Sign in to use this feature.

Years

Between: -

Search Results (13,874)

Search Parameters:
Keywords = gut

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3638 KiB  
Article
Based on Sportomics: Comparison of Physiological Status of Collegiate Sprinters in Different Pre-Competition Preparation Periods
by Pengyu Fu, Xiaomin Duan, Yuting Zhang, Xiangya Dou and Lijing Gong
Metabolites 2024, 14(10), 527; https://doi.org/10.3390/metabo14100527 (registering DOI) - 29 Sep 2024
Abstract
This study aimed to assess the impact of pre-competition training by comparing the differences of collegiate sprinters in physiological state between strengthening and tapering training period by sportomics and combining their sport performance. Fifteen collegiate sprinters were investigated or tested on their body [...] Read more.
This study aimed to assess the impact of pre-competition training by comparing the differences of collegiate sprinters in physiological state between strengthening and tapering training period by sportomics and combining their sport performance. Fifteen collegiate sprinters were investigated or tested on their body composition, dietary habits, energy expenditure, sleep efficiency, heart rate and respiratory rate during training, blood (blood cells, biochemical and immune markers) and urine (urinalysis), gut microbiome distribution, microbiome and blood metabolites, and their functions during the strengthening (Group A) and tapering training period (Group B) prior to competing in the national competitions. We found that 26.67% of sprinters achieved personal bests (PB) after the competition. The limb skeletal muscle mass and lymphocyte ratio of male sprinters in Group B were lower than those in Group A, and the serum creatine kinase (CK) level was higher than Group A (p < 0.05). The levels of serum CK, interleukin-6 (IL-6), interleukin-1β (IL-1β), and urine-specific gravity (SG) of the two groups were higher than the upper limit of the reference value. The detection rates of urine white blood cell (WBC) and protein in Group B were higher than those in Group A. The gut microbiome health index (GMHI) of Group A was higher than that of Group B, and the microbial dysbiosis index was lower than that of Group B. The ratio of Firmicutes/Bacteroidota (F/B) in Group A was higher than that in Group B. There were 65 differential metabolites in the A/B group, and the enriched pathway was mainly the NF-kappa B signaling pathway (up); B/T cell receptor signaling pathway (up); Th1 and Th2 cell differentiation (up); phenylalanine metabolism (up); and growth hormone synthesis, secretion, and action (up). There were significant differences in blood metabolites between the A and B groups, with a total of 89 differential metabolites, and the enriched pathway was mainly the NF-kappa B signaling pathway (up), T cell receptor signaling pathway (up), Th1 and Th2 cell differentiation (up), and glycerophospholipid metabolism (down). In conclusion, the imbalance of the gut microbiome and inflammation and immune-related metabolites of collegiate sprinters during the pre-competition tapering training period may be the cause of their limited sports performance. Full article
(This article belongs to the Special Issue Interactions between Exercise Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 26019 KiB  
Article
Network Analysis of Gut Microbial Communities Reveals Key Reason for Quercetin Protects against Colitis
by Yanan Lv, Jing Peng, Xiaoyu Ma, Zeyi Liang, Ghasem Hosseini Salekdeh, Qunhua Ke, Wenxiang Shen, Zuoting Yan, Hongsheng Li, Shengyi Wang and Xuezhi Ding
Microorganisms 2024, 12(10), 1973; https://doi.org/10.3390/microorganisms12101973 (registering DOI) - 29 Sep 2024
Abstract
As one of the most representative natural products among flavonoids, quercetin (QUE) has been reported to exhibit beneficial effects on gut health in recent years. In this study, we utilized a dextran sulfate sodium (DSS)-induced colitis mice model to explore the protective effects [...] Read more.
As one of the most representative natural products among flavonoids, quercetin (QUE) has been reported to exhibit beneficial effects on gut health in recent years. In this study, we utilized a dextran sulfate sodium (DSS)-induced colitis mice model to explore the protective effects and underlying mechanisms of QUE on colitis. Our data demonstrated that QUE oral gavage administration significantly ameliorates the symptoms and histopathological changes associated with colitis. Additionally, the concentration of mucin-2, the number of goblet cells, and the expression of tight junction proteins (such as ZO-1, Occludin, and Claudin-1) were all found to be increased. Furthermore, QUE treatment regulated the levels of inflammatory cytokines and macrophage polarization, as well as the oxidative stress-related pathway (Nrf2/HO-1) and associated enzymes. Additionally, 16S rDNA sequencing revealed that QUE treatment rebalances the alterations in colon microbiota composition (inlcuding Bacteroidaceae, Bacteroides, and Odoribacter) in DSS-induced colitis mice. The analysis of network dynamics reveals a significant correlation between gut microbial communities and microenvironmental factors associated with inflammation and oxidative stress, in conjunction with the previously mentioned findings. Collectively, our results suggest that QUE has the potential to treat colitis by maintaining the mucosal barrier, modulating inflammation, and reducing oxidation stress, which may depend on the reversal of gut microbiota dysbiosis. Full article
(This article belongs to the Topic Redox in Microorganisms, 2nd Edition)
Show Figures

Figure 1

20 pages, 2950 KiB  
Article
Application of PCR-Based Techniques for the Identification of Genetic Fingerprint Diversity of Dominant Bacteria in Fecal Samples of Children with Diarrhea in Vietnam
by Thi Quy Nguyen, Trong Khoa Dao, Hong Duong Nguyen, Thi Bich Thuy Phung, Thi Thanh Nga Pham, Thi Viet Ha Nguyen, Thi Huong Trinh, Huu Cuong Le, Thi Thu Hong Le and Thi Huyen Do
Infect. Dis. Rep. 2024, 16(5), 932-951; https://doi.org/10.3390/idr16050075 (registering DOI) - 29 Sep 2024
Abstract
In Vietnam, diarrhea, especially persistent diarrhea, is one of the most common diseases in children, while a significant proportion of cases are negative with pathogens; thus, there is an urgent need to understand gut bacterial dysbiosis. In this study, bacteria in the fecal [...] Read more.
In Vietnam, diarrhea, especially persistent diarrhea, is one of the most common diseases in children, while a significant proportion of cases are negative with pathogens; thus, there is an urgent need to understand gut bacterial dysbiosis. In this study, bacteria in the fecal samples of five healthy and ten diarrheal children were separated from other residues, then adopted to extract their metagenomic DNA for evaluating their diversity based on V3 and V6–V8 regions and the 16S rRNA gene by PCR-RFLP and PCR-DGGE. As a result, bacterial metagenomic DNAs with high quality, quantity and diversity were successfully extracted using a GeneJET kit and a chemical protocol. A sequence analysis of 73 representative DNA fragments from gels indicated a remarkable bacterial dysbiosis in all groups of diarrhea. Viral diarrhea was characterized by extremely reduced bacterial diversity with the blossom of Bifidobacterium and Streptococcus. Streptococcus was also the most abundant in persistent diarrhea. Beneficial bacteria that may play a role in the self- rebalance in intestinal bacterial communities, such as Bifidobacterium, Lactobacillus, and Enterococcus, were seen in all diarrheal groups, while Bacteroides and Akkermansia muciniphila were seen in the healthy group but absent in the diarrheal groups. This study provides additional evidence for a relationship between intestinal bacterial dysbiosis and diarrhea in children, emphasizing an increase in Streptococcus. Full article
Show Figures

Figure 1

18 pages, 2999 KiB  
Article
Next-Generation Sequencing to Determine Changes in the Intestinal Microbiome of Juvenile Sturgeon Hybrid (Acipenser gueldenstaedtii♀ × Acipenser baerii♂) Resulting from Sodium Butyrate, Β-Glucan and Vitamin Supplementation
by Martyna Arciuch-Rutkowska, Joanna Nowosad, Michał Krzysztof Łuczyński, Syed Makhdoom Hussain and Dariusz Kucharczyk
Genes 2024, 15(10), 1276; https://doi.org/10.3390/genes15101276 (registering DOI) - 28 Sep 2024
Abstract
Background/Objectives: The effect of sodium butyrate (NaB), β-glucan (βG) and vitamins in the diet on gut microbiome, cortisol level, lysozyme activity and growth parameters of juvenile hybrid sturgeon (Acipenser gueldenstaedtii♀ × Acipenser baerii♂) was determined. Methods: Sturgeon hybrids (n [...] Read more.
Background/Objectives: The effect of sodium butyrate (NaB), β-glucan (βG) and vitamins in the diet on gut microbiome, cortisol level, lysozyme activity and growth parameters of juvenile hybrid sturgeon (Acipenser gueldenstaedtii♀ × Acipenser baerii♂) was determined. Methods: Sturgeon hybrids (n = 144) were divided into three groups with enriched feeding (mg/kg of feed): FQV1 (50 NaB; 20 βG; const. vitamins), FQV2 (150 NaB; 20 βG; const. vitamins), FQV3 (50 NaB; 60 βG; const. vitamins) and control (not supplemented), each group in triplicate, 12 fish in each repetition. Rearing was carried out for 30 days in controlled conditions. Gut microbiome was characterized using Next Generation Sequencing (NGS) of DNA samples isolated from intestinal content. Cortisol level was determined using the ELISA test. Lysozyme activity was measured by turbidimetric test. Results: Based on data obtained from NGS, it was determined that the FQV1 group is characterized by the highest values of diversity indices (Shannon, Simpson and Chao-1) and the largest number of ASVs (Amplicon Sequence Variants). The highest abundance of probiotic bacteria (Lactobacillus, Lactococcus) was determined in the FQV1 group. The highest cortisol concentration was determined in the control (33.26 ng/mL), while the lowest was in FQV3 (27.75 ng/mL). The highest lysozyme activity was observed in FQV1 (154.64 U/mL), and the lowest in FQV2 (104.39 U/mL) and control (121.37 U/mL) (p < 0.05). FQV2 was characterized by significantly more favorable values of breeding indicators (p < 0.05). Conclusions: The obtained results prove that an appropriate composition of NaB, βG and vitamins can be used in the commercial breeding of juvenile hybrid sturgeons. Full article
(This article belongs to the Special Issue Molecular Biology and Genetics in Aquaculture)
Show Figures

Figure 1

16 pages, 2018 KiB  
Article
Effect of Isoflavone on Muscle Atrophy in Ovariectomized Mice
by Sayaka Kawai, Takuro Okamura, Chihiro Munekawa, Yuka Hasegawa, Ayaka Kobayashi, Hanako Nakajima, Saori Majima, Naoko Nakanishi, Ryoichi Sasano, Masahide Hamaguchi and Michiaki Fukui
Nutrients 2024, 16(19), 3295; https://doi.org/10.3390/nu16193295 (registering DOI) - 28 Sep 2024
Abstract
Background: Sarcopenia, characterized by muscle mass decline due to aging or other causes, is exacerbated by decreased estrogen levels after menopause in women. Isoflavones, a class of flavonoids acting on estrogen receptors, may have beneficial effects on metabolic disorders. We examined these effects [...] Read more.
Background: Sarcopenia, characterized by muscle mass decline due to aging or other causes, is exacerbated by decreased estrogen levels after menopause in women. Isoflavones, a class of flavonoids acting on estrogen receptors, may have beneficial effects on metabolic disorders. We examined these effects in ovariectomized mice fed a high-fat, high-sucrose diet (HFHSD). Methods: At 7 weeks old, female C57BL6/J mice (18–20 g, n = 12) underwent bilateral ovariectomy (OVX), and were then fed a high-fat, high-sucrose diet starting at 8 weeks of age. Half of the mice received isoflavone water (0.1%). Metabolic analyses, including glucose and insulin tolerance tests, were conducted. Muscle analysis involved grip strength assays, next-generation sequencing, quantitative RT–PCR, and western blotting of skeletal muscle after euthanizing the mice at 14 weeks old. Additionally, 16S rRNA gene sequence analysis of the gut microbiota was performed. Results: The results demonstrated that isoflavone administration did not affect body weight, glucose tolerance, or lipid metabolism. In contrast, isoflavone-treated mice had higher grip strength. Gene expression analysis of the soleus muscle revealed decreased Trim63 expression, and western blotting showed inactivation of muscle-specific RING finger protein 1 in isoflavone-treated mice. Gut microbiota analysis indicated higher Bacteroidetes and lower Firmicutes abundance in the isoflavone group, along with increased microbiota diversity. Gene sets related to TNF-α signaling via NF-κB and unfolded protein response were negatively associated with isoflavones. Conclusions: Isoflavone intake alters gut microbiota and increases muscle strength, suggesting a potential role in improving sarcopenia in menopausal women. Full article
(This article belongs to the Special Issue Exercise, Diet and Type 2 Diabetes)
Show Figures

Figure 1

13 pages, 5419 KiB  
Article
Garlic-Induced Enhancement of Bifidobacterium: Enterotype-Specific Modulation of Gut Microbiota and Probiotic Populations
by Jina Ha, Jinwoo Kim, Seongok Kim, Kwang Jun Lee and Hakdong Shin
Microorganisms 2024, 12(10), 1971; https://doi.org/10.3390/microorganisms12101971 (registering DOI) - 28 Sep 2024
Abstract
The gut microbiome is a dynamic ecosystem crucial for maintaining its host’s health by regulating various immune and metabolic functions. Since diet plays a fundamental role in shaping the gut microbiome, understanding the relationship between food consumption and microbiome structure is essential. Although [...] Read more.
The gut microbiome is a dynamic ecosystem crucial for maintaining its host’s health by regulating various immune and metabolic functions. Since diet plays a fundamental role in shaping the gut microbiome, understanding the relationship between food consumption and microbiome structure is essential. Although medicinal plants are widely recognized for their broad health benefits, their specific impact on the gut microbiome remains unclear. In this study, we investigated the effects of garlic (Allium sativum) on the gut microbiome using an in vitro human fecal incubation model. Our findings revealed that the impact of garlic on gut microbial structure varied depending on the dominant gut microbiome components (enterotypes). The Bacteroides-dominant enterotype exhibited significant changes in overall microbial diversity in response to garlic, while the Prevotella-dominant enterotype remained unaffected. Additionally, the garlic treatment led to specific alterations in microbiota composition, such as an increase in beneficial probiotics like Bifidobacterium. We validated garlic’s prebiotic potential by promoting the growth of Bifidobacterium adolescentis under in vitro culture conditions. Our study highlights the importance of understanding enterotype-specific responses to diet and suggests that garlic may serve as a dietary supplement for modulating gut microbiota and promoting the growth of beneficial probiotics. Full article
(This article belongs to the Special Issue Beneficial Microbes and Gastrointestinal Microbiota: 2nd Edition)
Show Figures

Figure 1

20 pages, 3373 KiB  
Article
Exploring the Role of MicroRNAs in Progesterone and Estrogen Receptor Expression in Endometriosis
by Jing-Xian Hon, Norhazlina Abdul Wahab, Abdul Kadir Abdul Karim, Norfilza Mohd Mokhtar and Mohd Helmy Mokhtar
Biomedicines 2024, 12(10), 2218; https://doi.org/10.3390/biomedicines12102218 (registering DOI) - 28 Sep 2024
Abstract
Background/Objectives: Patients with endometriosis still respond poorly to progestins due to progesterone resistance associated with microRNAs (miRNAs). The aim of this study was to investigate the expression of selected miRNAs, estrogen receptor (ER)α, ERβ, progesterone receptor (PR)-A and PR-B and to determine [...] Read more.
Background/Objectives: Patients with endometriosis still respond poorly to progestins due to progesterone resistance associated with microRNAs (miRNAs). The aim of this study was to investigate the expression of selected miRNAs, estrogen receptor (ER)α, ERβ, progesterone receptor (PR)-A and PR-B and to determine the target genes of upregulated miRNAs in endometriosis. Methods: In this study, 18 controls, 18 eutopic and 18 ectopic samples were analysed. Profiling and validation of miRNAs associated with functions of endometriosis were performed using next-generation sequencing (NGS) and qRT-PCR. At the same time, the expression of ERα, ERβ, PR-A and PR-B was also determined using qRT-PCR. Target prediction was also performed for miR-199a-3p, miR-1-3p and miR-125b-5p using StarBase. Results: In this study, NGS identified seven significantly differentially expressed miRNAs, of which six miRNAs related to the role of endometriosis were selected for validation by qRT-PCR. The expression of miR-199a-3p, miR-1-3p, miR-146a-5p and miR-125b-5p was upregulated in the ectopic group compared to the eutopic group. Meanwhile, ERα and ERβ were significantly differentially expressed in endometriosis compared to the control group. However, the expressions of PR-A and PR-B showed no significant differences between the groups. The predicted target genes for miR-199a-3p, miR-1-3p and miR-125b-5p are SCD, TAOK1, DDIT4, LASP1, CDK6, TAGLN2, G6PD and ELOVL6. Conclusions: Our findings demonstrated that the expressions of ERα and ERβ might be regulated by miRNAs contributing to progesterone resistance, whereas the binding of miRNAs to target genes could also contribute to the pathogenesis of endometriosis. Therefore, miRNAs could be used as potential biomarkers and for targeted therapy in patients with endometriosis. Full article
(This article belongs to the Special Issue MicroRNA and Its Role in Human Health)
Show Figures

Figure 1

19 pages, 4621 KiB  
Article
Mediterranean Diet Effect on the Intestinal Microbiota, Symptoms, and Markers in Patients with Functional Gastrointestinal Disorders
by Elena Garicano Vilar, Sara López Oliva, Bruno F. Penadés, Guerthy Melissa Sánchez Niño, Ana Terrén Lora, Sara Sanz Rojo and Ismael San Mauro Martín
Microorganisms 2024, 12(10), 1969; https://doi.org/10.3390/microorganisms12101969 (registering DOI) - 28 Sep 2024
Abstract
The Mediterranean diet (MD) has beneficial effects on the intestinal microbiota by the promotion of bacteria associated with a healthy gut. However, its impact on intestinal fungi, among others, is still unknown, and how it affects digestive symptoms and different biomarkers in patients [...] Read more.
The Mediterranean diet (MD) has beneficial effects on the intestinal microbiota by the promotion of bacteria associated with a healthy gut. However, its impact on intestinal fungi, among others, is still unknown, and how it affects digestive symptoms and different biomarkers in patients with gastrointestinal (GI) disorders has hardly been explored. The present study evaluated the effect of the MD on gut microbial diversity and structure and intestinal symptoms and biomarkers after 6 weeks of dietary intervention in 46 patients with GI disorders. Dysbiosis in fungal composition and diversity was observed, with a significantly lower abundance of Sordariomycetes, Leotiomycetes, and Orbiliomycetes; a significantly higher abundance of Saccharomycetes; the Chytridiomycota and Mucoromycota phyla were significantly reduced; and the bacterial microbiota remained unchanged. In addition, various GI disorders decreased and associations between stool consistency and intestinal permeability were found with the bacterial genera Alistipes and Roseburia. Thus, the data suggest that MD can alter the fungal intestinal microbiota and improve GI disorders. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

12 pages, 1419 KiB  
Article
Exploring the Spatial Variation in the Microbiota and Bile Acid Metabolism of the Compound Stomach in Intensively Farmed Yaks
by Shichun He, Zaimei Yuan, Sifan Dai, Zibei Wang, Shusheng Zhao, Bin Zhang, Huaming Mao and Dongwang Wu
Microorganisms 2024, 12(10), 1968; https://doi.org/10.3390/microorganisms12101968 (registering DOI) - 28 Sep 2024
Abstract
Yaks are one of the important livestock on the Qinghai–Tibet Plateau, providing abundant dairy and meat products for the local people. The formation of these dairy and meat products mainly relies on the microbiota in their gastrointestinal tract, which digests and metabolizes plant [...] Read more.
Yaks are one of the important livestock on the Qinghai–Tibet Plateau, providing abundant dairy and meat products for the local people. The formation of these dairy and meat products mainly relies on the microbiota in their gastrointestinal tract, which digests and metabolizes plant feed. The yak’s gastrointestinal microbiota is closely related to the health and production performance of the host, but the molecular mechanisms of diet-induced effects in intensively farmed yaks remain to be elucidated. In this study, 40 chyme samples were collected from the four stomach chambers of 10 intensively farmed yaks, and the bacterial diversity and bile acid changes in the rumen (SFRM), reticulum (SFRC), omasum (SFOM), and abomasum (SFAM) were systematically analyzed using 16S rRNA sequencing and bile acid metabolism. Our results showed that the gastrointestinal microbiota mainly distributes in the four-chambered stomach, with the highest microbial diversity in the reticulum. There is a highly negative correlation among the microbiota in the four chambers. The dominant bacterial phyla, Bacteroidota and Firmicutes, were identified, with Rikenellaceae_RC9_gut_group being the dominant genus, which potentially helps maintain short-chain fatty acid levels in the stomach. In contrast, the microbiome within the four stomach chambers synergistically and selectively altered the content and diversity of bile acid metabolites in response to intensive feeding. The results of this study provide new insights into the microbiota and bile acid metabolism functions in the rumen, reticulum, omasum, and abomasum of yaks. This can help uncover the role of gastrointestinal microbiota in yak growth and metabolic regulation, while also providing references for improving the production efficiency and health of ruminants. Full article
19 pages, 2015 KiB  
Article
A Comparison of Growth Performance, Blood Parameters, Rumen Fermentation, and Bacterial Community of Tibetan Sheep When Fattened by Pasture Grazing versus Stall Feeding
by Huiying Ji, Lili Chen, Yi Ma, Abraham Allan Degen, Zhengrong Yuan, Hualong Chen and Jianwei Zhou
Microorganisms 2024, 12(10), 1967; https://doi.org/10.3390/microorganisms12101967 (registering DOI) - 28 Sep 2024
Abstract
Traditionally, Tibetan sheep only graze pastures without any supplementary feed. However, in recent years, feedlots are being used for fattening Tibetan sheep. The present study compared the growth rates, blood parameters, rumen fermentation, and bacterial communities in Tibetan sheep fattened by pasture grazing [...] Read more.
Traditionally, Tibetan sheep only graze pastures without any supplementary feed. However, in recent years, feedlots are being used for fattening Tibetan sheep. The present study compared the growth rates, blood parameters, rumen fermentation, and bacterial communities in Tibetan sheep fattened by pasture grazing (PG) versus those fattened by stall feeding (SF). Twenty 18-month-old Tibetan sheep wethers (42.6 ± 2.11 kg) were divided randomly into PG (n = 10) and SF (n = 10) groups. The PG sheep grazed the grasslands without any supplementary feed, while the SF sheep were offered a commercial total mixed ration (TMR) at a crude protein content of 16.2% DM and an ME of 10.59 MJ/kg. The sheep were on their treatments for 70 days, which included 10 days for adaptation and 60 days for measurements. The average daily gain, white blood cell and lymphocyte counts were greater (p < 0.05), while the platelet count was lower (p < 0.05) in the SF group than in the PG group. The serum glutathione peroxidase activity, and concentrations of total proteins and albumin were greater (p < 0.05), while glucose was lower (p < 0.01) in the PG group compared to the SF group. The concentrations of ruminal ammonia–N and total volatile fatty acids (VFAs) were greater (p < 0.05), while the pH was lower (p < 0.05) in the SF group compared to the PG group. The molar proportion of acetate and the ratio of acetate to propionate were greater (p < 0.01) in the PG sheep than in the SF sheep, but the molar proportion of propionate and iso-VFAs did not differ (p > 0.05) between the groups. Based on the PCoA, the ruminal bacterial communities were distinct between groups, and the alpha diversity was greater (p < 0.001) in the PG sheep than in the SF sheep. The dominant phyla of the rumen bacteria were Firmicutes and Bacteroidetes, while the Firmicutes to Bacteroidetes ratio was greater (p < 0.001) in the SF group than in the PG group. At the genus level, the relative abundance of Ruminococcus was greater (p < 0.05) in the SF group, while the abundances of Prevotella, the Rikenellaceae_RC9_gut_group, Butyrivibrio, and unclassified_f_Lachnospiraceae were greater (p < 0.05) in the PG group. It was concluded that the Tibetan sheep adopted a short-term intensive fattening strategy when stall fed which altered the rumen bacterial community and blood parameters, enhanced rumen fermentation, and, ultimately, improved their average daily gain. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

33 pages, 4976 KiB  
Article
Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling
by Dorsilla A. Katimbwa, Yoonsu Kim, Min Jeong Kim, Minsoo Jeong and Jinkyu Lim
Foods 2024, 13(19), 3102; https://doi.org/10.3390/foods13193102 (registering DOI) - 28 Sep 2024
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring’s acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including [...] Read more.
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring’s acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 606 KiB  
Review
Harnessing the Power of Fermented Tea to Improve Gut Microbiota and Combat Obesity Epidemic
by Ruyi Zhang, Qiling Li, Yuxuan Gu and Wenli Liao
Biology 2024, 13(10), 779; https://doi.org/10.3390/biology13100779 (registering DOI) - 28 Sep 2024
Abstract
The global rise in obesity rates has prompted a thorough evaluation of dietary strategies that may alleviate this metabolic issue. Fermented tea, a beverage rich in polyphenols and catechins, has emerged as a viable therapeutic option for obesity management. This review discusses the [...] Read more.
The global rise in obesity rates has prompted a thorough evaluation of dietary strategies that may alleviate this metabolic issue. Fermented tea, a beverage rich in polyphenols and catechins, has emerged as a viable therapeutic option for obesity management. This review discusses the role of fermented tea in modulating the gut microbiome, a critical factor in energy regulation and obesity. We explore how the bioactive components in fermented tea influence gut health and their implications for metabolic health. Fermented tea may inhibit weight gain and fat accumulation in obese animal models, likely by promoting beneficial bacteria and suppressing harmful species. Changes in the production of short-chain fatty acids and improvements in gut barrier integrity are linked to enhanced insulin sensitivity and reduced inflammatory markers, essential for effective obesity management. However, barriers remain in applying these findings in clinical settings, such as the need for standardized fermentation techniques and accurate dosage assessments. This review underscores the therapeutic potential of fermented tea in obesity treatment and advocates for further research to enhance its integration with public health initiatives. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Obesity)
Show Figures

Figure 1

15 pages, 768 KiB  
Article
Alterations of the Gut Microbiome and TMAO Levels in Patients with Ulcerative Colitis
by Yelena Laryushina, Nadezhda Samoilova-Bedych, Lyudmila Turgunova, Samat Kozhakhmetov, Assel Alina, Maxat Suieubayev and Nurislam Mukhanbetzhanov
J. Clin. Med. 2024, 13(19), 5794; https://doi.org/10.3390/jcm13195794 (registering DOI) - 28 Sep 2024
Abstract
Background: Ulcerative colitis (UC) is an idiopathic and heterogeneous large intestine disease, characterized by chronic mucosa and submucosa inflammation. Alteration of the intestinal microbiome in UC may be responsible for modifications in metabolite production. Aim: To investigate the microbiota status and trimethylamine-N-oxide (TMAO) [...] Read more.
Background: Ulcerative colitis (UC) is an idiopathic and heterogeneous large intestine disease, characterized by chronic mucosa and submucosa inflammation. Alteration of the intestinal microbiome in UC may be responsible for modifications in metabolite production. Aim: To investigate the microbiota status and trimethylamine-N-oxide (TMAO) metabolite levels in patients with UC according to clinical and endoscopic activity. Methods: As part of a grant project AP14871959 from September 2022 to October 2023, 31 patients with UC and 15 healthy volunteers over 18 years at the Clinic of NCJSC “KMU” were assessed for blood TMAO level and metagenomic sequencing of fecal microbiome. Results: A significant depletion of the main representatives of Bacteroides, Parabacteroides, Prevotella; and an increase in the relative abundance of the genera Actinomyces, Klebsiella, Limosilactobacillus, Streptococcus, Escherichia-Shigella were detected in patients with UC. The number of p_Actinobacteria (g_Collinsella) and p_Eubacterium (g_Xylanophilum) representatives with genes encoding TMA-trimethylamine conversion is significantly reduced in UC patients. TMAO levels were significantly lower in UC patients than in healthy individuals (0.233 µmol/L, p = 0.004). TMAO decreased with disease severity and significantly differed between patients with different activities (p = 0.034). Conclusions: The composition of the intestinal microbiome changes and the level of TMAO decreases in patients with UC at different activities. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

17 pages, 2139 KiB  
Article
Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters
by Yuhong Lin, Chufeng He, Jianhui Liu, Hau-Yin Chung, Zhen-Yu Chen and Wing-Tak Wong
Nutrients 2024, 16(19), 3290; https://doi.org/10.3390/nu16193290 (registering DOI) - 28 Sep 2024
Abstract
Background and Aims: Hypercholesterolemia leads to cardiovascular diseases and atherosclerosis. Previous studies have highlighted the crucial role of gut microbiota in alleviating atherosclerosis progression and reducing plasma cholesterol. However, the protective effects of Houttuynia cordata Thunb (HCT), a well-known fishy Chinese herb, against [...] Read more.
Background and Aims: Hypercholesterolemia leads to cardiovascular diseases and atherosclerosis. Previous studies have highlighted the crucial role of gut microbiota in alleviating atherosclerosis progression and reducing plasma cholesterol. However, the protective effects of Houttuynia cordata Thunb (HCT), a well-known fishy Chinese herb, against hypercholesterolemia and vasculopathy remain largely unknown. This study aims to explore the effects of HCT extracts on vascular health and gut microbiota in golden Syrian hamsters with hypercholesterolemia. Methods: The hypercholesterolemia hamster model was established by feeding with a high-cholesterol diet. Aqueous or ethanolic HCT extracts were mixed with diet and concurrently given to hamsters for Six weeks. Plasma lipid profiles were evaluated. Aortas were collected to detect fatty streak areas. Feces were collected to analyze the abundance of microorganisms in the gut microbiota. Results: HCT ethanolic extract treatment remarkedly decreased plasma levels of total cholesterol and high-density lipoprotein cholesterol in hypercholesterolemic hamsters. Notably, both aqueous and ethanolic extracts of HCT reduced atherosclerotic plaques in hamsters fed with a high-cholesterol diet. Strikingly, the effects of HCT ethanolic extract in reducing atherosclerotic plaques are greater than aqueous extract. Furthermore, at the phylum level, the relative abundance of Firmicutes was decreased in hamsters treated with aqueous and ethanolic extracts of HCT. By contrast, the abundance of Bacteroidetes was increased by HCT treatment. At the family level, HCT extract favourably modulated the relative abundance of Porphyromonadaceae and Bacteroidales_S24-7_group. These findings indicate that HCT extracts may facilitate the growth of short-chain fatty acids-producing bacteria to alter gut microbiota composition, contributing to the reduction of plasma lipid levels. Conclusions: This study offers evidence demonstrating the effects of HCT extracts on alleviating atherosclerosis and lowering plasma cholesterol levels in the male hypercholesterolemic hamster model, offering novel insights into the pharmacological effects and promoting the application of HCT. This study highlights the potential of HCT as a dietary supplement to alleviate atherosclerosis, lower plasma cholesterol, and modulate the abundance of microorganisms in gut microbiota. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

12 pages, 1700 KiB  
Review
Increased Cadmium Load, Vitamin D Deficiency, and Elevated FGF23 Levels as Pathophysiological Factors Potentially Linked to the Onset of Acute Lymphoblastic Leukemia: A Review
by Vuk Djulejic, Ana Ivanovski, Ana Cirovic and Aleksandar Cirovic
J. Pers. Med. 2024, 14(10), 1036; https://doi.org/10.3390/jpm14101036 (registering DOI) - 28 Sep 2024
Abstract
The preventability of acute lymphocytic leukemia during childhood is currently receiving great attention, as it is one of the most common cancers in children. Among the known risk factors so far are those affecting the development of gut microbiota, such as a short [...] Read more.
The preventability of acute lymphocytic leukemia during childhood is currently receiving great attention, as it is one of the most common cancers in children. Among the known risk factors so far are those affecting the development of gut microbiota, such as a short duration or absence of breastfeeding, cesarean section, a diet lacking in short-chain fatty acids (SCFAs), the use of antibiotics, absence of infection during infancy, and lack of pets, among other factors. Namely, it has been shown that iron deficiency anemia (IDA) and lack of vitamin D may cause intestinal dysbiosis, while at the same time, both increase the risk of hematological malignancies. The presence of IDA and vitamin D deficiency have been shown to lead to a decreased proportion of Firmicutes in stool, which could, as a consequence, lead to a deficit of butyrate. Moreover, children with IDA have increased blood concentrations of cadmium, which induces systemic inflammation and is linked to the onset of an inflammatory microenvironment in the bone marrow. Finally, IDA and Cd exposure increase fibroblast growth factor 23 (FGF23) blood levels, which in turn suppresses vitamin D synthesis. A lack of vitamin D has been associated with a higher risk of ALL onset. In brief, as presented in this review, there are three independent ways in which IDA increases the risk of acute lymphocytic leukemia (ALL) appearance. These are: intestinal dysbiosis, disruption of vitamin D synthesis, and an increased Cd load, which has been linked to systemic inflammation. All of the aforementioned factors could generate the appearance of a second mutation, such as ETV6/RUNX1 (TEL-AML), leading to mutation homozygosity and the onset of disease. ALL has been observed in both IDA and thalassemia. However, as IDA is the most common type of anemia and the majority of published data pertains to it, we will focus on IDA in this review. Full article
(This article belongs to the Section Mechanisms of Diseases)
Show Figures

Figure 1

Back to TopTop