Sign in to use this feature.

Years

Between: -

Search Results (327)

Search Parameters:
Keywords = electronic tongue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12397 KiB  
Article
Metabolite Profiling and Identification of Sweet/Bitter Taste Compounds in the Growth of Cyclocarya Paliurus Leaves Using Multiplatform Metabolomics
by Liang Chen, Dai Lu, Yuxi Wan, Yaqian Zou, Ruiyi Zhang, Tao Zhou, Bin Long, Kangming Zhu, Wei Wang and Xing Tian
Foods 2024, 13(19), 3089; https://doi.org/10.3390/foods13193089 - 27 Sep 2024
Abstract
Cyclocarya paliurus tea, also known as “sweet tea”, an herbal tea with Cyclocarya paliurus leaves as raw material, is famous for its unique nutritional benefits and flavor. However, due to the unique “bittersweet” of Cyclocarya paliurus tea, it is still unable to fully [...] Read more.
Cyclocarya paliurus tea, also known as “sweet tea”, an herbal tea with Cyclocarya paliurus leaves as raw material, is famous for its unique nutritional benefits and flavor. However, due to the unique “bittersweet” of Cyclocarya paliurus tea, it is still unable to fully satisfy consumers’ high-quality taste experience and satisfaction. Therefore, this study aimed to explore metabolites in Cyclocarya paliurus leaves during their growth period, particularly composition and variation of sweet and bitter taste compounds, by combining multi-platform metabolomics analysis with an electronic tongue system and molecular docking simulation technology. The results indicated that there were significant differences in the contents of total phenols, flavonoids, polysaccharides, and saponins in C. paliurus leaves in different growing months. A total of 575 secondary metabolites were identified as potential active metabolites related to sweet/bitter taste using nontargeted metabolomics based on UHPLC-MS/MS analysis. Moreover, molecular docking technology was utilized to study interactions between the candidate metabolites and the sweet receptors T1R2/T1R3 and the bitter receptors T2R4/T2R14. Six key compounds with high sweetness and low bitterness were successfully identified by using computational simulation analysis, including cis-anethole, gluconic acid, beta-D-Sedoheptulose, asparagine, proline, and citrulline, which may serve as candidates for taste modification in Cyclocarya paliurus leaves. These findings provide a new perspective for understanding the sweet and bitter taste characteristics that contribute to the distinctive sensory quality of Cyclocarya paliurus leaves. Full article
Show Figures

Figure 1

13 pages, 3469 KiB  
Article
An Integration of UPLC-Q-TOF-MS, GC-MS, Electronic Nose, Electronic Tongue, and Molecular Docking for the Study of the Chemical Properties and Flavor Profiles of Moringa oleifera Leaves
by Mingxiao Zhang, Mengjia Guo, Na Chen, Zhuqian Tang, Junjie Xiang, Lixin Yang, Guohua Wang, Bin Yang and Hua Li
Chemosensors 2024, 12(9), 199; https://doi.org/10.3390/chemosensors12090199 - 23 Sep 2024
Abstract
Moringa oleifera leaves (MOLs) have gained significant attention due to their nutritional and biological activity. Therefore, this study aimed to examine its flavor characteristics and underlying compositions. In this study, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), gas [...] Read more.
Moringa oleifera leaves (MOLs) have gained significant attention due to their nutritional and biological activity. Therefore, this study aimed to examine its flavor characteristics and underlying compositions. In this study, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), gas chromatography-mass spectrometry (GC-MS), electronic nose, electronic tongue, and molecular docking to comprehensively investigate the chemical properties and flavor profiles of MOLs. UPLC-Q-TOF-MS and GC-MS were instrumental in identifying the 20 non-volatile and 19 volatile constituents of MOLs, respectively. The electronic nose and electronic tongue systems provided an objective evaluation of the sweet, bitter, and spicy attributes and flavor characteristics of MOLs. Concurrently, molecular docking was employed to elucidate the material basis of flavor profiles. It revealed that glucosinolates and flavonoids are probably the key components for the bitter taste of MOLs. The sweet taste may be attributed to glucosinolates and flavonoids. The spicy scent appears to be linked to the presence of glucosinolates and alkaloids. The integration of these techniques confers a thorough understanding of the chemical composition and sensory properties of MOLs. These findings have significant implications for innovative applications in the food industry as well as pharmaceuticals and agriculture sectors; furthermore, they contribute towards enhancing the perception of Moringa oleifera as a valuable natural resource. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

9 pages, 2559 KiB  
Communication
Impact of Coffee Roasting and Grind Size on Acidity and Bitterness: Sensory Evaluation Using Electronic Tongue
by Masaaki Habara and Toshihide Horiguchi
Chemosensors 2024, 12(9), 196; https://doi.org/10.3390/chemosensors12090196 - 23 Sep 2024
Abstract
Coffee flavor is profoundly influenced by numerous factors, including the origin’s terroir and variety, as well as post-harvest processing, drying, and sorting. Even specialty coffee beans, carefully selected for their high quality, can exhibit a wide range of flavor profiles depending on how [...] Read more.
Coffee flavor is profoundly influenced by numerous factors, including the origin’s terroir and variety, as well as post-harvest processing, drying, and sorting. Even specialty coffee beans, carefully selected for their high quality, can exhibit a wide range of flavor profiles depending on how they are roasted and ground. Traditionally, the coffee industry has used the Brewing Control Chart, which considers total dissolved solids (TDS) and extraction (E), to guide professionals toward achieving consistent flavors. However, this chart has limitations in representing the complex chemical composition and its influence on the sensory attributes of coffee. This study explores a more comprehensive approach to evaluating coffee quality by utilizing a taste sensing system (electronic tongue) to measure acidity and bitterness for full-immersion brewing. We investigate the impact of brew ratio and grind size on these taste attributes, while also considering the influence of roast level. Our findings demonstrate that finer grind sizes significantly affect TDS and E, while roast level and grind size significantly affect sensory attributes, as measured by the taste sensing system. This approach complements the traditional Brewing Control Chart by providing a more nuanced understanding of how roast level and grind size influence coffee flavor. Full article
(This article belongs to the Special Issue Electronic Nose and Electronic Tongue for Substance Analysis)
Show Figures

Figure 1

15 pages, 5144 KiB  
Article
Insights into the Flavor Profile of Yak Jerky from Different Muscles Based on Electronic Nose, Electronic Tongue, Gas Chromatography–Mass Spectrometry and Gas Chromatography–Ion Mobility Spectrometry
by Bingde Zhou, Xin Zhao, Luca Laghi, Xiaole Jiang, Junni Tang, Xin Du, Chenglin Zhu and Gianfranco Picone
Foods 2024, 13(18), 2911; https://doi.org/10.3390/foods13182911 - 14 Sep 2024
Abstract
It is well known that different muscles of yak exhibit distinctive characteristics, such as muscle fibers and metabolomic profiles. We hypothesized that different muscles could alter the flavor profile of yak jerky. Therefore, the objective of this study was to investigate the differences [...] Read more.
It is well known that different muscles of yak exhibit distinctive characteristics, such as muscle fibers and metabolomic profiles. We hypothesized that different muscles could alter the flavor profile of yak jerky. Therefore, the objective of this study was to investigate the differences in flavor profiles of yak jerky produced by longissimus thoracis (LT), triceps brachii (TB) and biceps femoris (BF) through electronic nose (E-nose), electronic tongue (E-tongue), gas chromatography–mass spectrometry (GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). The results indicated that different muscles played an important role on the flavor profile of yak jerky. And E-nose and E-tongue could effectively discriminate between yak jerky produced by LT, TB and BF from aroma and taste points of view, respectively. In particular, the LT group exhibited significantly higher response values for ANS (sweetness) and NMS (umami) compared to the BF and TB groups. A total of 65 and 47 volatile compounds were characterized in yak jerky by GC-MS and GC-IMS, respectively. A principal component analysis (PCA) model and robust principal component analysis (rPCA) model could effectively discriminate between the aroma profiles of the LT, TB and BF groups. Ten molecules could be considered potential markers for yak jerky produced by different muscles, filtered based on the criteria of relative odor activity values (ROAV) > 1, p < 0.05, and VIP > 1, namely 1-octen-3-ol, eucalyptol, isovaleraldehyde, 3-carene, D-limonene, γ-terpinene, hexanal-D, hexanal-M, 3-hydroxy-2-butanone-M and ethyl formate. Sensory evaluation demonstrated that the yak jerky produced by LT exhibited superior quality in comparison to that produced by BF and TB, mainly pertaining to lower levels of tenderness and higher color, taste and aroma levels. This study could help to understand the specific contribution of different muscles to the aroma profile of yak jerky and provide a scientific basis for improving the quality of yak jerky. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

13 pages, 2504 KiB  
Article
Exploring Novel Umami Peptides from Bovine Bone Soups Using Nano-HPLC-MS/MS and Molecular Docking
by Zheng Yang, Wanying Li, Ran Yang, Lingbo Qu, Chunxiang Piao, Baide Mu, Xiaodi Niu, Guanhao Li and Changcheng Zhao
Foods 2024, 13(18), 2870; https://doi.org/10.3390/foods13182870 - 10 Sep 2024
Abstract
In this study, umami peptides were screened and characterized from bovine bone soups manufactured via atmospheric and high-pressure boiling. Peptide fractions with molecular weights less than 3 kDa were selected for peptide sequencing using LC-MS/MS, the toxicity prediction of the umami peptides was [...] Read more.
In this study, umami peptides were screened and characterized from bovine bone soups manufactured via atmospheric and high-pressure boiling. Peptide fractions with molecular weights less than 3 kDa were selected for peptide sequencing using LC-MS/MS, the toxicity prediction of the umami peptides was carried out by using an website, and the peptides were screened according to the binding energy, i.e., three peptides including YDAELS, TDVAHR, and ELELQ were selected. The three umami peptides were further synthesized, and their umami thresholds were determined through sensory evaluation and electronic tongue analysis, ranging from 0.375 to 0.75 mg/mL. All three peptides exhibited a significant synergistic taste enhancement effect when combined with MSG (monosodium glutamate) solution. The molecular docking of the umami peptides with the T1R1/T1R3 receptor revealed the mechanism of umami presentation, and the main interaction forces between the three umami peptides and the receptor were hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

30 pages, 17683 KiB  
Article
Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits
by Cristhian Manuel Durán Acevedo, Dayan Diomedes Cárdenas Niño and Jeniffer Katerine Carrillo Gómez
Appl. Sci. 2024, 14(17), 8074; https://doi.org/10.3390/app14178074 - 9 Sep 2024
Abstract
In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages [...] Read more.
In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products. Full article
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Enzymatic Preparation, Identification by Transmembrane Channel-like 4 (TMC4) Protein, and Bioinformatics Analysis of New Salty Peptides from Soybean Protein Isolate
by Ziying Zhao, Mingzhe Yang, Zhijiang Li, Huacheng Tang, Xuejian Song and Xinhui Wang
Foods 2024, 13(17), 2798; https://doi.org/10.3390/foods13172798 - 3 Sep 2024
Viewed by 384
Abstract
To address the public health challenges posed by high-salt diets, this study utilized pepsin and flavourzyme for the continuous enzymatic hydrolysis of a soy protein isolate (SPI). The separation, purification, and identification of salt-containing peptides in SPI hydrolysate were conducted using ultrafiltration (UF), [...] Read more.
To address the public health challenges posed by high-salt diets, this study utilized pepsin and flavourzyme for the continuous enzymatic hydrolysis of a soy protein isolate (SPI). The separation, purification, and identification of salt-containing peptides in SPI hydrolysate were conducted using ultrafiltration (UF), gel filtration chromatography (GFC), and Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (LC-MS/MS). Subsequently, a molecular docking model was constructed between salt receptor protein transmembrane channel 4 (TMC4) and the identified peptides. Basic bioinformatics screening was performed to obtain non-toxic, non-allergenic, and stable salt peptides. After the enzymatic hydrolysis, separation, and purification of SPI, a component with a sensory evaluation score of 7 and an electronic tongue score of 10.36 was obtained. LC-MS/MS sequencing identified a total of 1697 peptides in the above component, including 84 potential salt-containing peptides. A molecular docking analysis identified seven peptides (FPPP, GGPW, IPHF, IPKF, IPRR, LPRR, and LPHF) with a strong theoretical salty taste. Furthermore, residues Glu531, Asp491, Val495, Ala401, and Phe405 of the peptides bound to the TMC4 receptor through hydrogen bonds, hydrophobic interactions, and electrostatic interactions, thereby imparting a significant salty taste. A basic bioinformatics analysis further revealed that IPHF, LPHF, GGPW, and IPKF were non-toxic, non-allergenic, and stable salt-containing peptides. This study not only provides a new sodium reduction strategy for the food industry, but also opens up new avenues for improving the public’s healthy eating habits. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

12 pages, 4934 KiB  
Article
Resolution of Glycerol, Ethanol and Methanol Employing a Voltammetric Electronic Tongue
by João Pedro Jenson de Oliveira, Marta Bonet-San-Emeterio, Acelino Cardoso de Sá, Xavier Cetó, Leonardo Lataro Paim and Manel del Valle
Chemosensors 2024, 12(9), 173; https://doi.org/10.3390/chemosensors12090173 - 1 Sep 2024
Viewed by 316
Abstract
This paper reports the use of nanoparticles (NPs)-modified voltammetric sensors for the rapid determination of glycerol in the presence of ethanol and methanol, which are used in the transesterification reaction of biodiesel production. Two different modified electrodes have been prepared to form the [...] Read more.
This paper reports the use of nanoparticles (NPs)-modified voltammetric sensors for the rapid determination of glycerol in the presence of ethanol and methanol, which are used in the transesterification reaction of biodiesel production. Two different modified electrodes have been prepared to form the electronic tongue (ET): copper hexacyanoferrate NPs obtained by chemical synthesis and mixed into graphite/epoxy (GEC) electrode, and nickel hydroxide NPs electrodeposited in reduced graphene oxide onto a GEC electrode. The response characteristics of these electrodes were first evaluated by building the respective calibration against glycerol, ethanol, and methanol. The electrodes demonstrated good stability during their analytical characterization, while principal component analysis confirmed the differentiated response against the different alcohols. Finally, the quantification of mixtures of these substances was achieved by a genetic algorithm-artificial neural networks (GA-ANNs) model, showing satisfactory agreement between expected and obtained values. Full article
Show Figures

Figure 1

14 pages, 3750 KiB  
Article
Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine
by Feifei Wu, Bo Lin, Jing Chen, Fengjin Zheng, Xiaochun Fang, Lianfeng Luo, Haisheng Chen, Krishan K. Verma and Ganlin Chen
Fermentation 2024, 10(9), 449; https://doi.org/10.3390/fermentation10090449 - 29 Aug 2024
Viewed by 469
Abstract
Green tea is a non-fermented tea with flavor and polyphenols. Aroma is one of the important quality indicators of tea. Fermented green tea wine can solve the problem of low-grade tea, which has more bitterness and less aroma. In this study, Camellia sinensis [...] Read more.
Green tea is a non-fermented tea with flavor and polyphenols. Aroma is one of the important quality indicators of tea. Fermented green tea wine can solve the problem of low-grade tea, which has more bitterness and less aroma. In this study, Camellia sinensis var. pubilimba Hung T. Chang (Kaishan white tea 2) was screened by orthogonal partial least squares-discriminant analysis (OPLS-DA) to benzyl alcohol and phenethyl alcohol presenting a fruity aroma, dimethyl sulfide presenting a green tea aroma, and rich tea polyphenols with contents of 2.08, 2.43, 12.26 and 3.72%, respectively. The optimal fermentation conditions for green tea wine were determined univariately as 1.5% yeast addition, 30 °Brix initial sugar, and fermentation temperature of 25 °C. The electronic sensory assessment showed that the saltiness, richness and umami were more prominent in green tea wine, while the response values of bitterness, astringency and aftertaste-A were lower. The order of aroma contribution can be seen as W1S > W5S > W2S > W2W > W1W > W3S > W6S. Kaisan white tea 2 gives green tea wine a clear tea aroma. This study provides better technical and theoretical strategies for the comprehensive quality assessment and control of fermented green tea wine quality. Full article
Show Figures

Figure 1

14 pages, 3479 KiB  
Article
Development of a Bitterness Sensor Using Partially Dissociated Amine Compounds
by Yuyang Guo, Xiao Wu, Hidekazu Ikezaki and Kiyoshi Toko
Sensors 2024, 24(17), 5553; https://doi.org/10.3390/s24175553 - 28 Aug 2024
Viewed by 282
Abstract
This study focused on developing an advanced bitterness sensor designed to minimize interference from common anions such as nitrate (NO3) and iodide (I) by incorporating partially dissociated amine compounds into the sensor membrane. The conventional bitter sensor (C00) [...] Read more.
This study focused on developing an advanced bitterness sensor designed to minimize interference from common anions such as nitrate (NO3) and iodide (I) by incorporating partially dissociated amine compounds into the sensor membrane. The conventional bitter sensor (C00) uses fully dissociated quaternary ammonium salt tetradecyl ammonium bromide (TDAB), which typically exhibits high responses to these anions, leading to inaccurate bitterness assessments. To address this issue, we explored the use of three partially dissociated amines—oleylamine (OAm), dioctadecylamine (DODA), and tridodecylamine (TDA)—as lipids in the membrane components. We fabricated sensor membranes and tested their ion selectivity, interference resistance to anion, and sensitivity to iso-alpha acids (IAAs), representative bitter compounds in beer. The results showed that the membranes with partially dissociated amines significantly reduced anion interference. Notably, the sensitivity of the TDA membrane to IAAs was 80.4 mV/dec in concentration, exceeding the 68.5 mV/dec of the TDAB membrane. This enhanced sensitivity, coupled with reduced anion interference, reveals a novel property of partially dissociated lipids in taste sensors, distinguishing them from fully dissociated lipids. These findings pave the way for the development of sensors that can accurately assess a bitter taste and have potential applications in the food and beverage industry. Full article
(This article belongs to the Special Issue Electrochemical Sensors in the Food Industry)
Show Figures

Figure 1

18 pages, 4715 KiB  
Article
Comparison of Different Deodorizing Treatments on the Flavor of Paddy Field Carp, Analyzed by the E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectrometry
by Chenying Fu, Yiming Zou, Yixiang Zhang, Mengxiang Liao, Duhuang Chen and Zebin Guo
Foods 2024, 13(16), 2623; https://doi.org/10.3390/foods13162623 - 21 Aug 2024
Viewed by 473
Abstract
Changes in the flavor and taste profiles of Paddy Field Carp after deodorization with perilla juice (PJ), cooking wine (CW) and a mixture of the two (PJ-CW) were analyzed using the E-nose, E-tongue, gas chromatography–ion mobility spectrometry (GC-IMS), free amino acid analysis and [...] Read more.
Changes in the flavor and taste profiles of Paddy Field Carp after deodorization with perilla juice (PJ), cooking wine (CW) and a mixture of the two (PJ-CW) were analyzed using the E-nose, E-tongue, gas chromatography–ion mobility spectrometry (GC-IMS), free amino acid analysis and taste nucleotide analysis. The E-nose and E-tongue revealed that deodorization reduced the content of sulfur-containing compounds, enhanced umami, bitterness, sourness and astringency, and decreased saltiness. PCA and OPLS-DA analysis successfully distinguished between the effects of the treatments. Free amino acids increased from 8777.67 to 11,125.98 mg/100 g and umami amino acids increased from 128.24 to 150.37 mg/100 g after PJ-CW deodorization (p < 0.05). Equivalent umami concentration (EUC) comparisons showed that PJ-CW treatment produced the greatest synergistic umami enhancement (to 3.15 g MSG equiv./100 g). GC-IMS detected 52 aroma compounds; PJ treatment produced the greatest diversity of aldehydes, including heptanal, nonanal, hexanal, 3-methylbutanal, (E)-2-heptenal and (E,E)-2,4-heptadienal. The total content of volatile flavor compounds was the highest after PJ-CW treatment, and the content of many characteristic flavor substances (3-hydroxy-2-butanone, benzaldehyde, 5-methyl-2(3H)-furanone) increased. These findings provided a theoretical basis for the further development of deodorization methods for Paddy Field Carp. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 3089 KiB  
Article
Surface Electromyography-Based Recognition of Electronic Taste Sensations
by Asif Ullah, Fengqi Zhang, Zhendong Song, You Wang, Shuo Zhao, Waqar Riaz and Guang Li
Biosensors 2024, 14(8), 396; https://doi.org/10.3390/bios14080396 - 16 Aug 2024
Viewed by 593
Abstract
Taste sensation recognition is a core for taste-related queries. Most prior research has been devoted to recognizing the basic taste sensations using the Brain–Computer Interface (BCI), which includes EEG, MEG, EMG, and fMRI. This research aims to recognize electronic taste (E-Taste) sensations based [...] Read more.
Taste sensation recognition is a core for taste-related queries. Most prior research has been devoted to recognizing the basic taste sensations using the Brain–Computer Interface (BCI), which includes EEG, MEG, EMG, and fMRI. This research aims to recognize electronic taste (E-Taste) sensations based on surface electromyography (sEMG). Silver electrodes with platinum plating of the E-Taste device were placed on the tongue’s tip to stimulate various tastes and flavors. In contrast, the electrodes of the sEMG were placed on facial muscles to collect the data. The dataset was organized and preprocessed, and a random forest classifier was applied, giving a five-fold accuracy of 70.43%. The random forest classifier was used on each participant dataset individually and in groups, providing the highest accuracy of 84.79% for a single participant. Moreover, various feature combinations were extracted and acquired 72.56% accuracy after extracting eight features. For a future perspective, this research offers guidance for electronic taste recognition based on sEMG. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

18 pages, 2719 KiB  
Article
A Buffered Local Anesthetic Without Epinephrine: Development, Characterization, and In Vivo Efficacy and Toxicity Analysis
by Daniel Uzbelger Feldman, Billy B. Laun, Chirag Patel, Sonal V. Pande and Sai H. S. Boddu
Pharmaceutics 2024, 16(8), 1058; https://doi.org/10.3390/pharmaceutics16081058 - 12 Aug 2024
Viewed by 1344
Abstract
Lidocaine hydrochloride (HCl) 2% with 1:100,000 epinephrine (LW/E) is widely used to prevent pain during dental procedures and has been associated with injection sting, jittering effects, slow onset, and a bitter aftertaste. Since LW/E’s introduction in 1948, no significant modifications have been proposed. [...] Read more.
Lidocaine hydrochloride (HCl) 2% with 1:100,000 epinephrine (LW/E) is widely used to prevent pain during dental procedures and has been associated with injection sting, jittering effects, slow onset, and a bitter aftertaste. Since LW/E’s introduction in 1948, no significant modifications have been proposed. This study aims to design and characterize an improved dental lidocaine HCl injectable formulation without epinephrine (LW/O/E) via buffers, sweeteners, and amino acids. LW/O/E injections were prepared with pH and osmolality values of 6.5–7.0 and 590–610 mOsm/kg. Using the electronic tongue (ETongue), the LW/O/E injectable formulations were characterized for viscosity, injectability, and taste analysis. The results were compared with the LW/E control. In vivo efficacy and anesthetic duration of the samples were measured through radiant heat tail-flick latency (RHTFL) and hot plate (HP) tests and local toxicity was assessed after a single intra-oral injection in Sprague Dawley rats (SDR). The viscosity and injectability values of the LW/O/E samples were found to be comparable to the LW/E injection. ETongue taste analysis showed an improvement in bitterness reduction of the LW/O/E samples compared to the LW/E formulation. Toxicity studies of samples in SDR showed minor and transient signs of erythema/eschar and edema. Anesthetic duration via RHTFL and HP paw withdrawal latency time in SDR were found to be comparable for the LW/O/E Sample 3A and the LW/E injection (p < 0.05). In conclusion, the buffered, higher osmolality and reduced bitterness developed LW/O/E formulation (Sample 3A) could be considered a promising alternative to the LW/E formulation for dental use. Full article
Show Figures

Graphical abstract

25 pages, 5651 KiB  
Article
Characterization of Liquid Dosage Forms of Atenolol and Enalapril Maleate for Oral and Enteral Feeding Administration
by Sandra Mota, Ana Torres, Clara Quintas, António M. Peres, Nuno Ferreiro, Rebeca Cruz, Helena Ferreira, Isabel F. Almeida and Susana Casal
Pharmaceuticals 2024, 17(8), 1052; https://doi.org/10.3390/ph17081052 - 9 Aug 2024
Viewed by 611
Abstract
The limited availability of pharmaceutical formulations tailored for cardiovascular diseases in both pediatric and geriatric populations generates the need for compounded dosage forms to guarantee precise dosing and medication adherence. This study aimed to analyze the physicochemical properties and stability of formulations of [...] Read more.
The limited availability of pharmaceutical formulations tailored for cardiovascular diseases in both pediatric and geriatric populations generates the need for compounded dosage forms to guarantee precise dosing and medication adherence. This study aimed to analyze the physicochemical properties and stability of formulations of atenolol and enalapril maleate prepared with a proprietary oral vehicle, SuspendIt®. To this end, palatability, injectability, pH, rheological behavior, and physical, microbiological, and chemical stability over a 180-day storage period at 25 °C and 5 °C were evaluated. Injectability tests confirmed the suitable use of both formulations for administration through enteral feeding tubes. By using a potentiometric electronic tongue, it was confirmed that the SuspendIt® vehicle effectively served as a bitter-blocking strategy for atenolol and enalapril maleate. Adequate stability throughout the storage period was confirmed in terms of the mechanical properties, pH, and effectiveness of the preservative system. The atenolol concentration remained above 90% of the initial amount, while the concentration of enalapril maleate decreased to 88% after 90 days of storage at 25 °C. In summary, the atenolol formulation maintained suitable chemical, physical, and microbiological stability after 180 days at both storage temperatures, while the enalapril maleate formulation remained stable up to 60 days at 25 °C and for 180 days at 5 °C. Full article
Show Figures

Figure 1

18 pages, 1341 KiB  
Article
The Concentration of Salivary Extracellular Vesicles Is Related to Obesity
by Kristin Röhrborn, Martin Krueger, Mirjam Kalusa, Simone A. Fietz, Alexander Ewe, Achim Aigner, Michael Stumvoll, Peter Kovacs, Matthias Blüher, Imke Schamarek and Kerstin Rohde-Zimmermann
Nutrients 2024, 16(16), 2633; https://doi.org/10.3390/nu16162633 - 9 Aug 2024
Viewed by 684
Abstract
Background and aims: Saliva is essential for the proper dilution and distribution of taste molecules on the tongue. It harbors extracellular vesicles (EVs), which mediate cell–cell communication. Changes in the composition of salivary EVs may arise under obese conditions and may potentially be [...] Read more.
Background and aims: Saliva is essential for the proper dilution and distribution of taste molecules on the tongue. It harbors extracellular vesicles (EVs), which mediate cell–cell communication. Changes in the composition of salivary EVs may arise under obese conditions and may potentially be involved in taste sensation and dysregulated eating behavior. Therefore, this study addresses the relationship between the size and concentration of salivary EVs and metabolic shifts in obesity or factors of taste sensation. Materials and methods: A total of 119 participants in the Obese Taste Bud (OTB) Study were included, who performed a standardized taste test, underwent taste bud density assessment, and were phenotypically characterized for anthropometrics, blood- and saliva adipokine levels, and various metabolic factors. Utilizing size exclusion chromatography followed by ultrafiltration, EVs were extracted from 2 mL of actively secreted saliva. EVs were characterized using nanoparticle tracking analyses, Western blot, and scanning transmission electron microscopy. Finally, group comparisons and bivariate correlation analyses were conducted. Results: Among the total cohort, the median size of salivary EVs was 190.05 nm, and the overall concentration ranged from 1.4 × 107 to 1.76 × 109 per mL of saliva. The size range and concentration of EVs per mL are negatively correlated (p = 0.0002, r = −0.264). Comparing lean participants (mean rank of 45.98) with those presenting obesity (mean rank of 34.46), a significant difference in the salivary EV content was observed (p = 0.029). Body weight, BMI, arm and calf circumferences, as well as the percentage of body fat were all negatively related to the concentration of EVs in all study participants (all p < 0.05, r > −0.2). No associations were found between the EV parameters and taste perception but serum alkaline phosphatase levels were negatively correlated (p = 0.007, r = −0.284) and adiponectin serum levels were positively correlated to the EV concentration (p = 0.036, r = 0.208). Conclusion: The current study provides evidence for the relation between salivary EVs and anthropometric as well as metabolic parameters of obesity. This can provide the basis for further research on the cargo of salivary EVs and how they may influence taste sensation, and may elucidate their potential connection to altered eating habits in obesity. Full article
Show Figures

Graphical abstract

Back to TopTop