Sign in to use this feature.

Years

Between: -

Search Results (120)

Search Parameters:
Keywords = axial thrust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3632 KiB  
Article
Numerical Study of High-g Combustion Characteristics in a Channel with Backward-Facing Steps
by Zhen Gong and Hao Tang
Aerospace 2024, 11(9), 767; https://doi.org/10.3390/aerospace11090767 - 19 Sep 2024
Abstract
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of [...] Read more.
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of premixed propane–air flames in a channel with a backward-facing step. The study reveals that both the increase in centrifugal force and flow velocity can enhance pressure fluctuations during combustion and increase the turbulence intensity. The presence of centrifugal force promotes the occurrence of Rayleigh–Taylor instability (RTI) between hot and cold fluids. The combined effects of RTI and Kelvin–Helmholtz instability (KHI) enhance the disturbance between hot and cold fluids, shorten the fuel combustion time, and intensify the dissipation of large-scale vortices. The increase in fluid flow velocity can raise the flame front’s hydrodynamic stretch rate, thereby enhancing the turbulence level during combustion to a certain extent and increasing the fuel consumption rate. When a strong centrifugal force is applied, the global flame propagation speed can be more than doubled. Within a certain range, the increase in high-g field strength can enhance the intensity of RTI and accelerate the transition of RTI to the nonlinear stage. Full article
Show Figures

Figure 1

15 pages, 9252 KiB  
Article
The Aerodynamic Performance of a Novel Overlapping Octocopter in Hover
by Yao Lei and Xiangzheng Zhao
Aerospace 2024, 11(9), 737; https://doi.org/10.3390/aerospace11090737 - 9 Sep 2024
Abstract
A novel octocopter with an overlapping rotor arrangement is proposed in this paper to increase the payload with a limited size. The aerodynamic performance was obtained by both experiments and numerical simulations with the rotor spacing ranging from 1.2 D to 2.0 D [...] Read more.
A novel octocopter with an overlapping rotor arrangement is proposed in this paper to increase the payload with a limited size. The aerodynamic performance was obtained by both experiments and numerical simulations with the rotor spacing ranging from 1.2 D to 2.0 D (L= 1.2 D, 1.4 D, 1.6 D, 1.8 D, 2.0 D). Also, the aerodynamic parameter was evaluated by the thrust, power consumption, thrust coefficient, power coefficient, and figure of merit (FM) in hover. Compared with a traditional co-axial octocopter, the results indicated that the overlapping octocopter at L= 1.8 D presented an increasing thrust up to 15.98%, and the FM increment was up to 6%. Additionally, the streamline distribution showed that the symmetry of the vortex movement in the downwash flow for the overlapping rotors will offset the rotor interference with an increase in thrust. Meanwhile, the vortex deformation resulting from the induced velocity from the upper rotor also led to an increase in power consumption. Finally, the optimal aerodynamic performance of the overlapping octocopter was obtained with a rotor spacing of L= 1.8 D at 1800 RPM. Full article
(This article belongs to the Special Issue Aerodynamic Numerical Optimization in UAV Design)
Show Figures

Figure 1

20 pages, 3280 KiB  
Article
Optimization of Hydropower Unit Startup Process Based on the Improved Multi-Objective Particle Swarm Optimization Algorithm
by Qingquan Zhang, Zifeng Xie, Mingming Lu, Shengyang Ji, Dong Liu and Zhihuai Xiao
Energies 2024, 17(17), 4473; https://doi.org/10.3390/en17174473 - 6 Sep 2024
Abstract
In order to improve the dynamic performance during the startup process of hydropower units, while considering the efficient and stable speed increase and effective suppression of water pressure fluctuations and mechanical vibrations, optimization algorithms must be used to select the optimal parameters for [...] Read more.
In order to improve the dynamic performance during the startup process of hydropower units, while considering the efficient and stable speed increase and effective suppression of water pressure fluctuations and mechanical vibrations, optimization algorithms must be used to select the optimal parameters for the system. However, in current research, various multi-objective optimization algorithms still have limitations in terms of target space coverage and diversity maintenance in parameter optimization during the startup process of hydraulic turbines. To explore and verify the optimal algorithms and parameters for the startup process of hydraulic turbines, multiple multi-objective optimization strategies are proposed in this study. Under the condition of constructing a fine-tuned nonlinear model of the control system, this paper focuses on three key indicators: the absolute integral of the speed deviation, the absolute integral of the snail shell water pressure fluctuation, and the relative value of the maximum axial water thrust. Through comparative analysis of the multi-objective particle swarm optimization algorithm (MOPSO), variant multi-objective particle swarm optimization algorithm (VMOPSO), multi-objective sine cosine algorithm (MOSCA), multi-objective biogeography algorithm (MOBBO), multi-objective gravity search algorithm (MOGAS), and improved multi-objective particle swarm optimization algorithm (IMOPSO), the obtained optimal parameters are compared and analyzed to select the optimal multi-objective optimization strategy, and the most suitable parameters for actual working conditions are selected through a comprehensive weighting method. The results show that, compared to the local optimal solution problem caused by other optimization algorithms, the improved multi-objective optimization method significantly reduces water pressure fluctuations and mechanical vibrations while ensuring stable speed improvement, achieving better control performance. The optimization results have significant guiding significance for ensuring the smooth operation and safety of hydropower units, and provide strong support for making operational decisions. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

15 pages, 5453 KiB  
Review
Changes in Surface Topography and Light Load Hardness in Thrust Bearings as a Reason of Tribo-Electric Loads
by Simon Graf and Oliver Koch
Lubricants 2024, 12(9), 303; https://doi.org/10.3390/lubricants12090303 - 28 Aug 2024
Viewed by 278
Abstract
The article focuses on the findings of endurance tests on thrust bearings. In addition to the mechanical load (axial load: 10 ≤ C0/P ≤ 19, lubrication gap: 0.33 µm ≤ h0 ≤ 1.23 µm), these bearings are also exposed to electrical loads (voltage: [...] Read more.
The article focuses on the findings of endurance tests on thrust bearings. In addition to the mechanical load (axial load: 10 ≤ C0/P ≤ 19, lubrication gap: 0.33 µm ≤ h0 ≤ 1.23 µm), these bearings are also exposed to electrical loads (voltage: 20 Vpp ≤ U0 ≤ 60 Vpp, frequency 5 kHz and 20 kHz), such as those generated by modern frequency converters. In a previous study, the focus was on the chemical change in the lubricant and the resulting wear particles. In contrast, this article focuses on the changes occurring in the metallic contact partners. Therefore, the changes in the surface topography are analysed using Abbott–Firestone curves. These findings show that tests with an additional electrical load lead to a significant reduction in roughness peaks. A correlation to acceleration measurements is performed. Moreover, it is shown that the electrical load possibly has an effect on the light load hardness. An increase in the occurring wear could not be detected during the test series. Also, a comparison with mechanical reference tests is made. The article finally provides an overview of different measurement values and their sensitivity to additional electrical loads in roller bearings. Full article
(This article belongs to the Special Issue Tribology in Germany: Latest Research and Development)
Show Figures

Figure 1

24 pages, 10678 KiB  
Article
Flow Effects and Propulsion Performance on Various Single Expansion Ramp Nozzle Configurations of Scramjet Engine
by Tzong-Hann Shieh, Kuei-Wen Lin and Yu-Tso Li
Symmetry 2024, 16(8), 1044; https://doi.org/10.3390/sym16081044 - 14 Aug 2024
Viewed by 311
Abstract
This study serves as a research endeavor aiming to explore the behavior of the coupling flow effects of the single expansion ramp nozzle (SERN) in over-expansion conditions during the static start-up process. The open-source program OpenFOAM and its solver “rhoCentralFoam” are employed in [...] Read more.
This study serves as a research endeavor aiming to explore the behavior of the coupling flow effects of the single expansion ramp nozzle (SERN) in over-expansion conditions during the static start-up process. The open-source program OpenFOAM and its solver “rhoCentralFoam” are employed in the 2D simulation and the two critical geometric variations, the shape of the ramp and the length of the flap beyond the throat, are considered in the geometric variation. The result shows the preferable propulsion performance in the FSS (Free Shockwave Separation) state compared to RSS (Restricted Shockwave Separation). FSS also plays the role of the initial, albeit transient, separation, which originates from the shockwave from the throat and will eventually transform into a stabler RSS state. For the 100% flap length configuration in this study, the axial thrust can achieve a high value of 500 N/m in the FSS state and decrease to around 450 N/m, on average, in the RSS state. The trust angle also shows a preferable performance of around −13° in FSS compared to −30° in RSS. Regarding geometric modifications, both modifications, shorting the flap and bell-shaped ramp adjustments, manifest similar effects. Both conical and bell-shaped short flap configurations demonstrate an axial thrust from around 1750 to 1900 N/m and a thrust angle of around −45°. However, the flap shortening, which may demonstrate an attitude compensation effect, exhibits a more pronounced effect compared to the bell-shaped modification. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 6135 KiB  
Article
Efficiency and Microstructural Forecasts in Friction Stir Extrusion Compared to Traditional Hot Extrusion of AA6061
by Sara Bocchi, Marco Zambelli, Gianluca D’Urso and Claudio Giardini
J. Manuf. Mater. Process. 2024, 8(4), 172; https://doi.org/10.3390/jmmp8040172 - 9 Aug 2024
Viewed by 525
Abstract
Conventional aluminum recycling consumes a substantial amount of energy and has a negative impact on secondary alloys. To address this challenging topic, Friction Stir Extrusion has been patented, which represents an innovative solid-state recycling technique that enables the direct extrusion of components from [...] Read more.
Conventional aluminum recycling consumes a substantial amount of energy and has a negative impact on secondary alloys. To address this challenging topic, Friction Stir Extrusion has been patented, which represents an innovative solid-state recycling technique that enables the direct extrusion of components from recyclable materials. In recent years, developing simulation models for Friction Stir Extrusion has become essential for gaining a deeper understanding of its underlying physics. Simultaneously, control of the microstructure evolution of extruded profiles is required, as it has a considerable influence on mechanical properties. This research involves a single Lagrangian model, adapted for both the FSE and the traditional hot extrusion processes. The simulations explored various rotational speeds and feed rates, revealing significant effects on grain size and bonding quality. To this model were applied different sub-routines, to investigate the impact of the FSE process with respect to the traditional hot extrusion process in terms of energy demands, quality and microstructure of the extruded pieces. The findings demonstrated that optimal grain refinement occurs at intermediate rotational speeds (600–800 rpm) combined with lower feed rates (1 mm/s). The energy analyses indicated that FSE requires lower total energy compared to traditional hot extrusion, primarily due to the reduced axial thrust and more efficient thermal management. As a result, it was possible to ensure the ability of the developed simulative model to be fully adapted for both processes and to forecast the microstructural changes directly during the process and not only at the end of the extrusion. The study concludes that FSE is a highly efficient method for producing high-quality extruded rods, with the developed simulation model providing valuable insights for process optimization. The model’s adaptability to various starting materials and conditions highlights its potential for broader applications in extrusion technology. Full article
Show Figures

Figure 1

24 pages, 16654 KiB  
Article
Influence of Double-Ducted Serpentine Nozzle Configurations on the Interaction Characteristics between the External and Nozzle Flow of Aircraft
by Jilong Zhu, Yi Zhang, Yaohua Li, Liquan Zeng, Lei Miao, Neng Xiong and Yang Tao
Aerospace 2024, 11(8), 606; https://doi.org/10.3390/aerospace11080606 - 24 Jul 2024
Viewed by 513
Abstract
To clarify the influence of the serpentine nozzle configurations on the flow characteristics and aerodynamic performance of aircraft, the flow features and aerodynamic performances of the double-ducted serpentine nozzles with different aspect ratios (AR), length–diameter ratios (LDR) and shielding [...] Read more.
To clarify the influence of the serpentine nozzle configurations on the flow characteristics and aerodynamic performance of aircraft, the flow features and aerodynamic performances of the double-ducted serpentine nozzles with different aspect ratios (AR), length–diameter ratios (LDR) and shielding ratios (SR) are numerically investigated. The results show that the asymmetric nozzle flow occurs due to the curved profile of serpentine nozzles, and a local accelerating effect exists at the S-bend, causing the increase in wall shear stress. The unilateral unsymmetrical expansion of the tail jet in the upward direction interacts with the separated external flow of the afterbody, forming an obvious cross-shock wave and shear layer structure. The surface pressure of the afterbody increases along the external flow direction, and decreases sharply in the separation point of the boundary layer. With the increase in AR and LDR, the local accelerating effect of the nozzle flow weakens, while with the increase in SR, the accelerating effect increases. The total pressure recovery coefficient, flow coefficient and axial thrust coefficient all decrease with the increase in AR, LDR, and SR. The thrust vector angle decreases with the increase in AR but is less affected by LDR and SR. Full article
Show Figures

Figure 1

22 pages, 6842 KiB  
Article
Experimental Investigation of a H2O2 Hybrid Rocket with Different Swirl Injections and Fuels
by Manuel Stella, Lucia Zeni, Luca Nichelini, Nicolas Bellomo, Daniele Pavarin, Mario Tindaro Migliorino, Marco Fabiani, Daniele Bianchi, Francesco Nasuti, Christian Paravan, Luciano Galfetti, Attilio Cretella, Rocco Carmine Pellegrini, Enrico Cavallini and Francesco Barato
Appl. Sci. 2024, 14(13), 5625; https://doi.org/10.3390/app14135625 - 27 Jun 2024
Cited by 1 | Viewed by 799
Abstract
Hybrid rockets have very interesting characteristics like simplicity, reliability, safety, thrust modulation, environmental friendliness and lower costs, which make them very attractive for several applications like sounding rockets, small launch vehicles, upper stages, hypersonic test-beds and planetary landers. In recent years, advancements have [...] Read more.
Hybrid rockets have very interesting characteristics like simplicity, reliability, safety, thrust modulation, environmental friendliness and lower costs, which make them very attractive for several applications like sounding rockets, small launch vehicles, upper stages, hypersonic test-beds and planetary landers. In recent years, advancements have been made to increase hybrid motor performance, and two of the most promising solutions are vortex injection and paraffin-based fuels. Moreover, both technologies can be also used to tailor the fuel regression rate, in the first case varying the swirl intensity, and in the second case with the amount and type of additives. In this way, it is possible not only to design high-performing hybrid motors, but also to adjust their grain and chamber geometries to different mission requirements, particularly regarding thrust and burning time. In this paper, the knowledge about these two technical solutions and their coupling is extended. Three sets of experimental campaigns were performed in the frame of the Italian Space Agency-sponsored PHAEDRA program. The first one investigated a reference paraffin fuel with axial and standard vortex injection. The second campaign tested vortex injection with low values of swirl numbers down to 0.5 with a conventional plastic fuel, namely polyethylene. Finally, the last campaign tested another, lower regressing, paraffin-based fuel with the same low swirl numbers as the second campaign. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

19 pages, 33144 KiB  
Article
Performance Analysis of Helical Milling and Drilling Operations While Machining Carbon Fiber-Reinforced Aluminum Laminates
by Gururaj Bolar, Anoop Aroor Dinesh, Ashwin Polishetty, Raviraj Shetty, Anupama Hiremath and V. L. Neelakantha
J. Manuf. Mater. Process. 2024, 8(3), 113; https://doi.org/10.3390/jmmp8030113 - 29 May 2024
Viewed by 769
Abstract
Being a difficult-to-cut material, Fiber Metal Laminates (FML) often pose challenges during conventional drilling and require judicious selection of machining parameters to ensure defect-free laminates that can serve reliably during their service lifetime. Helical milling is a promising technique for producing good-quality holes [...] Read more.
Being a difficult-to-cut material, Fiber Metal Laminates (FML) often pose challenges during conventional drilling and require judicious selection of machining parameters to ensure defect-free laminates that can serve reliably during their service lifetime. Helical milling is a promising technique for producing good-quality holes and is preferred over conventional drilling. The paper compares conventional drilling with the helical milling technique for producing holes in carbon fiber-reinforced aluminum laminates. The effect of machining parameters, such as cutting speed and axial feed, on the magnitude of cutting force and the machining temperature during conventional drilling as well as helical milling is studied. It was observed that the thrust force produced during machining reduces considerably during helical milling in comparison to conventional drilling at a constant axial feed rate. The highest machining temperature recorded for helical milling was much lower in comparison to the highest machining temperature measured during conventional drilling. The machining temperatures recorded during helical milling were well below the glass transition temperature of the epoxy used in carbon fiber prepreg, hence protecting the prepreg from thermal degradation during the hole-making process. The surface roughness of the holes produced by both techniques is measured, and the surface morphology of the drilled holes is analyzed using a scanning electron microscope. The surface roughness of the helical-milled holes was lower than that for holes produced by conventional drilling. Scanning electron microscope images provided insights into the interaction of the hole surface with the chips during the chip evacuation stage under different speeds and feed rates. The microhardness of the aluminum layers increased after processing holes using drilling and helical milling operations. The axial feed/axial pitch had minimal influence on the microhardness increase in comparison to the cutting speed. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

19 pages, 7723 KiB  
Article
Bayesian Updating for Random Tensile Force Identification of Ancient Tie Rods Using Modal Data
by Chiara Pepi and Massimiliano Gioffrè
Appl. Sci. 2024, 14(9), 3698; https://doi.org/10.3390/app14093698 - 26 Apr 2024
Cited by 1 | Viewed by 607
Abstract
Tie rods play a crucial role in civil engineering, particularly in controlling lateral thrusts in arches and vaults, and enhancing the structural integrity of masonry buildings, both historic and contemporary. Accurately assessing the tensile axial forces in tie rods is challenging due to [...] Read more.
Tie rods play a crucial role in civil engineering, particularly in controlling lateral thrusts in arches and vaults, and enhancing the structural integrity of masonry buildings, both historic and contemporary. Accurately assessing the tensile axial forces in tie rods is challenging due to the limitations of existing methodologies. These methodologies often rely on indirect measurements, computational models, and optimization procedures, resulting in single-point solutions and neglecting both modeling and measurement uncertainties. This study introduces a novel Bayesian updating framework to effectively address these limitations. The framework aims to accurately identify the structural parameters influencing tie rod behavior and estimate uncertainties using natural frequencies as references. A key innovation lies in the mathematical formulation of Bayesian updating, which is founded upon the definition of computational models integrating uncertain updating parameters and latent random variables derived from a rigorous sensitivity analysis aimed at quantifying the impact of the updating parameters on the natural frequencies. Notably, the application of Bayesian updating to the structural identification problem of ancient tie rods represents a significant advancement. The framework provides a comprehensive description of the uncertainties associated with computational models, offering valuable insights for practitioners and researchers alike. Moreover, the results of the sensitivity analysis serve as a valuable tool for setting up inverse problems geared towards accurately identifying tensile axial forces. Full article
Show Figures

Figure 1

18 pages, 8358 KiB  
Article
Wind Tunnel Investigation of Transient Propeller Loads for Non-Axial Inflow Conditions
by Catharina Moreira, Nikolai Herzog and Christian Breitsamter
Aerospace 2024, 11(4), 274; https://doi.org/10.3390/aerospace11040274 - 30 Mar 2024
Cited by 2 | Viewed by 1309
Abstract
Recent developments in electrical Vertical Take-off and Landing (eVTOL) vehicles show the need for a better understanding of transient aero-mechanical propeller loads for non-axial inflow conditions. The variety of vehicle configurations conceptualized with different propellers in terms of blade geometry, number of blades, [...] Read more.
Recent developments in electrical Vertical Take-off and Landing (eVTOL) vehicles show the need for a better understanding of transient aero-mechanical propeller loads for non-axial inflow conditions. The variety of vehicle configurations conceptualized with different propellers in terms of blade geometry, number of blades, and their general integration concept results in aerodynamic loads on the propellers which are different from those on conventional fixed-wing aircraft propellers or helicopter rotors. Such varying aerodynamic loads have to be considered in the vehicle design as a whole and also in the detailed design of their respective electric propulsion systems. Therefore, an experimental approach is conducted on two different propeller blade geometries and a varying number of blades with the objective to explore the characteristics at non-axial inflow conditions. Experimental data are compared with calculated results of a low-fidelity Blade Element Momentum Theory (BEMT) approach. Average thrust and side force coefficients are shown to increase with inflow angle, and this trend is captured by the implemented numerical method. Measured thrust and in-plane forces are shown to oscillate at the blade passing frequency and its harmonics, with higher amplitudes at higher angles of inflow or lower number of blades. Full article
(This article belongs to the Special Issue Gust Influences on Aerospace)
Show Figures

Figure 1

13 pages, 2400 KiB  
Article
Numerical Investigations of Pile Group Foundations under Different Pile Length Conditions
by Chuheng Zhong, Ze Chen and Jinzhi Zhou
Appl. Sci. 2024, 14(5), 1908; https://doi.org/10.3390/app14051908 - 26 Feb 2024
Viewed by 917
Abstract
At present, group pile foundations with the same length of pile base are used basically in large-scale slope group pile foundation projects. Therefore, pile group foundations with piles of different lengths have a certain research value. Based on the actual working condition of [...] Read more.
At present, group pile foundations with the same length of pile base are used basically in large-scale slope group pile foundation projects. Therefore, pile group foundations with piles of different lengths have a certain research value. Based on the actual working condition of a bridge group pile foundation, a similar model is established, which is imported into the FLAC3D 6.0 finite element software package together with the processed relevant data, and the bearing performance of the cap-group pile foundation under the joint action of axial uniform load and landslide thrust is studied. The study shows: under the same bearing conditions, the settlements of group pile foundations with the same pile length and different pile lengths are similar, and the settlements of the rear row of piles is significantly higher than those of the front row of piles; the settlement of the cap platform in the area without backfill soil is different from that in the area with backfill; the front row of piles has some negative displacement within the range of 10 m below the equivalent sliding surface, and the displacement of the pile body from the back row of piles to the front row of piles increases linearly; the maximum bending moment of the foundation pile is at the position of the gravel soil layer, and as the load changes, the position of the maximum bending moment point will also change; the plastic zone of the uppermost gravel soil layer in the slope model has the tendency of penetration, but it is truncated by the group of piles, and the factor of safety is 2.4 in the case of 100 KN axial uniform load, this structure tends to be stabilized, and the factor of safety decreases with the increase in the load. The analysis of the bearing characteristics of group piles under horizontal and vertical loads and its related conclusions can be used as a reference for related engineering design. Full article
Show Figures

Figure 1

19 pages, 7139 KiB  
Article
Mechanical Behavior Monitoring and Load Inversion Analysis of Large-Diameter Underwater Shield Tunnel during Construction
by Si-Yuan Ma, Xiao-Wei Ye, Zhi-Xiong Liu, Yang Ding, Di Zhang and Feng Sun
Sensors 2024, 24(4), 1310; https://doi.org/10.3390/s24041310 - 18 Feb 2024
Cited by 1 | Viewed by 773
Abstract
The construction of large-diameter shield tunnels underwater involves complex variations in water and earth load outside the tunnel segment, as well as intricate mechanical responses. This study analyzes the variation laws of external loads, axial forces, and bending moments acting on the segment [...] Read more.
The construction of large-diameter shield tunnels underwater involves complex variations in water and earth load outside the tunnel segment, as well as intricate mechanical responses. This study analyzes the variation laws of external loads, axial forces, and bending moments acting on the segment ring during the shield assembly and removal from the shield tail. It accomplishes this through the establishment of an on-site monitoring system based on the Internet of Things (IoT) and proposes a Bayesian-genetic algorithm model to estimate the water and earth pressure. The fluctuation section exhibits a peak load twice as high as that in the stable section. These variations are influenced by Jack thrust, shield shell force, and grouting pressure. The peak load observed in the fluctuation section is twice as high as the load observed in the stable section. During the shield tail removal process, the internal forces undergo significant fluctuations due to changes in both load and boundary conditions, and the peak value of the axial force during the fluctuation section is eight times higher than that during the stable section, while the peak value of the bending moment during the fluctuation section is five times higher than that during the stable section. The earth and water pressure calculated using the inversion analysis method, which relies on the measured internal forces, closely matches the actual measured values. The results demonstrate that the accuracy of the water and earth pressure obtained through inversion analysis is twice as high as that obtained using the full coverage pressure method. These results can serve as a valuable reference for similar projects. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 7033 KiB  
Article
Electrical Impedance Spectroscopy for Precise Film Thickness Assessment in Line Contacts
by Manjunath Manjunath, Simon Hausner, André Heine, Patrick De Baets and Dieter Fauconnier
Lubricants 2024, 12(2), 51; https://doi.org/10.3390/lubricants12020051 - 10 Feb 2024
Cited by 5 | Viewed by 2337
Abstract
In this article, we focus on utilising electrical impedance spectroscopy (EIS) for the assessment of global and contact impedances in roller bearings. Our primary objective is to establish a quantitative prediction of lubricant film thickness in elasto-hydrodynamic lubrication (EHL) and investigate the impedance [...] Read more.
In this article, we focus on utilising electrical impedance spectroscopy (EIS) for the assessment of global and contact impedances in roller bearings. Our primary objective is to establish a quantitative prediction of lubricant film thickness in elasto-hydrodynamic lubrication (EHL) and investigate the impedance transition from ohmic to capacitive behaviour as the system shifts from boundary lubrication to EHL. To achieve this, we conduct measurements of electrical impedance, bearing and oil temperature, and frictional torque in a cylindrical roller thrust bearing (CRTB) subjected to pure axial loading across various rotational speeds and supply oil temperatures. The measured impedance data is analysed and translated into a quantitative measure of lubricant film thickness within the contacts using the impedance-based and capacitance-based methods. For EHL, we observe that the measured capacitance of the EHL contact deviates from the theoretical value based on a Hertzian contact shape by a factor ranging from 3 to 11, depending on rotational speed, load, and temperature. The translation of complex impedance values to film thickness, employing the impedance and capacitance method, is then compared with the analytically estimated film thickness using the Moes correlation, corrected for inlet shear heating effects. This comparison demonstrates a robust agreement within 2% for EHL film thickness measurement. Monitoring the bearing resistance and capacitance via EIS across rotational speeds clearly shows the transition from boundary to mixed lubrication as well as the transition from mixed lubrication to EHL. Finally, we have observed that monitoring the electrical impedance appears to have the potential to perform the run-in of bearings in a controlled way. Full article
(This article belongs to the Special Issue Tribological Study in Rolling Bearing)
Show Figures

Figure 1

21 pages, 30482 KiB  
Article
Design and Testing of a New Type of Planetary Traction Drive Bearing-Type Reducer
by Hongyu Shu, Yijie Yu, Ran Shu, Wenjie Wang and Changjiang Pan
Machines 2024, 12(2), 107; https://doi.org/10.3390/machines12020107 - 4 Feb 2024
Viewed by 1580
Abstract
This paper presents the design and development of a new type of planetary traction drive bearing-type reducer. In this design, the transmission outer ring is replaced with an elastic ring. The design constructs a circular arc at the axial end of the rolling [...] Read more.
This paper presents the design and development of a new type of planetary traction drive bearing-type reducer. In this design, the transmission outer ring is replaced with an elastic ring. The design constructs a circular arc at the axial end of the rolling body’s contour line. This ensures that the contact point of this arc with the reducer’s outer ring and the inner ring’s axial end face is maintained on the radial traction contact line. As a result, it can replace the thrust bearing and provide an axial support function. It has the advantages of simple structure, easy processing, smooth transmission, and low noise. This paper first introduces the design and development process of this bearing-type reducer and presents systematic research on its transmission principle and dynamics. Subsequently, in response to the edge effect phenomenon of the outer ring contact line, the contour line of the outer ring is refined by adopting the shaping method used for bearing rollers, establishing a full circular arc profile shaping method, which significantly improves its edge effect. Finally, in our investigations, combined with experimental tests, a prototype of the bearing-type reducer was fabricated, and the speed ratio, torque, and transmission efficiency of the reducer were studied. The results demonstrate that the bearing-type reducer can achieve high transmission accuracy and efficiency. The transmission performance varies significantly under different lubrication conditions, with the peak efficiency reaching as high as 99.97% when using Santotrac 50 traction oil. The results verify the feasibility of the proposed design method and have the potential to be applied in wheel hub motors and robot joints. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

Back to TopTop