Sign in to use this feature.

Years

Between: -

Search Results (140)

Search Parameters:
Keywords = Posidonia oceanica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4828 KiB  
Article
Analysis of Posidonia oceanica’s Stress Factors in the Marine Environment of Tremiti Islands, Italy
by Martina Fattobene, Elisa Santoni, Raffaele Emanuele Russo, Silvia Zamponi, Paolo Conti, Adelmo Sorci, Muhammad Awais, Fuyong Liu and Mario Berrettoni
Molecules 2024, 29(17), 4197; https://doi.org/10.3390/molecules29174197 - 4 Sep 2024
Viewed by 179
Abstract
Posidonia oceanica significantly contributes to the health of oceans and coastal areas; however, its progressive decline is becoming an increasing source of concern. The present preliminary study aims to assess the chemical parameters that describe the state of preservation of the aforementioned plant [...] Read more.
Posidonia oceanica significantly contributes to the health of oceans and coastal areas; however, its progressive decline is becoming an increasing source of concern. The present preliminary study aims to assess the chemical parameters that describe the state of preservation of the aforementioned plant meadows located in the Tremiti Islands archipelago. To better understand the plants’ response to external factors, the emission of biogenic volatile organic compounds (BVOCs) was investigated using Posidonia oceanica as a biological indicator. Subsequently, the heavy metal concentrations (Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Ti, Tl, V, Zn) in sediments, leaves, and seawater were determined and pollution indicators were calculated to assess the deviation from the natural background levels of sediments. The dimethyl sulfoniopropionate (DMSP) to dimethyl sulfoxide (DMSO) ratio was calculated to evaluate the oxidative stress levels in the meadows because the DMSP naturally present in Posidonia oceanica is oxidized to DMSO and decreases the ratio of DMSP/DMSO. BVOC analysis revealed dimethyl sulphide (DMS) as the most abundant molecule. Morphological features led to variations in metal concentrations across sampling sites, with sheltered bays displaying a higher metal content. Degradation is indicated by a greater DMSO content in the outer leaves. In accordance with the metal content, the bioindicator ratio confirms greater degradation on the south side, which aligns with increased oxidative stress. Full article
Show Figures

Figure 1

14 pages, 14651 KiB  
Article
Effects of Fallen Posidonia Oceanica Seagrass Leaves on Wave Energy at Sandy Beaches
by Ogan Sevim and Emre N. Otay
Water 2024, 16(16), 2261; https://doi.org/10.3390/w16162261 - 11 Aug 2024
Viewed by 533
Abstract
Posidonia Oceanica (PO) is an endemic marine plant in the Mediterranean Sea. In an experimental study conducted in the Eastern Mediterranean, the effects of natural PO leaves on reducing the height of incident waves impacting a beach were measured. The transmission coefficient ( [...] Read more.
Posidonia Oceanica (PO) is an endemic marine plant in the Mediterranean Sea. In an experimental study conducted in the Eastern Mediterranean, the effects of natural PO leaves on reducing the height of incident waves impacting a beach were measured. The transmission coefficient (Kt) was found to vary between 0.73 and 0.94, which is equivalent to a wave height decay of 6–27%. The results show that in their natural environment, free-floating dead PO leaves dissipate incoming wave energy and have the capacity to protect beaches against erosion. Further analysis in separate frequency bands showed that waves with periods between 4.5–6.2 s were more sensitive to PO leaves in terms of energy dissipation. The transmission coefficient for medium-period waves, calculated using the medium-frequency part of the wave spectrum, delivered a maximum transmission coefficient of 0.5, corresponding to a 50% decay in wave height due to PO leaves. Full article
(This article belongs to the Special Issue Hydrodynamics and Sediment Transport in Ocean Engineering)
Show Figures

Figure 1

0 pages, 3682 KiB  
Article
Posidonia oceanica (L.) Delile Is a Promising Marine Source Able to Alleviate Imiquimod-Induced Psoriatic Skin Inflammation
by Laura Micheli, Marzia Vasarri, Donatella Degl’Innocenti, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Antiga Emiliano, Alice Verdelli, Marzia Caproni and Emanuela Barletta
Mar. Drugs 2024, 22(7), 300; https://doi.org/10.3390/md22070300 - 28 Jun 2024
Viewed by 1038
Abstract
Psoriasis is a chronic immune-mediated inflammatory cutaneous disease characterized by elevated levels of inflammatory cytokines and adipokine Lipocalin-2 (LCN-2). Recently, natural plant-based products have been studied as new antipsoriatic compounds. We investigate the ability of a leaf extract of the marine plant Posidonia [...] Read more.
Psoriasis is a chronic immune-mediated inflammatory cutaneous disease characterized by elevated levels of inflammatory cytokines and adipokine Lipocalin-2 (LCN-2). Recently, natural plant-based products have been studied as new antipsoriatic compounds. We investigate the ability of a leaf extract of the marine plant Posidonia oceanica (POE) to inhibit psoriatic dermatitis in C57BL/6 mice treated with Imiquimod (IMQ). One group of mice was topically treated with IMQ (IMQ mice) for 5 days, and a second group received POE orally before each topical IMQ treatment (IMQ-POE mice). Psoriasis Area Severity Index (PASI) score, thickness, and temperature of the skin area treated with IMQ were measured in both groups. Upon sacrifice, the organs were weighed, and skin biopsies and blood samples were collected. Plasma and lesional skin protein expression of IL-17, IL-23, IFN-γ, IL-2, and TNF-α and plasma LCN-2 concentration were evaluated by ELISA. PASI score, thickness, and temperature of lesional skin were reduced in IMQ-POE mice, as were histological features of psoriatic dermatitis and expression of inflammatory cytokines and LCN-2 levels. This preliminary study aims to propose P. oceanica as a promising naturopathic anti-inflammatory treatment that could be introduced in Complementary Medicine for psoriasis. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 3.0)
Show Figures

Figure 1

14 pages, 3969 KiB  
Article
Characterization of Posidonia oceanica Fibers High-Density Polyethylene Composites: Reinforcing Potential and Effect of Coupling Agent
by Manel Haddar, Ahmed Elloumi, Cheldly Bradai and Ahmed Koubaa
J. Compos. Sci. 2024, 8(7), 236; https://doi.org/10.3390/jcs8070236 - 24 Jun 2024
Viewed by 686
Abstract
This study investigated the influence of fiber loading and maleated polyethylene (MAPE) coupling agent on the structural, thermal, mechanical, morphological properties, and torque rheology of high-density polyethylene (HDPE) reinforced with Posidonia oceanica fiber (POF) composites. HDPE/POF composites, both with and without MAPE, were [...] Read more.
This study investigated the influence of fiber loading and maleated polyethylene (MAPE) coupling agent on the structural, thermal, mechanical, morphological properties, and torque rheology of high-density polyethylene (HDPE) reinforced with Posidonia oceanica fiber (POF) composites. HDPE/POF composites, both with and without MAPE, were manufactured using a two-step process: composite pellets extrusion, followed by test samples injection molding with various POF loadings (0, 20, 30, and 40 wt%). HDPE/POF composites reinforced with higher loading of POF (40 wt%) exhibit superior stiffness, better crystallinity, and higher stabilized torque and mechanical energy (Em) compared to other composite formulations. Therefore, varying the POF loading leads to extrusion and injection processing variations. Furthermore, the coupling agent significantly enhances the tensile strength, ductility, impact strength, crystallinity, stabilized torque, and Em of the HDPE/POF composite. This improvement is due to the enhanced interfacial adhesion between the POF and the HDPE matrix with the addition of the MAPE, as supported by the Scanning Electron Microscopy (SEM) micrographs. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, Volume II)
Show Figures

Figure 1

17 pages, 2626 KiB  
Article
Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach
by Francesca Glaviano, Roberta Esposito, Emanuele Somma, Amir Sagi, Eliahu D. Aflalo, Maria Costantini and Valerio Zupo
Curr. Issues Mol. Biol. 2024, 46(6), 6169-6185; https://doi.org/10.3390/cimb46060368 - 18 Jun 2024
Viewed by 3323
Abstract
The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with [...] Read more.
The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp’s sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual. Full article
(This article belongs to the Special Issue Mitochondrial Genome 2024)
Show Figures

Graphical abstract

20 pages, 5915 KiB  
Article
The Use of Photo-Biological Parameters to Assess the Establishment Success of Posidonia oceanica Cuttings after Transplantation
by Arnaud Boulenger, Stéphane Roberty, Maria Margarita Lopez Velosa, Michel Marengo and Sylvie Gobert
Water 2024, 16(12), 1702; https://doi.org/10.3390/w16121702 - 14 Jun 2024
Viewed by 639
Abstract
Seagrass meadows are increasingly threatened by anthropogenic activities and climate change, necessitating restoration efforts such as cutting transplantation. Understanding the complex interactions between plant morphology and physiology is crucial for designing robust restoration strategies and assessing the success of transplantation and recovery processes. [...] Read more.
Seagrass meadows are increasingly threatened by anthropogenic activities and climate change, necessitating restoration efforts such as cutting transplantation. Understanding the complex interactions between plant morphology and physiology is crucial for designing robust restoration strategies and assessing the success of transplantation and recovery processes. A pilot transplantation experiment with the Mediterranean seagrass Posidonia oceanica (L.) Delile was conducted in Northwestern Corsica (Calvi, France) to evaluate the feasibility of meadows degraded due to boat anchoring. The effects of the cuttings’ origin and transplanting depth were investigated. The establishment success of transplanted fragments was assessed by investigating the photo-physiological parameters, carbohydrate content, and biometric parameters of both transplanted and control plants one year after transplantation at depths of 20 and 28 m. After one year, there was a high survival rate (90%) of the transplants, but their leaf surface area and biomass were significantly reduced compared to the control plants. Photosynthetic activity remained consistent between both depths, emphasizing the ability of P. oceanica cuttings to acclimate to a new light environment in a relatively short period of time (<3 months). Furthermore, light-harvesting pigments, photoprotective pigments, and carbohydrate concentration were greater at the deeper sites. This implies that transplantation at greater depths might be more effective. Furthermore, additional research is necessary to enhance our understanding of the relationship between photosynthesis and the overall health of the plant. This study emphasizes the essential integration of morphological and physiological investigations to offer an ecologically meaningful understanding of how marine ecosystems respond to various restoration methods. Full article
(This article belongs to the Special Issue Coastal Restoration and Ecological Functions Enhancement)
Show Figures

Figure 1

13 pages, 3287 KiB  
Article
Comparing the Structure of Fish Assemblage among Natural and Artificial Shallow Rocky Habitats
by Laura García-Salines and Pablo Sanchez-Jerez
Oceans 2024, 5(2), 244-256; https://doi.org/10.3390/oceans5020015 - 6 May 2024
Viewed by 1026
Abstract
Artificial coastal structures, such as seawalls, breakwaters, and groins, can exert various impacts on the fish communities in the nearby regions. This study focuses on assessing the ecological effects of coastal infrastructure on marine environments, by comparing, at different seasons, the habitat complexity [...] Read more.
Artificial coastal structures, such as seawalls, breakwaters, and groins, can exert various impacts on the fish communities in the nearby regions. This study focuses on assessing the ecological effects of coastal infrastructure on marine environments, by comparing, at different seasons, the habitat complexity and heterogeneity, as well as their effects on fish assemblages, between the artificial habitat created with the intention of constructing a marina (Puerto Amor) and the natural habitats surrounding the Cabo de la Huerta area in Alicante (Spain). Employing an asymmetric design and examining two temporal and spatial scales, we utilized visual censuses in snorkeling to gauge the abundance and size of fish species, alongside various parameters related to habitat complexity and heterogeneity. The overarching hypothesis is that fish populations associated with artificial habitats will differ in terms of abundance, biomass, species richness, and diversity compared to fish populations associated with natural habitats, due to changes in complexity and heterogeneity. The findings indicate a shift in fish assemblages; for example, the family Labridae showed differences between the two habitat types for several species. These changes were due to the influences of the Posidonia oceanica meadow and algae like Jania rubens; being influenced by biological variables such as Ellisolandia elongata, Oculina patagonica, and Sarcotragus spinosulus; as well as physical variables such as stones, gravel, and blocks. While there is evidence of alteration in fish assemblages due to changes in habitat structure, there is also an increase in richness (9 species/m2) and total abundance and biomass (1000 ind./m2 and 1700 g/m2, respectively) in the artificial habitat. Multivariate analyses reveal that the fish community in Puerto Amor is less homogeneous than the one in the natural habitat. However, these analyses also indicate an overlap between the communities of both habitats, suggesting substantial similarity despite the noted differences. Consequently, although the habitat alteration has impacted fish populations, it has not diminished abundance, biomass, or species richness. In conclusion, the artificial rocky habitat resulting from the construction attempt at Puerto Amor harbor has fish populations with ecological significance and its removal could lead to undesirable impacts in the area, as the fish assemblages have become well established. Full article
Show Figures

Figure 1

6 pages, 221 KiB  
Opinion
Challenges in Restoring Mediterranean Seagrass Ecosystems in the Anthropocene
by Monica Montefalcone
Environments 2024, 11(5), 86; https://doi.org/10.3390/environments11050086 - 23 Apr 2024
Viewed by 1452
Abstract
The intense human pressures in the Anthropocene epoch are causing an alarming decline in marine coastal ecosystems and an unprecedented loss of biodiversity. This situation underscores the urgency of making ecological restoration a global priority to recover degraded ecosystems. Meadows of the endemic [...] Read more.
The intense human pressures in the Anthropocene epoch are causing an alarming decline in marine coastal ecosystems and an unprecedented loss of biodiversity. This situation underscores the urgency of making ecological restoration a global priority to recover degraded ecosystems. Meadows of the endemic Mediterranean seagrass Posidonia oceanica have lost more than half of their original extent in the last century, necessitating immediate conservation and management measures, supported by active restoration interventions. This paper explores new opportunities and provides specific recommendations to enhance restoration as a fundamental strategy for reversing the decline of P. oceanica ecosystems in the Mediterranean Sea. When a return to a historical pristine reference condition may not be feasible in the short term or desirable given current environmental conditions and uncertainty, transplanting the tolerant and fast-growing seagrass species Cymodocea nodosa could facilitate natural recolonization. This would occur through secondary ecological succession, benefiting the sensitive and slow-growing species P. oceanica. Future global and local efforts should primarily focus on proactive management to prevent further alterations by planning appropriate conservation measures in a timely manner to mitigate and reverse global changes. As a secondary step, restoration programs can be implemented with a focus on ‘target-oriented’ rather than ‘reference-oriented’ conditions, aiming to establish ecosystems capable of sustaining the future rather than replicating the historical environment. Full article
(This article belongs to the Special Issue Ecological Restoration in Marine Environments)
7 pages, 1766 KiB  
Interesting Images
Large-Scale Re-Implantation Efforts for Posidonia oceanica Restoration in the Ligurian Sea: Progress and Challenges
by Chiara Robello, Stefano Acunto, Laura Marianna Leone, Ilaria Mancini, Alice Oprandi and Monica Montefalcone
Diversity 2024, 16(4), 226; https://doi.org/10.3390/d16040226 - 9 Apr 2024
Cited by 1 | Viewed by 1259
Abstract
The Ligurian Sea (NW Mediterranean) has been a focal point for numerous interventions aimed at restoring Posidonia oceanica meadows. The success of pioneer restoration actions in France during the 1970s stimulated similar initiatives across the Mediterranean Sea. Early attempts in the Ligurian Sea [...] Read more.
The Ligurian Sea (NW Mediterranean) has been a focal point for numerous interventions aimed at restoring Posidonia oceanica meadows. The success of pioneer restoration actions in France during the 1970s stimulated similar initiatives across the Mediterranean Sea. Early attempts in the Ligurian Sea were implemented in 1993 and 1996 on limited seabed areas (i.e., tens of square meters) at the two coastal sites of Sori and Rapallo (Liguria, NW Italy). No further initiatives have been reported for the Ligurian Sea until 2022. In that year, a large-scale restoration project, which uses biodegradable mats coupled with metal mesh, began in Liguria. Different levels of anthropogenic pressure and wave exposure characterize the three investigated locations: (1) Portofino, on the eastern Liguria and on the border with the Portofino Marine Protected Area; (2) Bergeggi in the central Liguria and within the Isola di Bergeggi Marine Protected Area; and (3) Sanremo in the western Liguria, without any formal protection. Despite recent setbacks caused by severe storms in late 2023, which particularly damaged the Portofino site, ongoing monitoring revealed promising survival rates. Most notably, the site in Bergeggi displayed a 90% survival rate in September 2023. Although challenges to restore P. oceanica beds persist, such as mitigating damages caused by unpredictable events, this extensive re-implantation initiative offers the opportunity to evaluate the effectiveness of new basin-scale restoration strategies. This approach marks an important step in the conservation of Posidonia oceanica habitat. Full article
Show Figures

Figure 1

20 pages, 2885 KiB  
Article
Study of Velocity Changes Induced by Posidonia oceanica Surrogate and Sediment Transport Implications
by Carlos Astudillo-Gutierrez, Iván Cáceres Rabionet, Vicente Gracia Garcia, Joan Pau Sierra Pedrico and Agustín Sánchez-Arcilla Conejo
J. Mar. Sci. Eng. 2024, 12(4), 569; https://doi.org/10.3390/jmse12040569 - 27 Mar 2024
Viewed by 822
Abstract
An analysis of the interactions between wave-induced velocities and seagrass meadows has been conducted based on the large-scale CIEM wave flume data. Incident irregular wave trains act on an initial 1:15 sand beach profile with measurement stations from the offshore of a surrogate [...] Read more.
An analysis of the interactions between wave-induced velocities and seagrass meadows has been conducted based on the large-scale CIEM wave flume data. Incident irregular wave trains act on an initial 1:15 sand beach profile with measurement stations from the offshore of a surrogate meadow until the outer breaking zone, after crossing the seagrass meadow. The analysis considers variability and peaks of velocities, together with their skewness and asymmetry, to determine the effects of the seagrass meadow on the near bed sediment transport. Velocity variability was characterized by the standard deviation, and the greatest changes were found in the area right behind the meadow. In this zone, the negative peak velocities decreased by up to 20.3%, and the positive peak velocities increased by up to 11.7%. For more onshore positions, the negative and positive peak velocities similarly decreased and increased in most of the studied stations. A progressive increase in skewness as the waves passed through the meadow, together with a slight decrease in asymmetry, was observed and associated with the meadow effect. Moving shoreward along the profile, the values of skewness and asymmetry increased progressively relative to the position of the main sandbar. The megaripple-like bedforms appeared earlier when the meadow was present due to the higher skewness, showing a belated development in the layout without the meadow, when skewness increased further offshore due to the proximity of the breaker sandbar. To assess the sediment transport capacity of a submerged meadow, the SANTOSS formula was applied, showing that in front of the meadow, there was a higher sediment transport capacity, whereas behind the meadow, that capacity could be reduced by up to 41.3%. In addition, this formula was able to produce a suitable estimate of sediment transport across the profile, although it could not properly estimate the sediment volumes associated with the bedforms generated in the profile. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

27 pages, 3477 KiB  
Article
Antioxidant Activity, Inhibition of Intestinal Cancer Cell Growth and Polyphenolic Compounds of the Seagrass Posidonia oceanica’s Extracts from Living Plants and Beach Casts
by Alkistis Kevrekidou, Andreana N. Assimopoulou, Varvara Trachana, Dimitrios Stagos and Paraskevi Malea
Mar. Drugs 2024, 22(3), 130; https://doi.org/10.3390/md22030130 - 11 Mar 2024
Viewed by 1763
Abstract
The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica’s living leaves (LP) has low efficacy, [...] Read more.
The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica’s living leaves (LP) has low efficacy, as they partly neutralize the produced H2O2. However, high H2O2 levels led LP to produce, as a response to oxidative stress, high phenolic content, including chicoric acid, p-coumaric acid, caftaric acid, trans-cinnamic and rutin hydrate, as shown by UHPLC-DAD analysis. In addition, LP extracts inhibited intestinal cancer cell proliferation. Moreover, P. oceanica’s beach casts consisting of either Wet ‘Necromass’ (WNP) or Dry ‘Necromass’ (DNP) were used for preparing extracts. Both DNP and WNP exhibited antioxidant and antiproliferative activities, although lower as compared to those of LP extracts. Although both P. oceanica’s meadows and beach casts are considered priority habitats in the Mediterranean Sea due to their high ecological value, legislation framework for beach casts forbidding their removal is still missing. Our results suggested that both LP and DNP could be utilized for the production of high-added value products promoting human health, provided that a sustainability management strategy would be applied for P. oceanica’s meadows and beach casts. Full article
Show Figures

Figure 1

15 pages, 3831 KiB  
Article
An Effective Biomonitor of Potentially Toxic Elements in Marine Ecosystems: The Brown Alga Dictyota spiralis
by Maria Antonietta Nitopi, Daniela Baldantoni, Vincenzo Baldi, Floriana Di Stefano and Alessandro Bellino
Environments 2024, 11(3), 51; https://doi.org/10.3390/environments11030051 - 8 Mar 2024
Cited by 1 | Viewed by 1563
Abstract
Coastal marine areas are threatened by different forms of pollution, among which potentially toxic elements (PTEs) represent a primary hazard. In this study, 16 Mediterranean macroalgae colonizing the upper eulittoral and infralittoral zones were studied for their PTE accumulation capabilities in order to [...] Read more.
Coastal marine areas are threatened by different forms of pollution, among which potentially toxic elements (PTEs) represent a primary hazard. In this study, 16 Mediterranean macroalgae colonizing the upper eulittoral and infralittoral zones were studied for their PTE accumulation capabilities in order to identify possible biomonitors that could replace the use of Posidonia oceanica, a protected species. To achieve this objective, macronutrients (Ca, K, Mg, P, S), micronutrients (Cr, Cu, Fe, Mn, Na, Ni, Si, V, Zn) and non-essential elements (Cd, Pb) were analyzed in the thalli of different algal species, the leaves of P. oceanica and in sediments collected from six sampling sites along the Cilento coast (Campania, Italy), all characterized by different anthropogenic pressures. For sediments, a sequential extraction of PTEs to evaluate their bioavailability profile was also carried out together with the analysis of mineralogical composition, particle size distribution, pH and organic matter content. Macrophytes, belonging to different divisions (six Rhodophyta, four Chlorophyta, six Heterokontophyta, one Embryophyta), are characterized by different PTE concentrations, with a few ones being characterized by an even accumulation response toward the different PTEs. One of these, the brown alga Dictyota spiralis, is able to accumulate PTEs in concentrations similar to P. oceanica and provides more accurate concentration gradients, highlighting clear pollution scenarios that were overlooked using P. oceanica only. Therefore, D. spiralis is a useful PTE biomonitor of coastal marine ecosystems and a suitable replacement for P. oceanica, also featuring the possibility of being employed in active biomonitoring applications. Full article
Show Figures

Graphical abstract

15 pages, 8961 KiB  
Article
Characterization and Thermal Evaluation of a Novel Bio-Based Natural Insulation Material from Posidonia oceanica Waste: A Sustainable Solution for Building Insulation in Algeria
by Dhouha Ben Hadj Tahar, Zakaria Triki, Mohamed Guendouz, Hichem Tahraoui, Meriem Zamouche, Mohammed Kebir, Jie Zhang and Abdeltif Amrane
ChemEngineering 2024, 8(1), 18; https://doi.org/10.3390/chemengineering8010018 - 2 Feb 2024
Cited by 5 | Viewed by 2156
Abstract
Natural bio-based insulation materials have been the most interesting products for good performance and low carbon emissions, becoming widely recognized for their sustainability in the context of climate change and the environmental impact of the building industry. The main objective of this study [...] Read more.
Natural bio-based insulation materials have been the most interesting products for good performance and low carbon emissions, becoming widely recognized for their sustainability in the context of climate change and the environmental impact of the building industry. The main objective of this study is to characterize a new bio-sourced insulation material composed of fibers and an adhesive based on cornstarch. This innovative material is developed from waste of the marine plant called Posidonia oceanica (PO), abundantly found along the Algerian coastline. The research aims to valorize this PO waste by using it as raw material to create this novel material. Four samples with different volumetric adhesive fractions (15%, 20%, 25%, and 30%) were prepared and tested. The collected fractions underwent a series of characterizations to evaluate their properties. The key characteristics studied include density, thermal conductivity, and specific heat. The results obtained for the thermal conductivity of the different composites range between 0.052 and 0.067 W.m−1.K−1. In addition, the findings for thermal diffusivity and specific heat are similar to those reported in the scientific literature. However, the capillary absorption of the material is slightly lower, which indicates that the developed bio-sourced material exhibits interesting thermal performance, justifying its suitability for use in building insulation in Algeria. Full article
Show Figures

Figure 1

13 pages, 544 KiB  
Perspective
Towards Sustainable Management of Beach-Cast Seagrass in Mediterranean Coastal Areas
by Loredana Manfra, Stefania Chiesa, Simone Simeone, Patrizia Borrello, Raffaella Piermarini, Chara Agaoglou, Monia Elbour, Noureddine Zaaboub, Dimitris Vandarakis, Ioannis Kourliaftis, Alfonso Scarpato and Alice Rotini
Sustainability 2024, 16(2), 756; https://doi.org/10.3390/su16020756 - 16 Jan 2024
Cited by 1 | Viewed by 1128
Abstract
Marine environmental conservation and tourist exploitation are often in conflict, particularly where anthropogenic pressure is greatest, such as along the coasts of the Mediterranean Sea. A case in point is the accumulation of beach-cast seagrass, a typical feature of the Mediterranean Sea that [...] Read more.
Marine environmental conservation and tourist exploitation are often in conflict, particularly where anthropogenic pressure is greatest, such as along the coasts of the Mediterranean Sea. A case in point is the accumulation of beach-cast seagrass, a typical feature of the Mediterranean Sea that is nowadays perceived as an “obstacle” to tourist activities and thus treated and removed as waste, leading to environmental impacts. In this paper, we analyzed the legislative context at the Mediterranean basin level and the contribution of twenty virtuous research projects related to the topic. In our opinion, the main benefits for the beach–dune ecosystem would be generated by the use of seagrass banquettes directly within the beach system (temporary displacement, creating beach walkways, dune consolidation), while their uses outside the beach system (agricultural and farm solutions—compost and bedding) should be considered as alternative solutions for a circular economy, in case of consistent biomass deposits along the shores. In this perspective, we support the “Ecological Beach” model which integrates most of the science-derived solutions addressed in this study. This model provides good practices that can be usefully spread and shared along Mediterranean coasts: to achieve this result, it is necessary to create a regional or Mediterranean network involving local communities and stakeholders. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

20 pages, 8827 KiB  
Article
The Heatwave of Summer 2022 in the North-Western Mediterranean Sea: Some Species Were Winners
by Charles-François Boudouresque, Patrick Astruch, Serena André, Bruno Belloni, Aurélie Blanfuné, Éric Charbonnel, Adrien Cheminée, Jean-Michel Cottalorda, Renaud Dupuy de la Grandrive, Michel Marengo, Briac Monnier, Gérard Pergent, Christine Pergent-Martini, Michèle Perret-Boudouresque, Sandrine Ruitton, Isabelle Taupier-Letage and Thierry Thibaut
Water 2024, 16(2), 219; https://doi.org/10.3390/w16020219 - 8 Jan 2024
Cited by 5 | Viewed by 1513
Abstract
The warming trend of the Mediterranean Sea is a long-term process. It has resulted in a northwards and westwards range expansion and abundance increase of thermophilic species, both native and non-indigenous, and in a shrinking of the range of cold-affinity species. Marine heatwaves [...] Read more.
The warming trend of the Mediterranean Sea is a long-term process. It has resulted in a northwards and westwards range expansion and abundance increase of thermophilic species, both native and non-indigenous, and in a shrinking of the range of cold-affinity species. Marine heatwaves (MHWs) are relatively short-term extreme episodes that are responsible for spectacular mortality events in some species and have been extensively reported in the literature. In contrast, the species that benefit from MHWs (the ‘winners’) have been much less studied. A record-breaking MHW occurred in 2022 in the north-western Mediterranean Sea. We focus on three ‘winner’ species, the thermophilic green macroalgae Penicillus capitatus and Microdictyon umbilicatum and the endemic seagrass Posidonia oceanica. Penicillus capitatus, which is mainly present in the area as an inconspicuous turf of entangled filaments (espera stage), produced the erect paintbrush-like stage where sexual reproduction takes place. Microdictyon umbilicatum, usually uncommon, bloomed to the point of clogging fishing nets. Finally, a mass flowering of P. oceanica occurred in late August–September, followed the following year (April–May 2023) by the extensive production and dissemination of fruits and seeds. Both processes, the long-term warming trend and one-off heatwaves, both ‘losers’ and ‘winners’, shape the change in structure and functioning of Mediterranean ecosystems. Full article
Show Figures

Figure 1

Back to TopTop