Sign in to use this feature.

Years

Between: -

Search Results (131)

Search Parameters:
Keywords = hafnium oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2626 KiB  
Article
Improvement of the Stability of Quantum-Dot Light Emitting Diodes Using Inorganic HfOx Hole Transport Layer
by Jung Min Yun, Min Ho Park, Yu Bin Kim, Min Jung Choi, Seunghwan Kim, Yeonjin Yi, Soohyung Park and Seong Jun Kang
Materials 2024, 17(19), 4739; https://doi.org/10.3390/ma17194739 - 27 Sep 2024
Abstract
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used [...] Read more.
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Graphical abstract

12 pages, 9726 KiB  
Article
In Situ Modulation of Oxygen Vacancy Concentration in Hf0.5Zr0.5O2−x Thin Films and the Mechanism of Its Impact on Ferroelectricity
by Shikai Liu, Xingyu Li, Gang Li, Shaoan Yan, Yingfang Zhu, Yujie Wu, Qin Jiang, Yang Zhan and Minghua Tang
Coatings 2024, 14(9), 1121; https://doi.org/10.3390/coatings14091121 - 2 Sep 2024
Viewed by 275
Abstract
Oxygen vacancies play a crucial role in stabilizing the ferroelectric phase in hafnium (Hf) oxide-based thin films and in shaping the evolution of their ferroelectric properties. In this study, we directly manipulated the oxygen vacancy concentration in Hf0.5Zr0.5O2− [...] Read more.
Oxygen vacancies play a crucial role in stabilizing the ferroelectric phase in hafnium (Hf) oxide-based thin films and in shaping the evolution of their ferroelectric properties. In this study, we directly manipulated the oxygen vacancy concentration in Hf0.5Zr0.5O2−x (HZO) ferroelectric thin films in situ using oxygen plasma treatment. We scrutinized the variations in the ferroelectric properties of HZO films across different oxygen vacancy concentrations by integrating the findings from ferroelectric performance tests. Additionally, we elucidated the mechanism underlying the influence of oxygen vacancies on the coercive field and polarization properties of HZO ferroelectric films through the first-principles density functional theory (DFT) calculations. Finally, to study the impact of oxygen vacancies on the practical application of HZO ferroelectric synaptic devices, leveraging the plasticity of the ferroelectric polarization, we constructed a multilayer perceptron (MLP) network. We simulated its recognition accuracy and convergence speed under different oxygen vacancy concentrations in the MNIST recognition task. Full article
Show Figures

Figure 1

10 pages, 2496 KiB  
Article
Effects of Substrate and Annealing Conditions on the Ferroelectric Properties of Non-Doped HfO2 Deposited by RF Plasma Sputter
by Seokwon Lim, Yeonghwan Ahn, Beomho Won, Suwan Lee, Hayoung Park, Mohit Kumar and Hyungtak Seo
Nanomaterials 2024, 14(17), 1386; https://doi.org/10.3390/nano14171386 - 25 Aug 2024
Viewed by 457
Abstract
In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. [...] Read more.
In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. Annealing was performed in a nitrogen atmosphere at temperatures ranging from 400 to 600 °C, and the process lasted anywhere from 1 to 30 min. As a result, it was confirmed that the orthorhombic phase, the main cause of ferroelectricity, was dominant after a post-anneal at 600 °C for 30 min. Additionally, it was observed that interface mixing between hafnium oxide and the substrate may degrade ferroelectricity. Accordingly, the highest remanent polarization, measured at 14.24 μC/cm2, was observed with the Pt electrode. This finding was further corroborated by piezo force microscopy and endurance tests, with the results being significant compared to previously reported values. This analysis demonstrates that optimizing substrate and annealing conditions, rather than doping, can enhance the ferroelectricity of hafnium oxide, laying the foundation for the future development of ferroelectric-based transistors. Full article
Show Figures

Figure 1

14 pages, 3962 KiB  
Article
Optimal Process Design for Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Capacitors: Toward Low-Power Devices with Enhanced Ferroelectric Performance
by Hui Wang, Jiabin Qi, Xinyu Xie, Zongfang Liu, Wenhao Wu and Choonghyun Lee
Electronics 2024, 13(15), 2895; https://doi.org/10.3390/electronics13152895 - 23 Jul 2024
Viewed by 526
Abstract
Ferroelectric hafnium and zirconium oxides have recently garnered significant attention due to their potential applications in in-memory computing. In this study, we present an optimized process design for a wake-up free 15 nm thick Hf0.5Zr0.5O2 (HZO) ferroelectric capacitor [...] Read more.
Ferroelectric hafnium and zirconium oxides have recently garnered significant attention due to their potential applications in in-memory computing. In this study, we present an optimized process design for a wake-up free 15 nm thick Hf0.5Zr0.5O2 (HZO) ferroelectric capacitor by fine-tuning the dual-oxygen process and incorporating oxygen annealing after post-metallization annealing (PMA). The optimized approach resulted in a competitive polarization of 28.6 μC/cm2, consistently exceeding 25 μC/cm2 at 3 V after 2 × 107 cycles, showcasing a current density of 3.2 mA/cm2 at 2 V after 105 cycles. The synergistic effect of oxygen vacancies and grain properties (grain size, phase proportion) enables competitive ferroelectric polarization at lower voltages, while the generation of WOx near the top electrode and increased grain size further ensure the reliability of the HZO ferroelectric capacitor. This work presents innovative perspectives for the development of non-volatile devices characterized by low leakage current and low power consumption. Full article
Show Figures

Figure 1

9 pages, 3014 KiB  
Article
Effects of a Spike-Annealed HfO2 Gate Dielectric Layer on the On-Resistance and Interface Quality of AlGaN/GaN High-Electron-Mobility Transistors
by Gyuhyung Lee, Jeongyong Yang, Min Jae Yeom, Sisung Yoon and Geonwook Yoo
Electronics 2024, 13(14), 2783; https://doi.org/10.3390/electronics13142783 - 15 Jul 2024
Viewed by 593
Abstract
Various high-k dielectrics have been proposed for AlGaN/GaN MOSHEMTs for gate leakage and drain-current collapse suppression. Hafnium oxide (HfO2) is particularly interesting because of its large bandgap, high dielectric constant, and ferroelectricity under specific phase and doping conditions. However, defects and [...] Read more.
Various high-k dielectrics have been proposed for AlGaN/GaN MOSHEMTs for gate leakage and drain-current collapse suppression. Hafnium oxide (HfO2) is particularly interesting because of its large bandgap, high dielectric constant, and ferroelectricity under specific phase and doping conditions. However, defects and surface scattering caused by HfO2 dissimilarity and degraded HfO2/GaN interface quality still leave the challenge of reducing the SS and Ron. In this study, we investigated the effects of the first spike-annealed HfO2 (6 nm) layer, compared with the conventional ALD-HfO2 (6 nm) layer in the HfO2 bilayer gate dielectric structure on AlGaN/GaN HEMTs. Both devices exhibit negligible hysteresis and near-ideal (~60 mV/dec) subthreshold slopes of more than three orders of magnitude. The device with the first annealed HfO2 layer exhibited a reduced Ron with notably less gate bias dependency and enhanced output current. On the other hand, the capacitance–voltage and conductance methods revealed that the border and interface trap densities of the device were inferior to those of the conventional HfO2 layer. The trade-off between enhanced electrical performance and oxide traps is discussed based on these results. Full article
(This article belongs to the Special Issue Challenges, Innovation and Future Perspectives of GaN Technology)
Show Figures

Figure 1

13 pages, 4278 KiB  
Article
Flexible and Disposable Hafnium Nitride Extended Gates Fabricated by Low-Temperature High-Power Impulse Magnetron Sputtering
by Chia-Ming Yang, Chao-Hui Wei, Jia-Yuan Chang and Chao-Sung Lai
Nanomaterials 2024, 14(14), 1191; https://doi.org/10.3390/nano14141191 - 12 Jul 2024
Viewed by 614
Abstract
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied [...] Read more.
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied in biomedical diagnostic and environmental monitoring applications with the advantages of flexible, disposable, cost-effective, and reliable components. Various duty cycle conditions in HiPIMSs were designed to investigate the corresponding sensing performance and material properties including surface morphology and composition. As the duty cycle increased, the grain size of HfN increased. Additionally, X-ray photoelectron spectroscopy (XPS) analysis illustrated the presence of HfOxNy on the deposited HfN surface. Both behaviors could result in a better pH sensing performance based on the theory of the site-binding model. Subsequently, HfN with a 15% duty cycle exhibited excellent pH sensitivity and linearity, with values of 59.3 mV/pH and 99.8%, respectively; its hysteresis width and drift coefficient were −1 mV and 0.5 mV/h, respectively. Furthermore, this pH-sensing performance remained stable even after 2000 repeated bending cycles. These results indicate the potential and feasibility of this HiPIMS-deposited HfN for future wearable chemical applications. Full article
Show Figures

Figure 1

12 pages, 3735 KiB  
Article
Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors
by Alexander Kuznetsov, Andrey Sheshil, Eugene Smolin, Vitaliy Grudtsov, Dmitriy Ryazantsev, Mark Shustinskiy, Tatiana Tikhonova, Irakli Kitiashvili, Valerii Vechorko and Natalia Komarova
Sensors 2024, 24(11), 3681; https://doi.org/10.3390/s24113681 - 6 Jun 2024
Viewed by 701
Abstract
Fabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents [...] Read more.
Fabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents an electrochemical method using complementary metal-oxide semiconductor (CMOS)-compatible ion-sensitive field effect transistors (ISFETs) with hafnium oxide-sensitive surfaces for the detection of α-galactosidase A activity in dried blood spot extracts. The capability of ISFETs to detect the reaction catalyzed by α-galactosidase A was demonstrated. The buffer composition was optimized to provide suitable conditions for both enzyme and ISFET performance. The use of ISFET structures as sensor elements allowed for the label-free detection of enzymatic reactions with melibiose, a natural substrate of α-galactosidase A, instead of a synthetic fluorogenic one. ISFET chips were packaged with printed circuit boards and microfluidic reaction chambers to enable long-term signal measurement using a custom device. The packaged sensors were demonstrated to discriminate between normal and inhibited GLA activity in dried blood spots extracts. The described method offers a promising solution for increasing the widespread distribution of newborn screening of Fabry disease. Full article
(This article belongs to the Special Issue Advances in Electrochemical Sensors for Bioanalysis)
Show Figures

Figure 1

13 pages, 7337 KiB  
Article
Oxidation Resistance of Ir/HfO2 Composite Coating Prepared by Chemical Vapor Deposition: Microstructure and Elemental Migration
by Junyu Zhu, Wenting Li, Hongzhong Cai, Xian Wang, Xingqiang Wang, Yan Wei, Changyi Hu, Xingdong Zhao and Xuxiang Zhang
Coatings 2024, 14(6), 695; https://doi.org/10.3390/coatings14060695 - 1 Jun 2024
Viewed by 407
Abstract
In this study, a HfO2 coating was developed on an Ir matrix using a customized open-tube airflow, cold-wall chemical vapor deposition instrument. The preparation process and structure of the as-prepared coating were investigated to gain insights into its characteristics. The HfO2 [...] Read more.
In this study, a HfO2 coating was developed on an Ir matrix using a customized open-tube airflow, cold-wall chemical vapor deposition instrument. The preparation process and structure of the as-prepared coating were investigated to gain insights into its characteristics. The HfO2 coating effectively prevents direct contact between Ir and O, leading to a reduction in the oxidation rate of Ir. Furthermore, defects such as micropores and cracks generated during sealed oxidation erosion contribute to Ir’s decelerated oxidation failure. The as-prepared HfO2 coating exhibits low thermal conductivity and a high heat radiation rate, reducing the coating’s surface temperature. These characteristics significantly enhance adversity tolerance and increase the working temperature of the coating. Moreover, the as-prepared HfO2 coating can serve as a diffusion barrier, blocking both the direct contact of O with the Ir coating and the diffusion of other elements to the Ir coating. As a result, the rates of diffusion of other elements to the Ir coating are reduced. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

12 pages, 13289 KiB  
Article
Setting Plasma Immersion Ion Implantation of Ar+ Parameters towards Electroforming-Free and Self-Compliance HfO2-Based Memristive Structures
by Olga Permiakova, Sergey Pankratov, Alexandr Isaev, Andrew Miakonkikh, Yuri Chesnokov, Andrey Lomov and Alexander Rogozhin
Nanomaterials 2024, 14(10), 831; https://doi.org/10.3390/nano14100831 - 9 May 2024
Cited by 1 | Viewed by 816
Abstract
Memristive structures are among the most promising options to be components of neuromorphic devices. However, the formation of HfO2-based devices in crossbar arrays requires considerable time since electroforming is a single stochastic operation. In this study, we investigate how Ar+ [...] Read more.
Memristive structures are among the most promising options to be components of neuromorphic devices. However, the formation of HfO2-based devices in crossbar arrays requires considerable time since electroforming is a single stochastic operation. In this study, we investigate how Ar+ plasma immersion ion implantation (PI) affects the Pt/HfO2 (4 nm)/HfOXNY (3 nm)/TaN electroforming voltage. The advantage of PI is the simultaneous and uniform processing of the entire wafer. It is thought that Ar+ implantation causes defects to the oxide matrix, with the majority of the oxygen anions being shifted in the direction of the TaN electrode. We demonstrate that it is feasible to reduce the electroforming voltages from 7.1 V to values less than 3 V by carefully selecting the implantation energy. A considerable decrease in the electroforming voltage was achievable at an implantation energy that provided the dispersion of recoils over the whole thickness of the oxide without significantly affecting the HfOXNY/TaN interface. At the same time, Ar+ PI at higher and lower energies did not produce the same significant decrease in the electroforming voltage. It is also possible to obtain self-compliance of current in the structure during electroforming after PI with energy less than 2 keV. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

10 pages, 1986 KiB  
Article
Uniform Oxide Layer Integration in Amorphous IGZO Thin Film Transistors for Enhanced Multilevel-Cell NAND Memory Performance
by Zeyang Xiang, Kexiang Wang, Jie Lu, Zixuan Wang, Huilin Jin, Ranping Li, Mengrui Shi, Liuxuan Wu, Fuyu Yan and Ran Jiang
Appl. Sci. 2024, 14(6), 2588; https://doi.org/10.3390/app14062588 - 20 Mar 2024
Viewed by 904
Abstract
In this work, the implementation of HfZrO layers for the tunneling, charge trapping, and blocking mechanisms within the device offer benefits in terms of programmability and data retention. This configuration has resulted in a memory device that can achieve a significant difference in [...] Read more.
In this work, the implementation of HfZrO layers for the tunneling, charge trapping, and blocking mechanisms within the device offer benefits in terms of programmability and data retention. This configuration has resulted in a memory device that can achieve a significant difference in threshold voltage of around 2 V per memory level. This difference is crucial for effectively distinguishing between multiple levels of memory in MLC applications. Additionally, the device operates at low programming voltages below 14 V. Furthermore, the device showcases impressive endurance and data retention capabilities, maintaining a large memory window over extended periods and under varying temperature conditions. The advancement in the a-IGZO-based memory device, characterized by its uniform oxide stacking, presents a viable solution to the industry’s requirement for memory storage options that are efficient, dependable, and economical. Full article
Show Figures

Figure 1

11 pages, 3252 KiB  
Article
Wake-Up and Imprint Effects in Hafnium Oxide-Based Ferroelectric Capacitors during Cycling with Different Interval Times
by Yaru Ding, Zeping Weng, Zhangsheng Lan, Chu Yan, Daolin Cai, Yiming Qu and Yi Zhao
Electronics 2024, 13(6), 1021; https://doi.org/10.3390/electronics13061021 - 8 Mar 2024
Cited by 1 | Viewed by 985
Abstract
This work experimentally investigated the wake-up behaviors of hafnium oxide-based ferroelectric capacitors by manipulating the interval time between each characterization cycle. Both Positive-Up–Negative-Down (PUND) and Negative-Down–Positive-Up (NDPU) waveforms were used as the stress and measurement waveforms in the experiments. It was found that [...] Read more.
This work experimentally investigated the wake-up behaviors of hafnium oxide-based ferroelectric capacitors by manipulating the interval time between each characterization cycle. Both Positive-Up–Negative-Down (PUND) and Negative-Down–Positive-Up (NDPU) waveforms were used as the stress and measurement waveforms in the experiments. It was found that the imprint occurs as the total interval time increases to a several-seconds level. However, this only affects the remnant polarization (PR) of ferroelectric capacitors when stressed by NDPU waveforms, since the voltage amplitude saturates under the PUND stress conditions and does not influence the PR. The wake-up behavior has been proved to be caused by the defects redistribution during electrical cycling. Notably, when using PUND waveforms, the change in the interval time can result in different increase rates of PR, indicating the possibility of recovery during the intervals. This recovery leads to a slower wake-up when cycling with a longer interval time. Moreover, it is observed that this PR recovery could reach saturation after several seconds of the interval time. This comprehensive investigation of wake-up and imprint behaviors can provide new insights to evaluate and enhance the reliability of ferroelectric memories. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

11 pages, 3288 KiB  
Article
An Optimized Device Structure with a Highly Stable Process Using Ferroelectric Memory in 3D NAND Flash Memory Applications
by Seonjun Choi, Myounggon Kang, Hong-sik Jung, Yuri Kim and Yun-heub Song
Electronics 2024, 13(5), 889; https://doi.org/10.3390/electronics13050889 - 26 Feb 2024
Viewed by 1356
Abstract
In this paper, we propose an optimized device structure with a highly stable process that addresses threshold voltage shift issues in the String-Select-Line (SSL) and Ground-Select-Line (GSL) gates using ferroelectric memory in 3D NAND flash memory applications. The proposed device utilizes nickel (Ni) [...] Read more.
In this paper, we propose an optimized device structure with a highly stable process that addresses threshold voltage shift issues in the String-Select-Line (SSL) and Ground-Select-Line (GSL) gates using ferroelectric memory in 3D NAND flash memory applications. The proposed device utilizes nickel (Ni) instead of tungsten (W) for the GSL and SSL gates, enabling optimized polarization properties during the annealing process and leveraging the disparity in thermal expansion coefficients. Notably, the difference in thermal expansion coefficient from tungsten (W), employed in other Word Line (WL) gates, allows effective control over polarization properties. To validate the proposed structure, we fabricated and measured a Metal–Ferroelectric–Insulator–Silicon (MFIS) capacitor utilizing Hafnium–Zirconium Oxide (HZO) material. The measurement results indicate that a change in the upper metal layer results in a more than fivefold increase in the variance of polarization characteristics between the WL gates (responsible for the memory function) and the SSL and GSL gates dedicated to channel control. In addition, process simulation was conducted using the same device structure, confirming the application of tensile stress to the HZO thin film in the case of a W electrode and compressive stress in the case of a Ni electrode. Furthermore, applying this controlled polarization characteristic parameter to the 3D NAND flash memory structure revealed a reduction in the threshold voltage shift of the control gate from a previous change of 2.6 V or more to 0.05 V, facilitating stable control. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

12 pages, 3805 KiB  
Article
Dark Current Reduction and Performance Improvements in Graphene/Silicon Heterojunction Photodetectors Obtained Using a Non-Stoichiometric HfOx Thin Oxide Layer
by Tao Qu, Jibin Fan and Xing Wei
Nanomaterials 2024, 14(5), 419; https://doi.org/10.3390/nano14050419 - 25 Feb 2024
Viewed by 1067
Abstract
Graphene/silicon heterojunction photodetectors suffer from a high dark current due to the high surface states and low barrier height at the interface, which limits their application. In this study, we introduce an HfOx interfacial layer via magnetron sputtering to address this issue. [...] Read more.
Graphene/silicon heterojunction photodetectors suffer from a high dark current due to the high surface states and low barrier height at the interface, which limits their application. In this study, we introduce an HfOx interfacial layer via magnetron sputtering to address this issue. With this new structure, the dark current is reduced by six times under a bias voltage of −2 V. Under 460 nm illumination, the responsivity is 0.228A/W, the detectivity is 1.15 × 1011 cmHz1/2W−1, and the noise equivalent power is 8.75 × 10−5 pW/Hz1/2, demonstrating an excellent weak light detection capability. Additionally, the oxygen vacancies in the HfOx interfacial layer provide a conductive channel for charge carriers, resulting in a 2.03-fold increase in photocurrent and an external quantum efficiency of 76.5%. The photodetector maintains good photoresponse ability at a low bias voltage. This work showcases the outstanding performance of HfOx films as interfacial layer materials and provides a new solution for high-performance photodetectors, as well as a new path to improve the photovoltaic conversion efficiency of solar cells. Full article
Show Figures

Figure 1

14 pages, 5120 KiB  
Article
Impact of Europium and Niobium Doping on Hafnium Oxide (HfO2): Comparative Analysis of Sol–Gel and Combustion Synthesis Methods
by Katrina Laganovska, Virginija Vitola, Ernests Einbergs, Ivita Bite, Aleksejs Zolotarjovs, Madara Leimane, Gatis Tunens and Krisjanis Smits
Ceramics 2024, 7(1), 15-28; https://doi.org/10.3390/ceramics7010002 - 24 Dec 2023
Viewed by 1862
Abstract
This study compares HfO2 ceramics synthesized using sol–gel and combustion methods, emphasizing the impact of the method of synthesis on the resulting properties of the material. The research findings illustrate morphological differences between sol–gel and combustion-derived HfO2. While sol–gel samples [...] Read more.
This study compares HfO2 ceramics synthesized using sol–gel and combustion methods, emphasizing the impact of the method of synthesis on the resulting properties of the material. The research findings illustrate morphological differences between sol–gel and combustion-derived HfO2. While sol–gel samples displayed irregular nanoparticles with pronounced boundaries, combustion samples revealed more homogeneous structures with particles tending towards coalescence. It was discerned that Eu3+ doping induced oxygen vacancies, stabilizing the tetragonal phase, while subsequent doping with Nb5+ significantly reduced these vacancies, which was also observed in photoluminescence analysis. Furthermore, combustion synthesis left fewer organic residues, with urea presence during synthesis contributing to residual organic components in the material. XPS analysis was used to evaluate the presence of oxygen-deficient hafnia sub-oxide in the samples. The study underscores the important role of tailored synthesis methods in optimizing the properties and applications of HfO2. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

0 pages, 1611 KiB  
Article
Chemisorption and Surface Reaction of Hafnium Precursors on the Hydroxylated Si(100) Surface
by Truong Ba Tai, Jonghun Lim and Hyeyoung Shin
Coatings 2023, 13(12), 2094; https://doi.org/10.3390/coatings13122094 - 16 Dec 2023
Cited by 1 | Viewed by 1417
Abstract
Hafnium oxide (HfO2) is widely recognized as one of the most promising high-k dielectric materials due to its remarkable properties such as high permittivity, wide band gap, and excellent thermal and chemical stability. The atomic layer deposition (ALD) of HfO [...] Read more.
Hafnium oxide (HfO2) is widely recognized as one of the most promising high-k dielectric materials due to its remarkable properties such as high permittivity, wide band gap, and excellent thermal and chemical stability. The atomic layer deposition (ALD) of HfO2 has attracted significant attention in recent decades since it enables uniform and conformal deposition of HfO2 thin films on various substrates. In this study, we examined the initial surface reactions of a series of homoleptic hafnium precursors on hydroxylated Si(100) surfaces using density functional theory calculations. Our theoretical findings align with previous experimental studies, indicating that hafnium amides exhibit higher reactivity compared to other precursors such as hafnium alkoxides and hafnium halides in surface reactions. Interestingly, we found that the chemisorption and reactivity of hafnium precursors are considerably affected by their thermal stability and size. For alkoxide precursors, which have similar thermal stabilities, the size of alkoxide ligands is an important factor in determining their reactivity. Conversely, the reactivity of hafnium halides, which have ligands of similar sizes, is primarily governed by their thermal stability. These insights are valuable for understanding the surface reaction mechanisms of precursors on hydroxylated Si(100) surfaces and for designing new materials, particularly heteroleptic precursors, in future research. Full article
Show Figures

Figure 1

Back to TopTop