ijms-logo

Journal Browser

Journal Browser

Changes and Adaptations of the Plant Metabolism under Elemental Nutrient Deficiencies

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 1310

Special Issue Editor


E-Mail Website
Guest Editor
College of Life Sciences, Northeast Agricultural University, Harbin, China
Interests: plant metabolism; abiotic stresses; biotic stresses

Special Issue Information

Dear Colleagues,

Nutrient elements are integral to a range of physiological and metabolic processes within plants, including photosynthesis, respiration, energy metabolism, and signal transduction. They serve as essential building blocks for the growth, development, yield, and quality of plants. Nutrient elements are actively involved in the biosynthesis of plant metabolites and are crucial in the stress response, resistance, and intricate interplay between plants and their environment. This Special Issue aims to showcase recent advancements regarding the elucidation of the significance of nutrient elements and their deficiencies.

We welcome the submission of original research papers, reviews, communications, and opinion papers devoted to the changes and adaptations of the plant metabolism under elemental nutrient deficiencies. Understanding the crucial role that nutrient elements play in plant growth and development is valuable for genetic breeding and optimal fertilizer usage, potentially regarding the enhancement of crop yields and overall plant vitality. The scope of this Special Issue includes, but is not limited to, the following: the impact mechanism of insufficient nutrition elements on plant growth and development; the regulation of plant metabolic pathways for the uptake, transport and distribution of nutrient elements under deficiencies; and biotechnological approaches to investigating the nutrient element flow within plant metabolite structures.

Dr. Li Rui
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutrient elements
  • plant metabolism
  • tolerance
  • plant molecular responses
 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3740 KiB  
Article
Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa
by Ling-Hua Chen, Ming Xu, Zuxin Cheng and Lin-Tong Yang
Int. J. Mol. Sci. 2024, 25(19), 10409; https://doi.org/10.3390/ijms251910409 - 27 Sep 2024
Abstract
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 [...] Read more.
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 concentration. Polyphasic chlorophyll a fluorescence transient and relative fluorescence parameters (JIP test) results indicated that N deficiency increased Fo, but decreased the maximum quantum yield of primary photochemistry (Fv/Fm) and the maximum of the IPphase, implying that N-limiting condition impaired the whole photo electron transport chain from the donor side of photosystem II (PSII) to the end acceptor side of PSI in O. sativa. N deficiency enhanced the activities of the antioxidant enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase (GuPX), dehydro–ascorbate reductase (DHAR), superoxide dismutase (SOD), glutathione peroxidase (GlPX), glutathione reductase (GR), glutathione S-transferase (GST) and O-acetylserine (thiol) lyase (OASTL), and the contents of antioxidant compounds including reduced glutathione (GSH), total glutathione (GSH+GSSG) and non-protein thiol compounds in O. sativa leaves. In contrast, the enhanced activities of catalase (CAT), DHAR, GR, GST and OASTL, the enhanced ASC–GSH cycle and content of sulfur-containing compounds might provide protective roles against oxidative stress in O. sativa roots under N-limiting conditions. Quantitative real-time PCR (qRT-PCR) analysis indicated that 70% of the enzymes have a consistence between the gene expression pattern and the dynamic of enzyme activity in O. sativa leaves under different N supplies, whereas only 60% of the enzymes have a consistence in O. sativa roots. Our results suggested that the antioxidant system and sulfur metabolism take part in the response of N limiting condition in O. sativa, and this response was different between leaves and roots. Future work should focus on the responsive mechanisms underlying the metabolism of sulfur-containing compounds in O. sativa under nutrient deficient especially N-limiting conditions. Full article
Show Figures

Figure 1

28 pages, 32503 KiB  
Article
Genome-Wide Identification and Expression Analysis of MYB Transcription Factor Family in Response to Various Abiotic Stresses in Coconut (Cocos nucifera L.)
by Cheng-Cheng Si, Yu-Bin Li, Xue Hai, Ci-Ci Bao, Jin-Yang Zhao, Rafiq Ahmad, Jing Li, Shou-Chuang Wang, Yan Li and Yao-Dong Yang
Int. J. Mol. Sci. 2024, 25(18), 10048; https://doi.org/10.3390/ijms251810048 - 18 Sep 2024
Abstract
Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut’s response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses [...] Read more.
Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut’s response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R–MYB, 171 R2R3–MYB, 2 3R–MYB, and 2 4R–MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut’s drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family’s role in abiotic stress in coconut. Full article
Show Figures

Figure 1

Back to TopTop