Next Issue
Volume 12, December
Previous Issue
Volume 12, June
 
 

J. Dev. Biol., Volume 12, Issue 3 (September 2024) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 1092 KiB  
Review
Myotube Guidance: Shaping up the Musculoskeletal System
by Aaron N. Johnson
J. Dev. Biol. 2024, 12(3), 25; https://doi.org/10.3390/jdb12030025 - 17 Sep 2024
Abstract
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are [...] Read more.
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell–cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed. Full article
Show Figures

Figure 1

14 pages, 799 KiB  
Review
Roles of the NR2F Family in the Development, Disease, and Cancer of the Lung
by Jiaxin Yang, Wenjing Sun and Guizhong Cui
J. Dev. Biol. 2024, 12(3), 24; https://doi.org/10.3390/jdb12030024 - 10 Sep 2024
Abstract
The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, [...] Read more.
The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate with each other to regulate the development of specific brain subregions or cell types. In addition, NR2F family members are associated with various cancers, such as prostate cancer, breast cancer, and esophageal cancer. Nonetheless, the roles of the NR2F family in the development and diseases of the lung have not been systematically summarized. In this review, we mainly focus on the lung, including recent findings regarding the roles of the NR2F family in development, physiological function, and cancer. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

16 pages, 2085 KiB  
Article
Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish
by Nuwanthika Wathuliyadde, Katherine E. Willmore and Gregory M. Kelly
J. Dev. Biol. 2024, 12(3), 23; https://doi.org/10.3390/jdb12030023 - 9 Sep 2024
Abstract
Craniometaphyseal Dysplasia (CMD) is a rare skeletal disorder that can result from mutations in the ANKH gene. This gene encodes progressive anksylosis (ANK), which is responsible for transporting inorganic pyrophosphate (PPi) and ATP from the intracellular to the extracellular environment, where PPi inhibits [...] Read more.
Craniometaphyseal Dysplasia (CMD) is a rare skeletal disorder that can result from mutations in the ANKH gene. This gene encodes progressive anksylosis (ANK), which is responsible for transporting inorganic pyrophosphate (PPi) and ATP from the intracellular to the extracellular environment, where PPi inhibits bone mineralization. When ANK is dysfunctional, as in patients with CMD, the passage of PPi to the extracellular environment is reduced, leading to excess mineralization, particularly in bones of the skull. Zebrafish may serve as a promising model to study the mechanistic basis of CMD. Here, we provide a detailed analysis of the zebrafish Ankh paralogs, Ankha and Ankhb, in terms of their phylogenic relationship with ANK in other vertebrates as well as their spatiotemporal expression patterns during zebrafish development. We found that a closer evolutionary relationship exists between the zebrafish Ankhb protein and its human and other vertebrate counterparts, and stronger promoter activity was predicted for ankhb compared to ankha. Furthermore, we noted distinct temporal expression patterns, with ankha more prominently expressed in early development stages, and both paralogs also being expressed at larval growth stages. Whole-mount in situ hybridization was used to compare the spatial expression patterns of each paralog during bone development, and both showed strong expression in the craniofacial region as well as the notochord and somites. Given the substantial overlap in spatiotemporal expression but only subtle patterning differences, the exact roles of these genes remain speculative. In silico analyses predicted that Ankha and Ankhb have the same function in transporting PPi across the membrane. Nevertheless, this study lays the groundwork for functional analyses of each ankh paralog and highlights the potential of using zebrafish to find possible targeted therapies for CMD. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

16 pages, 1672 KiB  
Review
From Germ Cells to Implantation: The Role of Extracellular Vesicles
by Anna Fazzio, Angela Caponnetto, Carmen Ferrara, Michele Purrello, Cinzia Di Pietro and Rosalia Battaglia
J. Dev. Biol. 2024, 12(3), 22; https://doi.org/10.3390/jdb12030022 - 23 Aug 2024
Viewed by 421
Abstract
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, [...] Read more.
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, the physiological goal of exosome generation was largely unknown and required more investigation; at first, it was hypothesized that exosomes are able to remove excess, reject and unnecessary constituents from cells to preserve cellular homeostasis. However, thanks to recent studies, the central role of exosomes in regulating cellular communication has emerged. Exosomes act as vectors in cell–cell signaling by their cargo, proteins, lipids, and nucleic acids, and influence physiological and pathological processes. The findings on exosomes are widespread in a large spectrum of biomedical applications from diagnosis and prognosis to therapies. In this review, we describe exosome biogenesis and the current methods for their isolation and characterization, emphasizing the role of their cargo in female reproductive processes, from gametogenesis to implantation, and the potential involvement in human female disorders. Full article
Show Figures

Graphical abstract

17 pages, 4048 KiB  
Article
Lowered GnT-I Activity Decreases Complex-Type N-Glycan Amounts and Results in an Aberrant Primary Motor Neuron Structure in the Spinal Cord
by Cody J. Hatchett, M. Kristen Hall, Abel R. Messer and Ruth A. Schwalbe
J. Dev. Biol. 2024, 12(3), 21; https://doi.org/10.3390/jdb12030021 - 16 Aug 2024
Viewed by 997
Abstract
The attachment of sugar to proteins and lipids is a basic modification needed for organismal survival, and perturbations in glycosylation cause severe developmental and neurological difficulties. Here, we investigated the neurological consequences of N-glycan populations in the spinal cord of Wt AB and [...] Read more.
The attachment of sugar to proteins and lipids is a basic modification needed for organismal survival, and perturbations in glycosylation cause severe developmental and neurological difficulties. Here, we investigated the neurological consequences of N-glycan populations in the spinal cord of Wt AB and mgat1b mutant zebrafish. Mutant fish have reduced N-acetylglucosaminyltransferase-I (GnT-I) activity as mgat1a remains intact. GnT-I converts oligomannose N-glycans to hybrid N-glycans, which is needed for complex N-glycan production. MALDI-TOF MS profiles identified N-glycans in the spinal cord for the first time and revealed reduced amounts of complex N-glycans in mutant fish, supporting a lesion in mgat1b. Further lectin blotting showed that oligomannose N-glycans were more prevalent in the spinal cord, skeletal muscle, heart, swim bladder, skin, and testis in mutant fish relative to WT AB, supporting lowered GnT- I activity in a global manner. Developmental delays were noted in hatching and in the swim bladder. Microscopic images of caudal primary (CaP) motor neurons of the spinal cord transiently expressing EGFP in mutant fish were abnormal with significant reductions in collateral branches. Further motor coordination skills were impaired in mutant fish. We conclude that identifying the neurological consequences of aberrant N-glycan processing will enhance our understanding of the role of complex N-glycans in development and nervous system health. Full article
Show Figures

Figure 1

17 pages, 2617 KiB  
Review
Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes
by De-Li Shi
J. Dev. Biol. 2024, 12(3), 20; https://doi.org/10.3390/jdb12030020 - 2 Aug 2024
Viewed by 655
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates [...] Read more.
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left–right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell–cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

14 pages, 1616 KiB  
Article
Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells
by Chihiro Iwaya, Sunny Yu and Junichi Iwata
J. Dev. Biol. 2024, 12(3), 19; https://doi.org/10.3390/jdb12030019 - 6 Jul 2024
Viewed by 651
Abstract
Frontonasal malformations are caused by a failure in the growth of the frontonasal prominence during development. Although genetic studies have identified genes that are crucial for frontonasal development, it remains largely unknown how these genes are regulated during this process. Here, we show [...] Read more.
Frontonasal malformations are caused by a failure in the growth of the frontonasal prominence during development. Although genetic studies have identified genes that are crucial for frontonasal development, it remains largely unknown how these genes are regulated during this process. Here, we show that microRNAs, which are short non-coding RNAs capable of targeting their target mRNAs for degradation or silencing their expression, play a crucial role in the regulation of genes related to frontonasal development in mice. Using the Mouse Genome Informatics (MGI) database, we curated a total of 25 mouse genes related to frontonasal malformations, including frontonasal hypoplasia, frontonasal dysplasia, and hypotelorism. MicroRNAs regulating the expression of these genes were predicted through bioinformatic analysis. We then experimentally evaluated the top three candidate miRNAs (miR-338-5p, miR-653-5p, and miR-374c-5p) for their effect on cell proliferation and target gene regulation in O9-1 cells, a neural crest cell line. Overexpression of these miRNAs significantly inhibited cell proliferation, and the genes related to frontonasal malformations (Alx1, Lrp2, and Sirt1 for miR-338-5p; Alx1, Cdc42, Sirt1, and Zic2 for miR-374c-5p; and Fgfr2, Pgap1, Rdh10, Sirt1, and Zic2 for miR-653-5p) were directly regulated by these miRNAs in a dose-dependent manner. Taken together, our results highlight miR-338-5p, miR-653-5p, and miR-374c-5p as pathogenic miRNAs related to the development of frontonasal malformations. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

19 pages, 2882 KiB  
Review
Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus
by Luca Ambrosio, Jordy Schol, Clara Ruiz-Fernández, Shota Tamagawa, Kieran Joyce, Akira Nomura, Elisabetta de Rinaldis, Daisuke Sakai, Rocco Papalia, Gianluca Vadalà and Vincenzo Denaro
J. Dev. Biol. 2024, 12(3), 18; https://doi.org/10.3390/jdb12030018 - 3 Jul 2024
Cited by 1 | Viewed by 803
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue [...] Read more.
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc’s load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop