Polymer Materials for Application in Additive Manufacturing

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Processing and Engineering".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 525

Special Issue Editor

ABB Corporate Technology Center, 31-038 Kraków, Poland
Interests: thin films and nanotechnology material characterization; solar cells; thin film deposition advanced materials; conducting polymers hybrid materials; carbon nanomaterials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Additive manufacturing (AM) has been a promising technology in various applications such as aeronautics, civil engineering, automotive engineering, and medicine. Compared to traditional subtractive manufacturing, AM enables the automatic fabrication of products or functional components with complex shapes at a low manufacturing cost. Various commercially available AM methods include fused deposition modeling (FDM), inkjet printing (IP), selective laser sintering (SLS), laminated object manufacturing (LOM), and stereolithography (STL). AM solutions are available for several materials, including metals, alloys, ceramics, and polymers. Due to the low cost of fabrication, the use of polymers can vary between cheap substitutes of natural products and high-quality products for many resource-based applications. AM provides a viable manufacturing solution for polymer-based products with a reduced fabrication time and cost. In addition to the many advantages of using polymers as one of the primary AM materials, there are also shortcomings related to the topology, strength, microstructure, bonding, and functionality of polymer-based structures. The particular features, properties, and limitations of polymers in the various AM technologies also vary. The manufacturing and fabrication of components using polymers with sandwich-structured specimens with different material combinations are also growing research areas.

This Special Issue of Polymers aims to cover the state of the art of polymer-based materials in additive manufacturing, with a special emphasis on novel functional polymers. Further, perspectives and critical reviews about the current limitations as well as the future directions and emerging applications in the field are welcome.

Dr. Andrzej Rybak
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • additive manufacturing
  • fused deposition modeling (FDM)
  • fiber reinforcement
  • filament improvement
  • functional materials
  • three-dimensional printing technologies
  • structural design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 6692 KiB  
Article
Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties
by Qiming Chen, Zewei Cai, Dhandapani Kuzhandaivel, Xianliang Lin, Jianlei Wang and Suyu Chen
Polymers 2024, 16(19), 2697; https://doi.org/10.3390/polym16192697 - 24 Sep 2024
Abstract
Fused deposition modeling (FDM) 3D printing has the advantages of a simple molding principle, convenient operation, and low cost, making it suitable for the production and fabrication of complex structural parts. Moving forward to mass production using 3D printing, the major hurdle to [...] Read more.
Fused deposition modeling (FDM) 3D printing has the advantages of a simple molding principle, convenient operation, and low cost, making it suitable for the production and fabrication of complex structural parts. Moving forward to mass production using 3D printing, the major hurdle to overcome is the achievement of high dimensional stability and adequate mechanical properties. In particular, engineering plastics require precise dimensional accuracy. In this study, we overcame the issues of FDM 3D printing in terms of ternary material compounds for polyamides with gradient structures. Using multi-walled carbon nanotubes (MWCNTs) and boron nitride (BN) as fillers, polyamide 6 (PA6)-based 3D-printed parts with high dimensional stability were prepared using a single-nozzle, two-component composite fused deposition modeling (FDM) 3D printing technology to construct a gradient structure. The ternary composites were characterized via DSC and XRD to determine the optimal crystallinity. The warpage and shrinkage of the printed samples were measured to ensure the dimensional properties. The mechanical properties were analyzed to determine the influence of the gradient structures on the composites. The experimental results show that the warpage of pure polymer 3D-printed parts is as high as 72.64%, and the introduction of a gradient structure can reduce the warpage to 3.40% by offsetting the shrinkage internal stress between layers. In addition, the tensile strength of the gradient material reaches up to 42.91 MPa, and the increasing filler content improves the interlayer bonding of the composites, with the bending strength reaching up to 60.91 MPa and the interlayer shear strength reaching up to 10.23 MPa. Therefore, gradient structure design can be used to produce PA6 3D-printed composites with high dimensional stability without sacrificing the mechanical properties of PA6 composites. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop