Sign in to use this feature.

Years

Between: -

Search Results (4,992)

Search Parameters:
Keywords = high-fat diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4060 KiB  
Article
The Influence of Strain and Sex on High Fat Diet-Associated Alterations of Dopamine Neurochemistry in Mice
by Kristen A. Hagarty-Waite, Heather A. Emmons, Steve C. Fordahl and Keith M. Erikson
Nutrients 2024, 16(19), 3301; https://doi.org/10.3390/nu16193301 (registering DOI) - 29 Sep 2024
Abstract
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly [...] Read more.
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly assigned to a control-fat diet (CFD) containing 10% kcal fat/g or a mineral-matched HFD containing 60% kcal fat/g for 12 weeks. Results: Intraperitoneal glucose tolerance testing (IPGTT) and elevated plus maze experiments (EPM) confirmed that an HFD produced marked blunting of glucose clearance and increased anxiety-like behavior, respectively, in male and female B6J mice. Electrically evoked dopamine release in the striatum and reuptake in the nucleus accumbens (NAc), as measured by ex vivo fast scan cyclic voltammetry, was reduced for HFD-fed B6J females. Impairment in glucose metabolism explained HFD-induced changes in dopamine neurochemistry for B6J males and, to a lesser extent, Balb/c males. The relative expressions of protein markers associated with the activation of microglia, ionized calcium binding adaptor molecule (Iba1) and cluster of differentiation molecule 11b (CD11b) in the striatum were increased due to an HFD for B6J males but were unchanged or decreased amongst HFD-fed Balb/c mice. Conclusions: Our findings demonstrate that strain and sex influence the insulin- and microglia-dependent mechanisms of alterations to dopamine neurochemistry and associated behavior due to an HFD. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

16 pages, 2018 KiB  
Article
Effect of Isoflavone on Muscle Atrophy in Ovariectomized Mice
by Sayaka Kawai, Takuro Okamura, Chihiro Munekawa, Yuka Hasegawa, Ayaka Kobayashi, Hanako Nakajima, Saori Majima, Naoko Nakanishi, Ryoichi Sasano, Masahide Hamaguchi and Michiaki Fukui
Nutrients 2024, 16(19), 3295; https://doi.org/10.3390/nu16193295 (registering DOI) - 28 Sep 2024
Abstract
Background: Sarcopenia, characterized by muscle mass decline due to aging or other causes, is exacerbated by decreased estrogen levels after menopause in women. Isoflavones, a class of flavonoids acting on estrogen receptors, may have beneficial effects on metabolic disorders. We examined these effects [...] Read more.
Background: Sarcopenia, characterized by muscle mass decline due to aging or other causes, is exacerbated by decreased estrogen levels after menopause in women. Isoflavones, a class of flavonoids acting on estrogen receptors, may have beneficial effects on metabolic disorders. We examined these effects in ovariectomized mice fed a high-fat, high-sucrose diet (HFHSD). Methods: At 7 weeks old, female C57BL6/J mice (18–20 g, n = 12) underwent bilateral ovariectomy (OVX), and were then fed a high-fat, high-sucrose diet starting at 8 weeks of age. Half of the mice received isoflavone water (0.1%). Metabolic analyses, including glucose and insulin tolerance tests, were conducted. Muscle analysis involved grip strength assays, next-generation sequencing, quantitative RT–PCR, and western blotting of skeletal muscle after euthanizing the mice at 14 weeks old. Additionally, 16S rRNA gene sequence analysis of the gut microbiota was performed. Results: The results demonstrated that isoflavone administration did not affect body weight, glucose tolerance, or lipid metabolism. In contrast, isoflavone-treated mice had higher grip strength. Gene expression analysis of the soleus muscle revealed decreased Trim63 expression, and western blotting showed inactivation of muscle-specific RING finger protein 1 in isoflavone-treated mice. Gut microbiota analysis indicated higher Bacteroidetes and lower Firmicutes abundance in the isoflavone group, along with increased microbiota diversity. Gene sets related to TNF-α signaling via NF-κB and unfolded protein response were negatively associated with isoflavones. Conclusions: Isoflavone intake alters gut microbiota and increases muscle strength, suggesting a potential role in improving sarcopenia in menopausal women. Full article
(This article belongs to the Special Issue Exercise, Diet and Type 2 Diabetes)
Show Figures

Figure 1

18 pages, 25736 KiB  
Article
Dipsacoside B Attenuates Atherosclerosis by Promoting Autophagy to Inhibit Macrophage Lipid Accumulation
by Wenjuan Quan, Taoli Sun, Bo Hu, Quanye Luo, Yancheng Zhong, Wen Chen and Qinhui Tuo
Biomolecules 2024, 14(10), 1226; https://doi.org/10.3390/biom14101226 (registering DOI) - 27 Sep 2024
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and foam cell formation in the arterial wall. Promoting macrophage autophagy has emerged as a promising therapeutic strategy against atherosclerosis. Dipsacoside B (DB) is an oleanane-type pentacyclic triterpenoid saponin extracted from Lonicerae flos [...] Read more.
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and foam cell formation in the arterial wall. Promoting macrophage autophagy has emerged as a promising therapeutic strategy against atherosclerosis. Dipsacoside B (DB) is an oleanane-type pentacyclic triterpenoid saponin extracted from Lonicerae flos with potential anti-atherosclerotic properties. In this study, we investigated the effects of DB on atherosclerosis progression in ApoE−/− mice fed a high-fat diet and explored the underlying mechanisms in oxidized low-density lipoprotein (ox-LDL)-induced foam cells. DB treatment significantly reduced atherosclerotic lesion size, improved plaque stability, and regulated lipid metabolism without impairing liver and kidney function in ApoE−/− mice. In vitro studies revealed that DB dose-dependently inhibited ox-LDL internalization and intracellular lipid accumulation in RAW264.7 macrophages. Mechanistically, DB induced autophagy, as evidenced by increased autophagosome formation and upregulated expression of autophagy markers LC3-II and p62 both in vivo and in vitro. Inhibition of autophagy by chloroquine abolished the antiatherosclerotic and pro-autophagic effects of DB. Furthermore, DB treatment increased LC3-II and p62 mRNA levels, suggesting transcriptional regulation of autophagy. Collectively, our findings demonstrate that DB exerts anti-atherosclerotic effects by inhibiting foam cell formation via autophagy induction, providing new insights into the pharmacological actions of DB and its potential as a therapeutic agent against atherosclerosis. Full article
Show Figures

Figure 1

16 pages, 8121 KiB  
Article
Mulberry Twig Alkaloids Improved the Progression of Metabolic-Associated Fatty Liver Disease in High-Fat Diet-Induced Obese Mice by Regulating the PGC1α/PPARα and KEAP1/NRF2 Pathways
by Mengqing Zhang, Chengcheng Guo, Zonglin Li, Xiaoling Cai, Xin Wen, Fang Lv, Chu Lin and Linong Ji
Pharmaceuticals 2024, 17(10), 1287; https://doi.org/10.3390/ph17101287 - 27 Sep 2024
Abstract
Background/Objectives: Metabolic-associated fatty liver disease (MAFLD) is one of the most common liver disorders associated with obesity and metabolic syndrome, and poses a significant global health burden with limited effective treatments. The aim of this study was to assess the protective effects [...] Read more.
Background/Objectives: Metabolic-associated fatty liver disease (MAFLD) is one of the most common liver disorders associated with obesity and metabolic syndrome, and poses a significant global health burden with limited effective treatments. The aim of this study was to assess the protective effects of mulberry twig alkaloids (SZ-A) on MAFLD and to further investigate the underlying mechanisms including the specific targets or pathways. Methods: Diet-induced obesity (DIO) and normal mouse models were established by feeding C57Bl/6J mice with a high-fat diet (HFD) or common diet for 12 weeks. SZ-A, dapagliflozin, and placebo were administered to corresponding mouse groups for 8 weeks. Data of fasting blood glucose, glucose tolerance, insulin tolerance, and the body weight of mice were collected at the baseline and termination of the experiment. Serum liver enzymes and lipids were measured by ELISA. Western blotting, qPCR, and pathological section staining were implemented to evaluate the degrees of liver steatosis, fibrosis, and oxidative stress in mice. Results: In DIO mouse models, high-dose SZ-A (800 mg/kg/d) treatment significantly inhibited HFD-induced weight gain, improved insulin tolerance, and reduced serum alanine aminotransferase, total cholesterol, and triglyceride levels compared with placebo. In DIO mice, SZ-A could alleviate the pathological changes of hepatic steatosis and fibrosis compared with placebo. Lipid catabolism and antioxidant stress-related proteins were significantly increased in the livers of the high-dose SZ-A group (p < 0.05). Inhibition of PGC1α could inhibit the function of SZ-A to enhance lipid metabolism in hepatocytes. PGC1α might interact with NRF2 to exert MAFLD-remedying effects. Conclusions: By regulating the expression of PGC1α and its interacting KEAP1/NRF2 pathway in mouse liver cells, SZ-A played important roles in regulating lipid metabolism, inhibiting oxidative stress, and postponing liver fibrosis in mice with MAFLD. Full article
(This article belongs to the Special Issue Natural Products in Health Promotion and Disease Prevention 2024)
Show Figures

Graphical abstract

16 pages, 2088 KiB  
Article
Mesenchymal Stem Cell-Derived Exosomes Attenuate Hepatic Steatosis and Insulin Resistance in Diet-Induced Obese Mice by Activating the FGF21-Adiponectin Axis
by Bobae Kim, Rwubuzizi Ronaldo, Beet-Na Kweon, Solhee Yoon, Yein Park, Jae-Hyun Baek, Jung Min Lee and Chang-Kee Hyun
Int. J. Mol. Sci. 2024, 25(19), 10447; https://doi.org/10.3390/ijms251910447 - 27 Sep 2024
Abstract
Exosomes derived from mesenchymal stem cells have shown promise in treating metabolic disorders, yet their specific mechanisms remain largely unclear. This study investigates the protective effects of exosomes from human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs) against adiposity and insulin resistance [...] Read more.
Exosomes derived from mesenchymal stem cells have shown promise in treating metabolic disorders, yet their specific mechanisms remain largely unclear. This study investigates the protective effects of exosomes from human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs) against adiposity and insulin resistance in high-fat diet (HFD)-induced obese mice. HFD-fed mice treated with hWJMSC-derived exosomes demonstrated improved gut barrier integrity, which restored immune balance in the liver and adipose tissues by reducing macrophage infiltration and pro-inflammatory cytokine expression. Furthermore, these exosomes normalized lipid metabolism including lipid oxidation and lipogenesis, which alleviate lipotoxicity-induced endoplasmic reticulum (ER) stress, thereby decreasing fat accumulation and chronic tissue inflammation in hepatic and adipose tissues. Notably, hWJMSC-derived exosomes also promoted browning and thermogenic capacity of adipose tissues, which was linked to reduced fibroblast growth factor 21 (FGF21) resistance and increased adiponectin production. This process activated the AMPK-SIRT1-PGC-1α pathway, highlighting the role of the FGF21–adiponectin axis. Our findings elucidate the molecular mechanisms through which hWJMSC-derived exosomes counteract HFD-induced metabolic dysfunctions, supporting their potential as therapeutic agents for metabolic disorders. Full article
Show Figures

Figure 1

13 pages, 1484 KiB  
Systematic Review
The Efficacy of Ketogenic Diets (Low Carbohydrate; High Fat) as a Potential Nutritional Intervention for Lipedema: A Systematic Review and Meta-Analysis
by Alexandre Campos Moraes Amato, Juliana Lelis Spirandeli Amato and Daniel Augusto Benitti
Nutrients 2024, 16(19), 3276; https://doi.org/10.3390/nu16193276 - 27 Sep 2024
Abstract
Background: Lipedema is a frequently misdiagnosed condition in women, often mistaken for obesity, which significantly deteriorates both quality of life and physical health. Recognizing the necessity for holistic treatment strategies, research has increasingly supported the integration of specific dietary approaches, particularly ketogenic diets [...] Read more.
Background: Lipedema is a frequently misdiagnosed condition in women, often mistaken for obesity, which significantly deteriorates both quality of life and physical health. Recognizing the necessity for holistic treatment strategies, research has increasingly supported the integration of specific dietary approaches, particularly ketogenic diets focusing on low-carbohydrate and high-fat intake. Objectives: to evaluate the impact of ketogenic diets on women with lipedema through a systematic review and meta-analysis. Methods: A systematic review and meta-analysis were conducted by reviewing published, peer-reviewed studies addressing the implications of a low-carbohydrate, high-fat (LCHF) ketogenic diet in managing lipedema following comprehensive scrutiny of digital medical databases, such as PubMed, PubMed Central, Science Direct, and the Web of Science. This research was governed by specified parameters, including an established search string composed of search terms and an eligibility criterion (PICO) as denoted by the principal authors. Statistical analysis was carried out using RevMan 5.4.1 software with the Newcastle–Ottawa Scale utilized for quality appraisal of the included studies. Results: Seven studies reporting statistical outcomes were included in the systematic review and meta-analysis following a rigorous quality appraisal and data identification process. Three hundred and twenty-nine female participants were diagnosed with lipedema and treated using a low-carbohydrate, high-fat diet. Data analysis identified the high-fat diet with a mean study duration of 15.85 weeks. Mean Differences (MDs) on changes pre- and post-intervention showed significant reductions in BMI and total body weight [4.23 (95% CI 2.49, 5.97) p < 0.00001 and 7.94 (95% CI 5.45, 10.43) p < 0.00001 for BMI and body weight, respectively]. Other anthropometric measurements, such as changes in waist/hip circumferences and waist/hip ratios, showed a significant reduction in these parameters, with an MD of 8.05 (95% CI 4.66, 11.44) p < 0.00001 and an MD of 6.67 (95% CI 3.35, 9.99) p < 0.0001 for changes in waist and hip circumferences from baseline, respectively. Lastly, changes in pain sensitivity were statistically significant post-intervention [MD 1.12 (95% CI, 0.44, 1.79) p = 0.001]. All studies scored fair on the Newcastle–Ottawa Scale. Conclusions: despite the limited studies and low number of study participants, the review observed a significant reduction in anthropometric and body composition metrics, indicating a potentially beneficial association between LCHF ketogenic diets and lipedema management. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

19 pages, 6676 KiB  
Article
Isorhamnetin in Quinoa Whole-Grain Flavonoids Intervenes in Non-Alcoholic Fatty Liver Disease by Modulating Bile Acid Metabolism through Regulation of FXR Expression
by Xiaoqin La, Zhaoyan Zhang, Cunli Dong, Hanqing Li, Xiaoting He, Yurui Kang, Changxin Wu and Zhuoyu Li
Foods 2024, 13(19), 3076; https://doi.org/10.3390/foods13193076 - 26 Sep 2024
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a severe hepatic health threat with no effective treatment. Based on the results that Chenopodium quinoa Willd. flavonoids eluted with 30% ethanol (CQWF30) can effectively alleviate NAFLD, this study employed ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC-ESI-MS/MS) [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a severe hepatic health threat with no effective treatment. Based on the results that Chenopodium quinoa Willd. flavonoids eluted with 30% ethanol (CQWF30) can effectively alleviate NAFLD, this study employed ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC-ESI-MS/MS) to analyze the components of CQWF30., and screened for flavonoids with potential NAFLD-mitigating effects through network pharmacology. In vitro models using HepG2 and BEL-7402 cell lines induced with free fatty acid (FFA) showed that isorhamnetin administration reduced intracellular lipid deposition and reversed elevated triglyceride (TG) and total cholesterol (T-CHO) levels. In vivo experiments in high-fat diet (HFD) mice demonstrated that isorhamnetin significantly lowered serum and liver fat content, mitigated liver damage, and modulated bile acid metabolism by upregulating FXR and BSEP and downregulating SLCO1B3. Consequently, isorhamnetin shows promise as a treatment for NAFLD due to its lipid-lowering and hepatoprotective activities. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

13 pages, 2077 KiB  
Article
EZH2-Mediated H3K27 Trimethylation in the Liver of Mice Is an Early Epigenetic Event Induced by High-Fat Diet Exposure
by Giulia Pinton, Mattia Perucca, Valentina Gigliotti, Elena Mantovani, Nausicaa Clemente, Justyna Malecka, Gabriela Chrostek, Giulia Dematteis, Dmitry Lim, Laura Moro and Fausto Chiazza
Nutrients 2024, 16(19), 3260; https://doi.org/10.3390/nu16193260 - 26 Sep 2024
Abstract
Background/Objectives: Methyltransferase EZH2-mediated H3K27me3 is involved in liver inflammation and fibrosis, but its role in hepatic metabolic derangements is not yet clearly defined. We investigated if a high-fat diet (HFD) induced early changes in EZH2 expression and H3K27 me3 in the liver of [...] Read more.
Background/Objectives: Methyltransferase EZH2-mediated H3K27me3 is involved in liver inflammation and fibrosis, but its role in hepatic metabolic derangements is not yet clearly defined. We investigated if a high-fat diet (HFD) induced early changes in EZH2 expression and H3K27 me3 in the liver of mice. Methods: Five-week-old mice were fed an HFD or a low-fat diet (Control) for 2 weeks (2 W) or 8 weeks (8 W). Body weight was recorded weekly. Glycemia and oral glucose tolerance were assessed at baseline and after 2 W–8 W. Finally, livers were collected for further analysis. Results: As expected, mice that received 8 W HFD showed an increase in body weight, glycemia, and liver steatosis and an impairment in glucose tolerance; no alterations were observed in 2 W HFD mice. Eight weeks of HFD caused hepatic EZH2 nuclear localization and increased H3 K27me3; surprisingly, the same alterations occurred in 2 W HFD mice livers, even before overweight onset. We demonstrated that selective EZH2 inhibition reduced H3K27me3 and counteracted lipid accumulation in HUH-7 cells upon palmitic acid treatment. Conclusions: In conclusion, we point to EZH2/H3K27me3 as an early epigenetic event occurring in fatty-acid-challenged livers both in vivo and in vitro, thus establishing EZH2 as a potential pharmacological target for metabolic derangements. Full article
(This article belongs to the Special Issue Dietary Supplements in Human Health and Disease)
Show Figures

Figure 1

22 pages, 4710 KiB  
Article
New Application of an Old Drug: Anti-Diabetic Properties of Phloroglucinol
by Krzysztof Drygalski, Mateusz Maciejczyk, Urszula Miksza, Andrzej Ustymowicz, Joanna Godzień, Angelika Buczyńska, Andrzej Chomentowski, Iga Walczak, Karolina Pietrowska, Julia Siemińska, Cezary Pawlukianiec, Przemysław Czajkowski, Joanna Fiedorczuk, Monika Moroz, Beata Modzelewska, Anna Zalewska, Barbara Kutryb-Zając, Tomasz Kleszczewski, Michał Ciborowski, Hady Razak Hady, Marc Foretz and Edyta Adamska-Patrunoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2024, 25(19), 10291; https://doi.org/10.3390/ijms251910291 - 24 Sep 2024
Abstract
Phloroglucinol (PHG), an analgesic and spasmolytic drug, shows promise in preventing high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. In Wistar rats, 10 weeks of PHG treatment did not prevent HFD-induced weight gain but significantly mitigated fasting hyperglycemia, impaired insulin responses, [...] Read more.
Phloroglucinol (PHG), an analgesic and spasmolytic drug, shows promise in preventing high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. In Wistar rats, 10 weeks of PHG treatment did not prevent HFD-induced weight gain but significantly mitigated fasting hyperglycemia, impaired insulin responses, and liver steatosis. This protective effect was not linked to hepatic lipogenesis or AMP-activated protein kinase (AMPK) activation. Instead, PHG improved mitochondrial function by reducing oxidative stress, enhancing ATP production, and increasing anti-oxidant enzyme activity. PHG also relaxed gastric smooth muscles via potassium channel activation and nitric oxide (NO) signaling, potentially delaying gastric emptying. A pilot intervention in pre-diabetic men confirmed PHG’s efficacy in improving postprandial glycemic control and altering lipid metabolism. These findings suggest PHG as a potential therapeutic for NAFLD and insulin resistance, acting through mechanisms involving mitochondrial protection, anti-oxidant activity, and gastric motility modulation. Further clinical evaluation is warranted to explore PHG’s full therapeutic potential. Full article
(This article belongs to the Special Issue Molecular Therapeutics for Diabetes and Related Complications)
Show Figures

Graphical abstract

15 pages, 3493 KiB  
Article
Ascochlorin Attenuates the Early Stage of Adipogenesis via the Wnt/β-Catenin Pathway and Inhibits High-Fat-Diet-Induced Obesity in Mice
by Mi-Hee Yu, Yun-Jeong Jeong, Sung Wook Son, So Yoon Kwon, Kwon-Ho Song, Ho-Sang Son, Eon-Ju Jeon and Young-Chae Chang
Int. J. Mol. Sci. 2024, 25(18), 10226; https://doi.org/10.3390/ijms251810226 - 23 Sep 2024
Abstract
This study investigated the effects of ascochlorin (ASC), a natural compound derived from the fungus Ascochyta viciae, on adipogenesis and obesity. We determined the effects of ASC on 3T3-L1 preadipocytes and whether it ameliorated to mitigate high-fat diet (HFD)-induced obesity in C57BL/6J mice. [...] Read more.
This study investigated the effects of ascochlorin (ASC), a natural compound derived from the fungus Ascochyta viciae, on adipogenesis and obesity. We determined the effects of ASC on 3T3-L1 preadipocytes and whether it ameliorated to mitigate high-fat diet (HFD)-induced obesity in C57BL/6J mice. We found that ASC significantly inhibited the differentiation of preadipocytes by modulating the Wnt/β-catenin signaling pathway, a key regulator of adipogenic processes. Treatment with ASC not only reduced the mRNA and protein expression of key adipogenic transcription factors such as C/EBPα and PPARγ, but also reduced lipid accumulation both in vitro and in vivo. In addition, treatment HFD-fed mice with ASC significantly reduced their weight gain and adiposity vs. control mice. These results suggest that ASC has considerable potential as a therapeutic agent for obesity, owing to its dual action of inhibiting adipocyte differentiation and reducing lipid accumulation. Thus, ASC represents a promising candidate as a natural anti-obesity agent. Full article
Show Figures

Figure 1

12 pages, 2376 KiB  
Article
The Herbal Blend of Sphaeranthus indicus and Garcinia mangostana Reduces Adiposity in High-Fat Diet Obese Mice
by Sumin Kang, Hayoon Kim, Chaeyoung Bang, Jung Hyeon Park and Gwang-woong Go
Foods 2024, 13(18), 3013; https://doi.org/10.3390/foods13183013 - 23 Sep 2024
Abstract
Obesity is swiftly becoming a global epidemic, leading to numerous metabolic disorders and substantial socio-economic burdens. Investigating natural bioactive compounds is crucial to support the use of traditional anti-obesity medications while mitigating the adverse effects. This study posited that a combination of Sphaeranthus [...] Read more.
Obesity is swiftly becoming a global epidemic, leading to numerous metabolic disorders and substantial socio-economic burdens. Investigating natural bioactive compounds is crucial to support the use of traditional anti-obesity medications while mitigating the adverse effects. This study posited that a combination of Sphaeranthus indicus and Garcinia mangostana (Meratrim) could prevent fat accumulation in obese mice. We used 4-week-old C57BL/6NTac mice, dividing them into six groups: (1) normal diet (ND); (2) high-fat diet (HFD, 45% kcal from fat); (3–5) Meratrim150, Meratrim300, and Meratrim450 (HFD with 150, 300, and 450 mg/kg bw of Meratrim); and (6) Metformin (HFD with 150 mg/kg bw of metformin). Meratrim was administered orally each day for 20 weeks. The group receiving 450 mg/kg of Meratrim showed a significant reduction in body weight and fat mass without changes in food consumption. The Meratrim450 group had markedly lower triglyceride levels in both serum and liver. Importantly, Meratrim-supplemented mice improved lipid homeostasis by inhibiting hepatic de novo lipogenesis and activating energy catabolic pathways such as non-shivering thermogenesis in brown adipose tissue. Our results suggest that the herbal mixture of Sphaeranthus indicus and Garcinia mangostana (Meratrim) is a promising natural anti-obesity agent, owing to its efficacy in reducing body fat and enhancing lipid homeostasis. Full article
Show Figures

Figure 1

20 pages, 3035 KiB  
Article
Contrasting Effects of an Atherogenic Diet and High-Protein/Unsaturated Fatty Acids Diet on the Accelerated Aging Mouse Model SAMP8 Phenotype
by Jesús Llanquinao, Claudia Jara, Daniela Cortés-Díaz, Bredford Kerr and Cheril Tapia-Rojas
Neurol. Int. 2024, 16(5), 1066-1085; https://doi.org/10.3390/neurolint16050080 - 23 Sep 2024
Abstract
Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, [...] Read more.
Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, which could impact the age-related phenotype. Methods: We studied two diets with low-carbohydrate and high-fat compositions, differing in the amount of protein and the fat type disposable—the atherogenic diet Cocoa (high protein/high saturated fat/high cholesterol) and the South Beach diet (very high-protein/high-unsaturated fat)—on oxidative stress, mitochondrial state, and hippocampus-dependent memory in 3-month-old Senescence-Accelerated Mouse Model (SAMP8) seed over 3 months to determine their pro- or anti-aging effects. Results: Despite its bad reputation, the Cocoa diet reduces the reactive oxygen species (ROS) content without impacting the energy state and hippocampus-dependent spatial acuity. In contrast to the beneficial impact proposed for the South Beach diet, it induced a pro-aging phenotype, increasing oxidative damage and the levels of NR2B subunit of the NMDA, impairing energy and spatial acuity. Surprisingly, despite the negative changes observed with both diets, this led to subtle memory impairment, suggesting the activation of compensatory mechanisms preventing more severe cognitive decline. Conclusions: Our results demonstrated that diets usually considered good could be detrimental to the onset of aging. Also, probably due to the brain plasticity of non-aged animals, they compensate for the damage, preventing a more aggravated phenotype. Nevertheless, these silent changes could predispose or increase the risk of suffering pathologies at advanced age. Full article
Show Figures

Graphical abstract

15 pages, 3338 KiB  
Article
Alleviation of Lipid Disorder and Liver Damage in High-Fat Diet-Induced Obese Mice by Selenium-Enriched Cardamine violifolia with Cadmium Accumulation
by Junying Zhu, Qingqing Lv, Fengna Li, Ping Xu, Ziyu Han, Aolin Yang, Zhan Shi, Chao Wang, Jie Jiang, Yunfen Zhu, Xiaofei Chen, Lvhui Sun, Xin Gen Lei and Ji-Chang Zhou
Nutrients 2024, 16(18), 3208; https://doi.org/10.3390/nu16183208 - 22 Sep 2024
Abstract
Background/Objectives: As a hyperaccumulator of selenium (Se), Cardamine violifolia (Cv) and its peptide extract could ameliorate the negative effects of a high-fat diet (HFD). However, the effects of the coaccumulation of cadmium (Cd) in Se-enriched Cv (Cv2) and the [...] Read more.
Background/Objectives: As a hyperaccumulator of selenium (Se), Cardamine violifolia (Cv) and its peptide extract could ameliorate the negative effects of a high-fat diet (HFD). However, the effects of the coaccumulation of cadmium (Cd) in Se-enriched Cv (Cv2) and the potential confounding effect on the roles of enriched Se remain unknown. We aimed to investigate whether Cv2 could alleviate HFD-induced lipid disorder and liver damage. Methods: Three groups of 31-week-old female mice were fed for 41 weeks (n = 10–12) with a control Cv-supplemented diet (Cv1D, 0.15 mg Se/kg, 30 µg Cd/kg, and 10% fat calories), a control Cv-supplemented HFD (Cv1HFD, 45% fat calories), and a Cv2-supplemented HFD (Cv2HFD, 1.5 mg Se/kg, 0.29 mg Cd/kg, and 45% fat calories). Liver and serum were collected to determine the element concentrations, markers of liver injury and lipid disorder, and mRNA and/or protein expression of lipid metabolism factors, heavy metal detoxification factors, and selenoproteins. Results: Both Cv1HFD and Cv2HFD induced obesity, and Cv2HFD downregulated Selenoi and upregulated Dio3 compared with Cv1D. When comparing Cv2HFD against Cv1HFD, Cv2 increased the liver Se and Cd, the protein abundance of Selenoh, and the mRNA abundance of 10 selenoproteins; reduced the serum TG, TC, and AST; reduced the liver TG, lipid droplets, malondialdehyde, and mRNA abundance of Mtf1 and Mt2; and differentially regulated the mRNA levels of lipid metabolism factors. Conclusions: Cv2 alleviated HFD-induced lipid dysregulation and liver damage, which was probably associated with its unique Se speciation. However, further research is needed to explore the interaction of plant-coenriched Se and Cd and its effects on health. Full article
Show Figures

Figure 1

19 pages, 5111 KiB  
Article
miR-10a/b-5p-NCOR2 Regulates Insulin-Resistant Diabetes in Female Mice
by Se Eun Ha, Rajan Singh, Byungchang Jin, Gain Baek, Brian G. Jorgensen, Hannah Zogg, Sushmita Debnath, Hahn Sung Park, Hayeong Cho, Claudia Marie Watkins, Sumin Cho, Min-Seob Kim, Moon Young Lee, Tae Yang Yu, Jin Woo Jeong and Seungil Ro
Int. J. Mol. Sci. 2024, 25(18), 10147; https://doi.org/10.3390/ijms251810147 - 21 Sep 2024
Abstract
Gender and biological sex have distinct impacts on the pathogenesis of type 2 diabetes (T2D). Estrogen deficiency is known to predispose female mice to T2D. In our previous study, we found that a high-fat, high-sucrose diet (HFHSD) induces T2D in male mice through [...] Read more.
Gender and biological sex have distinct impacts on the pathogenesis of type 2 diabetes (T2D). Estrogen deficiency is known to predispose female mice to T2D. In our previous study, we found that a high-fat, high-sucrose diet (HFHSD) induces T2D in male mice through the miR-10b-5p/KLF11/KIT pathway, but not in females, highlighting hormonal disparities in T2D susceptibility. However, the underlying molecular mechanisms of this hormonal protection in females remain elusive. To address this knowledge gap, we utilized ovariectomized, estrogen-deficient female mice, fed them a HFHSD to induce T2D, and investigated the molecular mechanisms involved in estrogen-deficient diabetic female mice, relevant cell lines, and female T2D patients. Initially, female mice fed a HFHSD exhibited a delayed onset of T2D, but ovariectomy-induced estrogen deficiency promptly precipitated T2D without delay. Intriguingly, insulin (INS) was upregulated, while insulin receptor (INSR) and protein kinase B (AKT) were downregulated in these estrogen-deficient diabetic female mice, indicating insulin-resistant T2D. These dysregulations of INS, INSR, and AKT were mediated by a miR-10a/b-5p-NCOR2 axis. Treatment with miR-10a/b-5p effectively alleviated hyperglycemia in estrogen-deficient T2D female mice, while β-estradiol temporarily reduced hyperglycemia. Consistent with the murine findings, plasma samples from female T2D patients exhibited significant reductions in miR-10a/b-5p, estrogen, and INSR, but increased insulin levels. Our findings suggest that estrogen protects against insulin-resistant T2D in females through miR-10a/b-5p/NCOR2 pathway, indicating the potential therapeutic benefits of miR-10a/b-5p restoration in female T2D management. Full article
(This article belongs to the Special Issue The Role of miRNA in Human Diseases)
Show Figures

Figure 1

19 pages, 6715 KiB  
Article
COL6A6 Peptide Vaccine Alleviates Atherosclerosis through Inducing Immune Response and Regulating Lipid Metabolism in Apoe−/− Mice
by Dongmei Tang, Yan Liu, Rui Duan, Run Lin, Zhonghao Li, Xianyan Liu, Jingrong Huang and Ming Zhao
Cells 2024, 13(18), 1589; https://doi.org/10.3390/cells13181589 - 21 Sep 2024
Abstract
Atherosclerosis is an autoimmune disease characterized by lipid imbalances and chronic inflammation within blood vessels, with limited preventive and treatment options currently available. In this study, a vaccine prepared with COL6A6 peptide (named the Pep_A6 vaccine) was administered to immunize Apoe−/− mice, [...] Read more.
Atherosclerosis is an autoimmune disease characterized by lipid imbalances and chronic inflammation within blood vessels, with limited preventive and treatment options currently available. In this study, a vaccine prepared with COL6A6 peptide (named the Pep_A6 vaccine) was administered to immunize Apoe−/− mice, and the immune mechanism of the Pep_A6 vaccine against atherosclerosis was first investigated. The results of arterial oil red O staining demonstrated that the Pep_A6 vaccine significantly reduced the atherosclerotic plaque area in Apoe−/− mice fed with a high-fat diet for 20 weeks. A flow cytometry analysis revealed that the Pep_A6 vaccine inhibited Th1 cell differentiation and increased the proportion of Treg cells. Furthermore, there was a significant increase in Ly6Clow monocytes observed in the vaccinated group. The ELISA results showed that the Pep_A6 vaccine induced a significant expression of Pep_A6-specific antibody IgG and IgG1 in mouse serum. Additionally, we found that the Pep_A6 vaccine significantly decreased serum LDL-C content and regulated the expression of genes related to liver lipid metabolism. Together, our findings suggest that the Pep_A6 vaccine alleviates atherosclerosis by inducing a positive immune response and regulating lipid metabolism, providing new insights into potential prevention strategies for atherosclerosis as an innovative vaccine. Full article
Show Figures

Figure 1

Back to TopTop