a grid of local area. Each cell has a probability to be drivable/non drivable.
Provides this grid upon request.

12. Localize – Gets data from compass, GPS, dist and point 2 point and calculates a vector of
possible poses and their probability.

13. Global path plan – Gets data from the DB and localize. Builds a graph of the campus area
and finds the shortest path to the requested end point. Outputs a list of checkpoints (in grid
coordinates) to the checkpoint holder.

14. Global checkpoint holder – Holds a list of checkpoints the robot needs to go through in order
to reach its destination (a list of (x,y) coordinates).

15. Replan – Tells global path plan to recalculate the global path if a certain route proves to be
impassible.

16. Obstacle/grid mediator – (just mediator in the image) gets data from obstacle detect and from
grid, decide which one to believe and updates the grid.

17. Local path plan – Plans a route in the grid from a starting point to an end point. Outputs a
list of (x,y) to go through, or no route if none is passable.

18. Local tracker – gets the list of (x,y) and tracks the advancement of the robot according to the
list.

16

Figure 14: HANS’s full architectural design.

19. Local mediator – gets possible poses from the localize module and the local tracker (localize
provides a list of top probability poses). If they agree (the (x,y) in local tracker is one of the
(x,y) in the list from localize) tells point 2 point to move the robot, else tells local tracker to
recalculate the route (it believes the localizing module more than the tracker).

20. Point 2 point – Calculates the angle to turn or distance to move.

17

