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Abstract

Estimating the precise pose of a 3D model in an image is challenging; explicitly iden-
tifying correspondences is difficult, particularly at smaller scales and in the presence of
occlusion. Exemplar classifiers have demonstrated the potential of detection-based ap-
proaches to problems where precision is required. In particular, correlation filters explic-
itly suppress classifier response caused by slight shifts in the bounding box. This property
makes them ideal exemplar classifiers for viewpoint discrimination, as small translational
shifts can often be confounded with small rotational shifts. However, exemplar based
pose-by-detection is not scalable because, as the desired precision of viewpoint estima-
tion increases, the number of exemplars needed increases as well. We present a training
framework to reduce an ensemble of exemplar correlation filters for viewpoint estimation
by directly optimizing a discriminative objective. We show that the discriminatively re-
duced ensemble outperforms the state-of-the-art on three publicly available datasets and
we introduce a new dataset for continuous car pose estimation in street scene images.

1 Introduction
Accurate estimation of the pose of a 3D model in an image is a fundamental operation in
many computer vision and graphics applications, such as 3D scene understanding [25], in-
serting new objects into images [16], and manipulating current ones [6]. One class of ap-
proaches to pose estimation is correspondence-based [18, 28, 29]: individual parts of the
object are detected, and a pose estimation algorithm (e.g., perspective-N-point) can be used
to find the pose of the 3D object in the image. When the parts are visible, these methods pro-
duce accurate continuous estimates of pose. However, if the size of the object in the image is
small or if the individual parts are not detectable (e.g., due to occlusion, specularities, or other
imaging artifacts), the performance of such methods degrades precipitously. In contrast to
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correspondence-based approaches, pose-by-detection methods use a set of view-specific de-
tectors to classify the correct pose; these methods have appeared in various forms such as fil-
ter banks, visual sub-categories, and exemplar classifier ensembles [11, 20, 23]. While such
approaches have been shown to be robust to many of the short-comings of correspondence-
based methods, their primary limitation is that they provide discrete estimates of pose and as
finer estimates of pose are required, larger and larger sets of detectors are needed.

To maintain scalability, dimensionality reduction has been explored in prior work [10,
22, 32]. Reduced representations are attractive because of their statistical and computational
efficiency. Most approaches reduce the set of classifiers via the classic notion of minimizing
the reconstruction error of the original filter set. Such a reduction does not directly guar-
antee optimal preservation of detection performance. This is particularly problematic in the
case of viewpoint discrimination, as filters of proximal pose angles are similar. Reduction
designed to minimize reconstruction error often results in a loss of view-point precision as
the distinctive differences in proximal detectors are averaged out by the reduction.

Correlation filters [31] are designed to explicitly suppress side lobes (false classifier re-
sponse caused by small translational shifts in the bounding box). As small translational
shifts confound small rotational shifts, this property makes correlation filters ideally suited
for viewpoint discrimination. In this paper, we present a pose-by-detection approach that
uses an ensemble of correlation filters for precise viewpoint discrimination, by using a 3D
CAD model of the vehicle to generate renders from viewpoints at the desired precision.
A key contribution of this paper is a training framework that generates a discriminatively
reduced ensemble of exemplar correlation filters [4] by explicitly optimizing the detection
objective. As the ensemble is estimated jointly, this approach intrinsically calibrates the en-
semble of exemplar classifiers during construction, precluding the need for an after-the-fact
calibration of the ensemble. The result is a scalable approach for pose-by-detection at the
desired level of pose precision.

While our method can be applied to any object, we focus on 3D pose estimation of vehi-
cles since cheap, high quality, 3D CAD models are readily available. We demonstrate results
that outperform the state-of-the-art on the Weizmann Car View Point (WCVP) dataset [14],
the EPFL car multi-view car dataset [23], and the VOC2007 car viewpoint dataset [1]. We
also report results on a new data-set based on the CMU-car dataset [4]) for precise viewpoint
estimation and detection of cars. These results demonstrate that pose-by-detection based
on ensemble of exemplar correlation filters can achieve and exceed the level of precision
of correspondence based methods in real datasets; and that discriminative reduction of an
ensemble of exemplar classifiers allows scalable performance at higher precision levels.

2 Related Work
Contemporary approaches to pose estimation can be categorized into approaches that use lo-
cal part correspondences and approaches that use a codebook of view specific detectors.
The correspondence based approaches use various forms of local correspondences from
points [8], patches [9, 14], and parts [5, 19, 26, 27, 30]. Recently, structure from motion was
applied by Glasner et al. [14] on a set of car images to build a 3D object representation, and a
discriminative refinement process, comprised of eight viewpoint-aware Support Vector Ma-
chines (SVMs), was used to produce the final predictions. Stark et al. [28] used 3D models to
learn viewpoint specific car detectors with a parts based representation using rendered non-
photo realistic 2D projections of the 3D car models. In a similar vein, Stark et al. [29] trained

Citation
{E.Y{ö}r{ü}k and Vidal} 2013

Citation
{Liebelt, Schmid, and Schertler} 2008

Citation
{Ozuysal, Lepetit, and Fua} 2009

Citation
{Elgammal and Lee} 2013

Citation
{Murase and Nayar} 1995

Citation
{Zhang, El-Gaaly, Elgammal, and Jiang} 2013

Citation
{Vijaya{ }Kumar, Mahalanobis, and Juday} 2005

Citation
{Boddeti, Kanade, and Vijaya{ }Kumar} 2013

Citation
{Glasner, Galun, Alpert, Basri, and Shakhnarovich} 2012

Citation
{Ozuysal, Lepetit, and Fua} 2009

Citation
{Arie-Nachimson and Basri} 2009

Citation
{Boddeti, Kanade, and Vijaya{ }Kumar} 2013

Citation
{David, Dementhon, Duraiswami, and Samet} 2004

Citation
{Deng, Yang, Lin, and Tang} 2005

Citation
{Glasner, Galun, Alpert, Basri, and Shakhnarovich} 2012

Citation
{Campbell and Flynn} 2001

Citation
{Liebelt and Schmid} 2010

Citation
{Savarese and Fei-Fei} 2007

Citation
{Schels, Liebelt, Schertler, and Lienhart} 2011

Citation
{Su, Sun, Fei-Fei, and Savarese} 2009

Citation
{Glasner, Galun, Alpert, Basri, and Shakhnarovich} 2012

Citation
{Stark, Goesele, and Schiele} 2010

Citation
{Stark, Krause, Pepik, Meger, Little, Schiele, and Koller} 2012



MOVSHOVITZ-ATTIAS, et al.: 3D POSE-BY-DETECTION 3

a modified Deformable Parts Model [12] detector using car images retrieved from Google
Image Search, classifying cars into one of a discrete set of eight views. When noisy point cor-
respondences are available, a perspective-N-point method such as SoftPosit [8] or EPnP [17]
can be used to estimate 3D pose precisely from such local correspondences. While these
methods are highly accurate, they are susceptible to failure when these correspondences are
compromised, e.g., due to resolution or occlusion.

In contrast to the correspondence-based methods, detector-based approaches implicitly
infer object view-point via view-specific detectors. Murase et al. [22] pioneered the use of
reduced representation of view-specific detectors based on object appearance. In [23], SIFT
histograms were used within a naive Bayes formulation. Liebelt et al. [20] used codebooks
of SURF features for matching. In [3], an image sequence of known view-point angles was
used for training, and given a test image, distances from each training image were computed
and an SVM classifier applied to decide the closest view point that the test image belongs
to. In [11], a 3D model was constructed using 2D blueprints, and pose was recovered by
optimizing a matching score of quantized-HOGs from 2D images and the 3D model. Zhang
et al. [32] noted that multi-view images of 3D objects lie on intrinsically low-dimensional
manifolds. They used that intuition to decompose a view matrix C into C = USVT where
US is a viewpoint basis, and V is an instance/category basis.

Several approaches to 3D pose estimation have extended the deformable parts model
framework to 3D. These approaches [13, 15, 24, 33] augment real 2D images either with
synthetically generated renders of 2D projections of 3D object models or introduce addi-
tional 3D meta-data to the 2D images. However, the main focus of these methods is precise
object localization in 3D, i.e., to predict 3D bounding boxes for objects and estimate object
pose from these bounding boxes. Thus, these methods usually only estimate coarse object
viewpoints, whereas predicting fine-grained viewpoint is the main focus of this paper.

In this paper, we perform 3D pose-estimation via a set of exemplar classifiers, one for
each pose, while addressing the computational and statistical efficiency in using these exem-
plar classifiers via dimensionality reduction. Unlike previous approaches, we directly learn
a ensemble of detectors by optimizing for the discriminability of the reduced set, rather than
its ability to reconstruct the complete detector ensemble. This encourages the distinctions
that allow discrimination of precise pose differences to be preserved.

3 Method
Our approach learns a discriminatively reduced ensemble of exemplar classifiers that spans
the vehicle’s appearance as it changes with respect to viewpoint. Given a 3D model and a
desired precision of d �, we densely sample V = d360/de viewpoints of the object (along
one axis of rotation) and create renders using an empty background in a graphics rendering
package (Maya). Exemplar classifiers [21] are trained using a single positive instance and a
large set of negative instances. This procedure creates a classifier that is tuned to the char-
acteristics of the single positive instance. We use the vector correlation filter formulation1

introduced in [4] with Histogram of Oriented Gradients (HOG) features [7].
1Correlation Filters [31] are a type of classifier that explicitly controls the shape of the entire cross-correlation

output between the image and the filter. They are designed to give a sharp peak at the location of the object in the
image and no such peak elsewhere. In contrast to SVMs, which treat the HOG feature channels as independent
of each other, the vector CF design jointly optimizes all the feature channels to produce the desired output via
interactions between multiple channels. The Correlation Filter optimization has an analytical solution, which can
be solved efficiently, significantly faster than traditional classifiers (such as SVMs).
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3.1 Ensemble of Exemplar Classifiers for Pose-by-Detection

Exemplar classifiers are suited to the task of pose-by-detection. For each one of the V view-
point renders we train an Exemplar Correlation Filter (ECF) using the rendered image as
the single positive, and N � 1 image patches selected randomly from a background set of
images that do not contain the object instance. Each ECF is trained to detect the object from
a specific viewpoint.

Let {xi}N
i=1 be a set of Histogram of Oriented Gradients (HOG) representations of the

training examples, consisting of one positive exemplar rendering of the v-th view and N �1
negative bounding boxes. Also, define

�
g1

v , · · · ,gC
v
 

as the ECF for a viewpoint v, where C
is the number of channels of the HOG feature representation (commonly 32). The response
of an image xi to the filter is defined as

C

Â
c=1

xc
i ⌦gc

v = Correlation Output, (1)

where ⌦ denotes the 2D convolution operator. The ECF design is posed as:
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, (2)

where ri is the matrix holding the desired correlation output of the i-th training image, and l
moderates the degree of regularization. The desired correlation output ri is set to a positively
scaled Gaussian for the positive exemplar and to a negatively scaled Gaussian for the neg-
ative patches. This choice of the desired output correlation shape also implicitly calibrates
the different exemplar classifiers. The minimization problem can be equivalently posed in
the frequency domain to derive a closed form expression, which in turn lends itself to an
efficient solution [4]. It should be noted that, as a complete set, each view v 2 V is trained
independently, and that increase in the desired precision d increases the size of the ensemble
(linearly for one axis of rotation, quadratically for two, and cubically for all three).

3.2 Discriminative Reduction of Ensembles of Correlation Filters

The procedure described in Section 3.1 produces a large set of exemplar classifiers, one
per view that needs to be resolved. Let G 2 RD⇥V be the matrix of all V filters arranged
as column vectors, where D is the dimensionality of the feature. This set is an exhaustive
representation of the object’s appearance from many views, but applying all the filters during
test time is computationally expensive. It is also highly redundant as many views of the
object are similar in appearance. Our reduced Ensemble of Exemplar Correlation Filter
(EECF) approach is designed to jointly learn a set of K exemplar correlation filters F =
[f1, . . . , fK ] (each with C channels) and a set of V sparse coefficient vectors A = [a1, . . . ,aV ]
such that a detector gv for any viewpoint v of the object is defined by

gv = Fav. (3)

As before, there are V positive training images, one corresponding to each view that is
expected to be resolved. Define B to be a set of randomly selected negative background
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patches. To learn a reduced EECF, we define the following discriminative objective:

argmin
F,A Â
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+ l1kFk2
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Regularization and sparsity

, (4)

where xi and ri are as defined for Eq. (2) and fc
k is the c-th channel of the k-th reduced filter. a i

is the sparse mixing coefficient for the i-th training image, and l1, l2 control regularization
and enforce sparseness. The need for sparsity will be explained presently.

The first part of the equation guides the optimization to find a reduced set of correlation
filters F and a matrix A of coefficients such that Eq. (3) holds. That is, that a detector
for any viewpoint can be estimated by a linear combination of the columns of F , weighted
by ai. The second part of the equation controls the discriminability of the ensemble. The
key idea is that, as there is no value of a that can be defined for a negative instance, we
enforce a negative response r j for each negative instance, with any of the learned a . This
optimization can be solved efficiently by posing the problem in the Fourier-domain. Details
of the derivation are included in the supplementary material.

3.3 Predicting the Viewpoint
The reduced EECF is used to reconstruct the filter responses of the complete ensemble set G.
As the learned coefficient matrix A is sparse this procedure will be much faster than applying
all ECFs on the image. The reduced EECF is applied on an input image at varying scales
and locations. The response of all views is estimated using the sparse coefficients. Peaks in
these responses are used to predict the location and viewpoint of the car in the image.

Let rg
v 2 RM be the response of evaluating ECF gv on a test image I of M HOG cells; rg

v
can be expressed as rg

v = gv ⌦ I where gv is the v-th column of G. With Eq. (3),

r̃g
v =

⇣ K

Â
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k fk

⌘
⌦ I =
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Â
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k (fk ⌦ I) =

K

Â
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k r f

k , (5)

where r̃g
v is an estimator of rg

v . That is, the response of the ECF corresponding to the v-th
view, can be estimated as a weighted sum of the responses of the K ensemble elements. We
can reshape rg

v and r f
k as vectors, and arrange them as the columns of the matrices Rg and

R f respectively. An estimator R̃g for the response of all the exemplar filters on the image is
R̃g = R f A. Note that as A is sparse this multiplication is efficient even though R f is large.

3.4 Context Rescoring
To reduce the effect of false positive detections we pool information from nearby boxes.
Each box is associated with a specific angle and we can use that information to make a better
decision. For a box b with a detection score ŝ(b), we assign the following score

s(b) =
Âbn2B OS(b,bn) ·K(b,bn) · ŝ(bn)

Âbn2B OS(b,bn) ·K(b,bn)
, (6)
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where B is the set of all boxes in the image, OS(b,bn) is a function that measures the overlap
of two boxes, and K(b,bn) is a Gaussian Kernel in angle space (circular normal distribution),
centered at the angle of box b. The rescoring function reduces the score of false positives as
they are unlikely to overlap with other boxes that predict the same angle.

4 Results
The objective of this paper is to estimate the viewpoint of a 3D model using a pose-by-
detection approach. Therefore, we focus our evaluation on viewpoint precision for two main
use-case scenarios on four datasets: WCVP, CMU-Car, VOC2007 car viewpoint, and EPFL
multi-view cars. The first case (KNOWN) is where the image contains a car for which we
have a 3D CAD model corresponding to the particular make and model. In the second case
(UNKNOWN), the image contains a car for which we do not have the exact 3D CAD model.
When this is the case, we need to fall back to a generic strategy. We create views for four
representative car models: a sedan, a van, a compact car, and a hatchback.

For each car, we create V = 360 renders by rotating a synthetic camera around the 3D
model in increments of 2 degrees in azimuth and increments of 10 degrees for elevation
values (for elevation of 0 and 10 degrees). We train 360 exemplar correlation filters for each
one of the views and learn a reduced ensemble with K = 20, and K = 40 ensemble elements.
For a given test image, we apply all the ensemble elements at varying scales and locations
and use their output to estimate the cross correlation response of all 360 ECFs. Finally,
we apply non-maxima suppression on the predicted bounding boxes. Each bounding box
prediction is associated with a specific exemplar and we use that exemplar’s angle as our
prediction. For the UNKNOWN case we follow the protocol described above, but use filters
learned from the four representative 3D models.
WCVP. The Weizmann Car Viewpoint (WCVP) dataset [14] contains 1530 images of cars,
split into 22 sets. Each set has approximately 70 images and shows a different car model. On
this dataset we evaluate both the KNOWN and the UNKNOWN scenarios. For the KNOWN
case, we obtained 10 3D CAD models of cars from this dataset from the on-line repositories
Doschdesign and Trimble 3D Warehouse. There are 683 images in the data set for these 10
models and we evaluate on those. For the UNKNOWN case we evaluate on all the images
in WCVP. Table 1(a) shows the median angular error for azimuth prediction over the 10 car
models tested for the KNOWN use case, and the full dataset for the UNKNOWN use case.
Using a known 3D CAD model and a full set of exemplar correlation filters as described
in Section 3.1 produces an angular error of 6.9�, which is a reduction of 40% in error rate
from the 12.25� reported by Glasner et al. [14]. Using a reduced set of 40 filters the error
increases by less than 1� to 7.6�. When the model is unknown, a 40 ensemble filter produces
an error of 8.4�. This quantifies the benefits of using a known 3D CAD model, compared to
the harder problem of using a model trained on a holdout set as in [14] or in the UNKNOWN
use case. Figure 2 shows a polar histograms of the predicted angles for two examples. The
figure shows a distinctive ambiguity in prediction cause by the car’s symmetric structure.
CMU-Car. The MIT street scene data set [2] was augmented by Boddeti et al. [4] with
landmark annotations for 3,433 cars. To allow for evaluation of precise viewpoint estimation
we further augment this data set by providing camera matrices for 3,240 cars. To get the
camera viewpoint matrices, we manually annotated a 3D CAD car model with the same
landmark locations as the images and used the POSIT algorithm to align the model to the
images. To ensure a clean ground truth set, we then back projected the 3D points to the 2D
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Median Angular Error
Method KNOWN UNKNOWN

EECF, K = 20 10.2� 9.4
EECF, K = 40 7.6� 8.4�
ECF full (360) 6.9� 7.5

Glasner et al. [14] - 12.25�

(a) Azimuth Estimation: WCVP

Median Angular Error
Method Azimuth Elevation

EECF, K = 20 26.0� 3.8�
EECF, K = 40 11.48� 3.6�
ECF Full (360) 3.2� 3.0�

Glasner et al. [14] - -

(b) Pose Estmation: CMU Car

Table 1 (a) Median angular error in azimuth estimation for WCVP dataset. When the car
model in the image is known, using 40 filters, our ensemble exemplar correlation filter
method achieves a median error of 7.6�. When the car model is unknown a basis of 40
filters has a median error of 8.4�. Previous results on this dataset have a median error of
12.25�. (b) Median angular error in azimuth and elevation estimation for CMU Car dataset
using unknown models.

Figure 1 (Left) A histogram of view errors for the VOC2007 car viewpoint dataset. Most
images were matched near their most similar pose and so there is a peak around a 1 bin error.
(Right) Histogram of angular error on the CMU-Car dataset. The Median error is 11.48�. In
both cases, the smaller peak is due to the 180� symmetricity.

plane and only used cars for which the sum of reprojection error over all landmark points was
smaller than 8 pixels. The CAD model used was different from those used later in testing.

We use CMU-Car to evaluate the UNKNOWN scenario. For each car, we use the ground
truth bounding box to crop a large image section around it (the area of the cropped image is
3 times the area of the bounding box and may conatin other cars). Figure 3 shows examples
of detections and viewpoint prediction on this dataset. Table 1(b) shows pose estimation
results on this dataset. Most images in this dataset were taken from standing height which
explains the low elevation error. The median error in azimuth is 11� when using an EECF
of 40 filters. Figure 1 (Right) shows the distribution of angular errors for an ensemble of
size 40. The errors made by the algorithm can be split in two; small estimation errors, and
180�ambiguity errors. There are few errors in the [30�,165�] range.

VOC2007 car viewpoint. In [1], Arie-Nachimson and Basri provided viewpoint annota-
tions for 200 cars from the PASCAL VOC 2007 test set car category. Each car is labeled
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Figure 2 Polar histogram of scores. The left example shows a van at an oblique angle, with
little ambiguity in the distribution of responses. The right example shows a side view with
the distinctive symmetric ambiguity.

with one of 40 viewpoint labels that correspond to reference images. Figure 1 (Left) shows a
histogram of prediction distance from true labels. The majority of the predictions are within
a distance of 2 to the ground truth label. This is an improvement over the results of [1] which
had a median distance of 3 bins.

EPFL Multi-View Cars [23]. This dataset contains 2299 images of 20 different car models.
Each car is imaged at intervals of 3� for a full turn. We apply the UNKNOWN use case on
this dataset as outlined above. Using 40 ensemble filters we achieve a median error of 19�
compared with 24.83� reported in [14].

5 Discussion
Exemplar-based approaches have been gaining popularity as they can provide state-of-the-art
detection for precise detection problems. However, these methods scale poorly; as the de-
sired precision of viewpoint estimation increases, the number of exemplars needed increases
as well. We present a pose-by-detection framework that considers both computational and
statistical efficiency. Our approach directly optimizes discriminative power to efficiently
detect the viewpoint of an object. The need for reducing the number of applied filters is
especially prominent at the two extremes of scale: on a mobile platform where the available
computation power is limited, and on the data-center scale where the number of images to
be evaluated is vast. In lieu of reported computation times that depends on hardware spec-
ification and implementation, we analyze the computational complexity of our approach.
For an image with a HOG representation of size M ⇥C, a filter of size m⇥C, V exem-
plars, and a learned ensemble of K filters, when all exemplars are convolved, the complex-
ity is O(CV M log2 m). With the reduced set the complexity is O(CKM log2 m+ gMKV ),
where g is the fraction of non-zero elements in A. Thus, the computational savings are
O (K/V + gK/C log2 m).

Our method produces state-of-the-art results on the WCVP dataset and the EPFL dataset,
significantly reducing the error from previous results. Additionally, we have introduced a
new dataset, CMU-Car, for viewpoint estimation that contains more than 3000 images. On
this dataset, we achieve 11.5� azimuth error, and 3.6� elevation error by using a 40 ele-
ment EECF basis. A fundamental limitation of pose-by-detection approaches, including
the method presented in this paper, is that as the precision is increased beyond a point, it
becomes increasingly harder to discriminate between nearby viewpoints, because the under-
lying features are designed to provide invariance to small spatial variations. This suggests
an important direction of future work, tying feature selection into the detector optimization.
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Figure 3 Example results from all of the datasets used. Each row shows input images (top)
and overlaid pose estimation results (bottom). (a) Results using a Known 3D model, (b)
results using an Unknown 3D model, and (c) failure cases.

Yair Movshovitz-Attias
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