Sign in to use this feature.

Years

Between: -

Search Results (916)

Search Parameters:
Keywords = inductively coupled plasma mass spectrometry (ICP-MS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1923 KiB  
Article
Evaluation of Selenium Concentrations in Patients with Crohn’s Disease and Ulcerative Colitis
by Michał Chalcarz, Beniamin Oskar Grabarek, Tomasz Sirek, Agata Sirek, Piotr Ossowski, Mateusz Wilk, Katarzyna Król-Jatręga, Konrad Dziobek, Julia Gajdeczka, Jarosław Madowicz, Damian Strojny, Kacper Boroń and Jakub Żurawski
Biomedicines 2024, 12(10), 2167; https://doi.org/10.3390/biomedicines12102167 - 24 Sep 2024
Abstract
Background/Objectives: In this study, serum selenium levels in patients with Crohn’s disease (CD) and ulcerative colitis (UC) were evaluated to identify potential predictive markers of disease activity. Conducted in 100 inflammatory bowel disease (IBD) patients (54 CD, 46 UC) and 100 healthy controls, [...] Read more.
Background/Objectives: In this study, serum selenium levels in patients with Crohn’s disease (CD) and ulcerative colitis (UC) were evaluated to identify potential predictive markers of disease activity. Conducted in 100 inflammatory bowel disease (IBD) patients (54 CD, 46 UC) and 100 healthy controls, this research provides novel insights through focusing on the regional selenium status of people with IBD in the Polish population, a demographic with limited existing data. Methods: Selenium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Results: Significantly lower levels of selenium were observed in CD (64.79 µg/L ± 12.15 µg/L) and UC (68.61 µg/L ± 11.43 µg/L) patients when compared with the controls (90.52 ± 12.00 µg/L, p < 0.0001). Regression analysis identified leukocyte and erythrocyte counts and bilirubin as significant predictors of selenium levels in UC patients, while no significant predictors were found for CD. Conclusions: The findings suggest that selenium deficiency is linked to IBD and may serve as a non-invasive biomarker for disease severity, particularly in UC. This practical approach offers a potential alternative to invasive procedures such as endoscopy for monitoring disease progression. However, further research is needed to confirm these findings in larger populations and explore the therapeutic role of selenium supplementation in IBD management. Full article
(This article belongs to the Special Issue Emerging Issue of Inflammatory Bowel Diseases)
Show Figures

Figure 1

13 pages, 2188 KiB  
Article
Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models
by Eleni C. Mazarakioti, Anastasios Zotos, Vassilios S. Verykios, Efthymios Kokkotos, Anna-Akrivi Thomatou, Achilleas Kontogeorgos, Angelos Patakas and Athanasios Ladavos
Foods 2024, 13(18), 3015; https://doi.org/10.3390/foods13183015 - 23 Sep 2024
Abstract
Greek giant beans, also known as “Gigantes Elefantes” (elephant beans, Phaseolus vulgaris L.,) are a traditional and highly cherished culinary delight in Greek cuisine, contributing significantly to the economic prosperity of local producers. However, the issue of food fraud associated with these products [...] Read more.
Greek giant beans, also known as “Gigantes Elefantes” (elephant beans, Phaseolus vulgaris L.,) are a traditional and highly cherished culinary delight in Greek cuisine, contributing significantly to the economic prosperity of local producers. However, the issue of food fraud associated with these products poses substantial risks to both consumer safety and economic stability. In the present study, multi-elemental analysis combined with decision tree learning algorithms were investigated for their potential to determine the multi-elemental profile and discriminate the origin of beans collected from the two geographical areas. Ensuring the authenticity of agricultural products is increasingly crucial in the global food industry, particularly in the fight against food fraud, which poses significant risks to consumer safety and economic stability. To ascertain this, an extensive multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, and Zr) was performed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Bean samples originating from Kastoria and Prespes (products with Protected Geographical Indication (PGI) status) were studied, focusing on the determination of elemental profiles or fingerprints, which are directly related to the geographical origin of the growing area. In this study, we employed a decision tree algorithm to classify Greek “Gigantes Elefantes” beans based on their multi-elemental composition, achieving high performance metrics, including an accuracy of 92.86%, sensitivity of 87.50%, and specificity of 96.88%. These results demonstrate the model’s effectiveness in accurately distinguishing beans from different geographical regions based on their elemental profiles. The trained model accomplished the discrimination of Greek “Gigantes Elefantes” beans from Kastoria and Prespes, with remarkable accuracy, based on their multi-elemental composition. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 1230 KiB  
Article
Contaminant Exposure and Liver and Kidney Lesions in North American River Otters in the Indian River Lagoon, Florida
by Ami Krasner, Megan Stolen, David Rotstein and Spencer Fire
Toxics 2024, 12(9), 684; https://doi.org/10.3390/toxics12090684 - 21 Sep 2024
Abstract
The harmful algal bloom (HAB) liver toxin microcystin (MC) and trace element biomagnification were previously detected in organisms in the Indian River Lagoon (IRL), Florida. Since there are no routine screening programs for these contaminants, liver tissue from North American river otters ( [...] Read more.
The harmful algal bloom (HAB) liver toxin microcystin (MC) and trace element biomagnification were previously detected in organisms in the Indian River Lagoon (IRL), Florida. Since there are no routine screening programs for these contaminants, liver tissue from North American river otters (Lontra canadensis), an important sentinel species in the IRL, was screened for MC via enzyme-linked immunoassay (ELISA), followed by confirmatory analyses via liquid-chromatography/mass spectrometry methods (LC-MS/MS). Liver and kidney samples were evaluated for trace element (As, Cd, Co, Cu, Fe, Hg, Mn, Mo, Pb, Se, Tl, and Zn) bioaccumulation via inductively coupled plasma mass spectrometry (ICP-MS). Histopathologic evaluation of the liver and kidney was conducted to assess possible correlation with toxic insults. Forty-three river otters were evaluated (2016–2022). Microcystin was not detected in any river otter sample (n = 37). Of those tested for trace element bioaccumulation (n = 22), no sample measured above provided reference ranges or estimated toxic thresholds for this species. There were no statistically significant patterns observed based on season, year, or age class, but sex had a small influence on trace element levels in the kidney. One individual had a kidney Cu level (52 μg/g dry weight) higher than any previously reported for this species. Trace elements were detected at presumed background levels providing baselines for future monitoring. For otters with available histopathologic evaluation (n = 28), anomalies indicative of contaminant exposure (non-specific inflammation, necrosis, and/or lipidosis) were present in the liver and kidney of 18% and 4% of individuals, respectively. However, since these lesions were not linked to abnormal trace element bioaccumulation or MC exposure, other causes (e.g., infectious disease) should be considered. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

12 pages, 3442 KiB  
Article
Assessment of Potentially Toxic Elements in Subtropical Urban Streams (Santo André, SP, Brazil)
by Rafaella M. T. Espeçoto, Marilena M. Luciano, Bruno L. Batista, Camila N. Lange, Heloísa F. Maltez, Luís C. Schiesari, Marcus V. França, Ângela T. Fushita, Lúcia H. G. Coelho and Ricardo H. Taniwaki
Water 2024, 16(18), 2681; https://doi.org/10.3390/w16182681 - 20 Sep 2024
Abstract
Environmental contamination by potentially toxic elements (PTEs) poses a significant challenge, particularly in the metropolitan regions of developing countries. This issue arises from the high levels of pollution driven by industrial growth and the increased traffic from fossil fuel-powered vehicles. Even after the [...] Read more.
Environmental contamination by potentially toxic elements (PTEs) poses a significant challenge, particularly in the metropolitan regions of developing countries. This issue arises from the high levels of pollution driven by industrial growth and the increased traffic from fossil fuel-powered vehicles. Even after the wastewater treatment in treatment plants, PTEs often persist, posing risks to stream structure and function. This form of pollution is persistent, long-term, and irreversible, presenting a significant challenge in terms of freshwater conservation. This study aimed to assess the water quality and PTE concentrations in urban streams in Santo André, SP, Brazil, to identify the PTEs relevant to stream pollution. We analyzed the water quality in seven catchments in the Santo André municipality, in the metropolitan region of São Paulo, Brazil. The samples were collected during the dry (2021) and rainy periods (2022), and the concentrations of potentially toxic elements (PTEs) were analyzed via inductively coupled plasma–mass spectrometry (ICP-MS). The results showed elevated electrical conductivity (429 ± 211 μS·cm) and low dissolved oxygen concentrations in the streams (2.3 ± 0.95 μg·L), indicating potential problems such as eutrophication and toxicity to aquatic organisms. PTE concentrations, particularly those of Mn (30.8 ± 22.3 μg·L), Fe (91.1 ± 72.1 μg·L), and Zn (38.1 ± 28.7 μg·L), were among the highest concentrations. Seasonal variations affected the PTE concentrations, with Cr and Fe predominating during the dry season and Zn increasing during the rainy season. Associations were found between the PTE concentrations and the water pH, indicating the importance of continuous monitoring and remediation efforts. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Figure 1

13 pages, 1583 KiB  
Article
Analytical Investigation of Phthalates and Heavy Metals in Edible Ice from Vending Machines Connected to the Italian Water Supply
by Nicoletta De Vietro, Francesco Triggiano, Pietro Cotugno, Jolanda Palmisani, Alessia Di Gilio, Carlo Zambonin, Gianluigi de Gennaro, Giovanna Mancini, Antonella Maria Aresta, Giusy Diella, Vincenzo Marcotrigiano, Giovanni Trifone Sorrenti, Piersaverio Marzocca, Michele Lampedecchia, Domenico Pio Sorrenti, Ezio D’Aniello, Matilde Gramegna, Alessandra Nencha, Antonio Caputo, Marta Giovine, Caterina Spinelli and Giuseppina Caggianoadd Show full author list remove Hide full author list
Foods 2024, 13(18), 2910; https://doi.org/10.3390/foods13182910 - 13 Sep 2024
Abstract
Edible ice is often produced by special machines that can represent a source of significant chemical and microbiological contamination. In this work, the presence of phthalic acid esters (phthalates, PAEs) and heavy metals in ice cubes distributed by 77 vending machines installed in [...] Read more.
Edible ice is often produced by special machines that can represent a source of significant chemical and microbiological contamination. In this work, the presence of phthalic acid esters (phthalates, PAEs) and heavy metals in ice cubes distributed by 77 vending machines installed in two different zones in southern Italy and fed by water from the public water supply was investigated. Solid-phase microextraction coupled to gas chromatography−mass spectrometry (SPME-GC/MS) was used to evaluate contamination with four PAEs, which were selected because they are commonly used in the production of food-contact plastics, while inductively coupled plasma mass spectrometry (ICP/MS) was used to quantify the heavy metals. It was found that ice samples, especially those from one of the two considered zones (zone 2), exceeded the dibutyl phthalate (DBP) threshold limit value; some ice cubes from the other zone (zone 1) instead showed levels of both lead (Pb) and nickel (Ni) up to one order of magnitude higher than those observed in samples collected in zone 2 and higher than the maximum permitted values (European Directive n. 2184/2020). Since the water source connected to the ice vending machines was found to be free from significant levels of all considered target compounds and metals, the high levels of DBP, Ni, and Pb in ice cubes could be attributed to the components and/or to the state of repair of the ice vending machines themselves. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

36 pages, 11038 KiB  
Article
Provenance Studies of a Set of Pick-Up Glass Fragments Found in Portugal and Dated to the 17th Century
by Francisca Pulido Valente, Inês Coutinho, Teresa Medici, Bernard Gratuze, Luís C. Alves, Ana Cadena and Márcia Vilarigues
Heritage 2024, 7(9), 5048-5083; https://doi.org/10.3390/heritage7090239 - 12 Sep 2024
Abstract
One of the most recognized decorations of the pick-up technique is the millefiori glass, which has been commonly attributed to Venetian production. However, Portugal is the country where the largest known assemblage of this type of glass artefact has been studied and published. [...] Read more.
One of the most recognized decorations of the pick-up technique is the millefiori glass, which has been commonly attributed to Venetian production. However, Portugal is the country where the largest known assemblage of this type of glass artefact has been studied and published. In this work, two important archeological contexts were selected: (1) Santa Clara-a-Velha monastery (SCV) and (2) São João de Tarouca monastery (SJT). The fragments selection was made based on the diversity of decorative motifs, colors, and original forms that has been associated with Portuguese production. The compositional characterization was conducted by performing micro-particle-induced X-ray emission (µ-PIXE) mapping, which facilitated the visualization of the distribution of different oxides across the different glass layers and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain the major, minor, and trace elements composition, including rare earth elements (REEs) to determine which kind of raw materials were used. Additionally, µ-Raman spectroscopy was employed to investigate the opacifiers, while UV–Visible spectroscopy was used to study which chromophores are presented in the glass samples. All the analyzed glass layers can be considered to be of a soda–lime–silica type, and four different geological patterns (from GP1 to GP4) were detected and reported. This result can indicate that these objects were made by using silica sources taken from four different geological settings. Interestingly, the GP3 represents about 41% of the analyzed glass fragments and is compatible with the pattern detected in some production wastes found in two different archeological contexts located in Lisbon, which reinforces the veracity of the theory that this GP can be attributed to a Portuguese production. On the other hand, GP1 was probably attributed Granada provenance. Full article
Show Figures

Figure 1

11 pages, 281 KiB  
Article
The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash
by Alexis Munyengabe, Ledwaba Samuel Kamogelo, Titus Yeliku-ang Ngmenzuma and Maria Fezile Banda
Plants 2024, 13(18), 2551; https://doi.org/10.3390/plants13182551 - 11 Sep 2024
Abstract
The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this [...] Read more.
The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this study was to clarify the potential of phytoremediation using Helichrysum splendidum (Thunb.) Less. in areas polluted by CFA through conduction of pot trial experiments for 14 weeks. Plants of the same age were cultivated in CFA to assess their growth, photosynthetic rate and tolerance towards metal toxicity. This study revealed that the CFA was moderately polluted with heavy metals, and a lower photosynthetic rate was recorded for the CFA plants in comparison to the controls (plants grown in soil). Although the CO2 assimilation rate was lower for the CFA plants, increased growth was recorded for all the plants tested. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of trace elements in samples and parameters including translocation factor (TF) and bioconcentration factor (BCF) were used to evaluate the phytoremediation potential of H. splendidum (Thunb.) Less. The results revealed that higher concentrations of Cd, Co, Cr, Cu, Mn and Pb were accumulated in the roots, while As, Ni and Zn were found in the shoots. Elements including As, Cr and Zn reported TF values above 1, indicating the plants’ phytoextraction potential. The BCF values for As, Cu and Zn were 1.22, 1.19 and 1.03, indicating effectiveness in the phytostabilization processes. A removal rate efficiency ranging from 18.0 to 56.7% was recorded confirming that, H. splendidum (Thunb.) Less. can be employed for restoration of CFA dams. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
24 pages, 4050 KiB  
Article
Sources, Distribution, and Health Implications of Heavy Metals in Street Dust across Industrial, Capital City, and Peri-Urban Areas of Bangladesh
by Md. Sohel Rana, Qingyue Wang, Weiqian Wang, Christian Ebere Enyoh, Md. Rezwanul Islam, Yugo Isobe and Md Humayun Kabir
Atmosphere 2024, 15(9), 1088; https://doi.org/10.3390/atmos15091088 - 7 Sep 2024
Abstract
Heavy metals in road dusts can directly pose significant health risks through ingestion, inhalation, and dermal contact. This study investigated the pollution, distribution, and health effect of heavy metals in street dust from industrial, capital city, and peri-urban areas of Bangladesh. Inductively coupled [...] Read more.
Heavy metals in road dusts can directly pose significant health risks through ingestion, inhalation, and dermal contact. This study investigated the pollution, distribution, and health effect of heavy metals in street dust from industrial, capital city, and peri-urban areas of Bangladesh. Inductively coupled plasma mass spectrometry (ICP-MS) examined eight hazardous heavy metals such as Zn, Cu, Pb, Ni, Mn, Cr, Cd, and Co. Results revealed that industrial areas showed the highest metal concentrations, following the order Mn > Zn > Cr > Pb > Ni > Co > Cd, with an average level of 444.35, 299.25, 238.31, 54.22, 52.78, 45.66, and 2.73 mg/kg, respectively, for fine particles (≤20 μm). Conversely, multivariate statistical analyses were conducted to assess pollution levels and sources. Anthropogenic activities like traffic emissions, construction, and industrial processing were the main pollution sources. A pollution load index revealed that industrial areas had significantly higher pollution (PLI of 2.45), while the capital city and peri-urban areas experienced moderate pollution (PLI of 1.54 and 1.59). Hazard index values were below the safety level of 1, but health risk evaluations revealed increased non-carcinogenic risks for children, especially from Cr, Ni, Cd, and Pb where Cr poses the highest cancer risk via inhalation, with values reaching 1.13 × 10−4–5.96 × 10−4 falling within the threshold level (10−4 to 10−6). These results underline the need for continuous environmental monitoring and pollution control in order to lower health hazards. Full article
(This article belongs to the Special Issue Climate Change, Allergy and Respiratory Diseases)
Show Figures

Figure 1

8 pages, 210 KiB  
Article
Impact of Chronic Beryllium Exposure on Liver and Lung Function and Hematologic Parameters
by Jing Dai, Xinlin Bi, Hui Yuan, Qingyu Meng, Yina Yang, Xueqin Wang, Xiaoying Ma, Chunguang Ding and Fen Wang
Atmosphere 2024, 15(9), 1086; https://doi.org/10.3390/atmos15091086 - 7 Sep 2024
Abstract
Beryllium is a lightweight metal that is toxic to humans. The critical health effects related to beryllium exposure are liver toxicity, immune system toxicity, and chronic beryllium disease (CBD). This study investigated the effects of occupational beryllium exposure on liver and lung function [...] Read more.
Beryllium is a lightweight metal that is toxic to humans. The critical health effects related to beryllium exposure are liver toxicity, immune system toxicity, and chronic beryllium disease (CBD). This study investigated the effects of occupational beryllium exposure on liver and lung function and hematologic parameters among beryllium smelter workers. A cross-sectional study was performed by comparing 65 exposed workers and 34 non-exposed workers. Health information was collected through questionnaire surveys and biochemical tests. The concentration of urinary beryllium was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings indicated that the urinary beryllium levels of the exposed workers and the controls were 0.48 (0.115, 1.19) μg/mL and 0.0125 (0.005, 0.005) μg/mL, respectively (p < 0.001). Compared with the controls, the exposed workers showed a significant increase in serum alanine aminotransferase (ALT) level, hemoglobin (HGB) concentration, white blood cell (WBC) count, red blood cell (RBC) count, and systolic and diastolic blood pressure (SBP, DBP) (p < 0.05). Furthermore, the HGB concentration and ALT level were significantly correlated with the concentration of beryllium in urine (p < 0.05). The exposed workers had increased urinary concentrations of beryllium, in contrast to the control subjects. Moreover, the urinary beryllium levels among the exposed workers are much higher than that in the Chinese general population. Beryllium-exposed workers may be at risk of liver and hematologic impairments. Full article
(This article belongs to the Section Air Quality and Health)
18 pages, 4260 KiB  
Article
Metallogenic Chronology and Prospecting Indication of Tiechanghe Granite and Polymetallic Molybdenum Mineralization Types in Jiulong Area, Western Sichuan, China
by Shuang Yang, Hongqi Tan, Zhongquan Li, Junliang Hu, Xinyan Wang and Daming Liu
Minerals 2024, 14(9), 909; https://doi.org/10.3390/min14090909 - 5 Sep 2024
Abstract
The Songpan–Ganzi Orogenic Belt (SGOB) is bounded by the South China, North China, and Qiangtang blocks and forms the eastern margin of the Tibetan Plateau. The Tiechanghe Granite is located at the junction of the southeast margin of the SGOB and the western [...] Read more.
The Songpan–Ganzi Orogenic Belt (SGOB) is bounded by the South China, North China, and Qiangtang blocks and forms the eastern margin of the Tibetan Plateau. The Tiechanghe Granite is located at the junction of the southeast margin of the SGOB and the western margin of the Yangtze Block. To elucidate the genetic relationship between the Tiechanghe Granite and the surrounding molybdenum deposits in Western Sichuan, in this study, we conducted zircon U-Pb and molybdenite Re-Os isotopic dating. The results indicate that the Tiechanghe Granite predominantly consists of monzogranite, with minor occurrences of syenogranite, while the molybdenum deposits are mainly found in skarn and quartz veins. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb ages of the Tiechanghe Granite range from 162.9 ± 0.7 Ma (MSWD = 0.31, n = 25) to 163.4 ± 0.6 Ma (MSWD = 0.85, n = 26), and the LA-ICP-MS zircon U-Pb age of the pegmatite veins is 164.1 ± 0.9 Ma (MSWD = 1.3, n = 19). These ages are consistent with the weighted average Re-Os age of the Ziershi molybdenite (160.3 ± 1.6 Ma, n = 2) within the error margins. These findings and previously obtained magmatic and metallogenic ages for the region suggest that a magmatic and mineralization event involving granite, molybdenum, tungsten, and copper occurred at around 162–164 Ma in the study area. This discovery broadens the exploration perspective for mineral resources in the Jiulong area of Western Sichuan and the entirety of Western Sichuan. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 2588 KiB  
Article
Geochemical Behavior of Rare Earth Elements in Tidal Flat Sediments from Qidong Cape, Yangtze River Estuary: Implications for the Study of Sedimentary Environmental Change
by Yunfeng Zhang, Zhenke Zhang, Wayne Stephenson and Yingying Chen
Land 2024, 13(9), 1425; https://doi.org/10.3390/land13091425 - 4 Sep 2024
Viewed by 150
Abstract
Sediment transport to the sea by rivers is crucial for the stability of estuaries and coasts. The Yangtze River, the largest river in China, like many large rivers worldwide, is experiencing a decrease in sediment load reaching the coast. However, the tidal flat [...] Read more.
Sediment transport to the sea by rivers is crucial for the stability of estuaries and coasts. The Yangtze River, the largest river in China, like many large rivers worldwide, is experiencing a decrease in sediment load reaching the coast. However, the tidal flat around Qidong Cape, located at the entrance of the North Branch of the Yangtze Estuary, is undergoing extensive siltation. The source of this sediment is unclear. In this study, a sediment core was collected and the geochemical characteristics of rare earth elements (REE) were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results indicate the following: (1) The average content of REE is 178.57 μg/g, and the average ratio between LREE and HREE is 8.66, which is comparable to sediments from the South Yellow Sea. The chondrite-normalized and UCC-normalized patterns resemble those of the Yangtze River and the South Yellow Sea, indicating a negative gradient, a weak Ce-negative anomaly, and a distinct Eu-negative anomaly. (2) The continental shelf deposits in eastern China are primarily derived from sediment flux delivered by rivers. The sediments in the South Yellow Sea mainly originate from the Yangtze River and the Yellow River, exhibiting characteristics of a mixed source due to long-term geological processes, namely geochemical processes. The REEs in the tidal flat around Qidong Cape inherit the source area’s characteristics and originate from the weathering of upper continental rock in mainland China. Moreover, the tidal flat around Qidong Cape is influenced by both runoff and tidal actions, leading to strong land–sea interactions and reducing the environment, explaining the Eu-negative anomaly. (3) Hydrodynamic forces in the North Branch of the Yangtze River have shifted from runoff to tidal dominance since the 1930s. However, marine hydrodynamics outside the estuary have remained unchanged. Consequently, the Subei coastal current plays a key role in sediment transport and diffusion. Sediments from the south wing of the Radiative Sand Ridge in the South Yellow Sea are transported southward by the Subei coastal current, and under tidal influence, suspended sediment is deposited in the tidal flat around Qidong Cape. Therefore, the sediment source has gradually shifted from the Yangtze River to the South Yellow Sea. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

17 pages, 4702 KiB  
Article
Study on the Bioactive Constituent and Mineral Elements of the Tibetan Medicine E’seguo from Different Regions of Ganzi Prefecture, China
by Menglian Jiang, Heling Fan, Yixuan Chen, Yulin Zou, Xiaoyang Cai, Haohan Wang and Min Li
Molecules 2024, 29(17), 4154; https://doi.org/10.3390/molecules29174154 - 1 Sep 2024
Viewed by 446
Abstract
The Tibetan medicinal fruit E’seguo originates from two species, Malus toringoides (Rehd.) Hughes and Malus transitoria (Batal.) Schneid, both unique to the Hengduan Mountains. These species are predominantly found in high-altitude regions of Ganzi Prefecture, Sichuan Province, particularly in the Xianshui River and [...] Read more.
The Tibetan medicinal fruit E’seguo originates from two species, Malus toringoides (Rehd.) Hughes and Malus transitoria (Batal.) Schneid, both unique to the Hengduan Mountains. These species are predominantly found in high-altitude regions of Ganzi Prefecture, Sichuan Province, particularly in the Xianshui River and Yalong River basins. Malus toringoides (Rehd.) Hughes is far more abundant in both resource quantity and distribution compared to Malus transitoria (Batal.) Schneid. However, the nutritional and medicinal differences between the two remain unclear, which significantly impacts the development and utilization of E’seguo resources. This study aimed to measure the mineral content, nutritional components, and medicinal properties of E’seguo from 12 different regions of Ganzi Prefecture to explore the quality differences between these two species and across different regions. ICP-MS (Inductively Coupled Plasma Mass Spectrometry) was used to determine the mineral content, ultraviolet-visible spectrophotometry and potentiometric titration to analyze nutritional indicators, and HPLC (High-Performance Liquid Chromatography) to measure the medicinal components L-malic acid and 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-2βG). Results indicate that Malus transitoria (Batal.) Schneid contains higher levels of K, Ca, Zn, Mg, and Cu compared to Malus toringoides (Rehd.) Hughes, which has higher Fe and Mn content. Malus toringoides (Rehd.) Hughes from the Kangding and Litang regions showed the highest mineral content, with mineral elements primarily influencing polysaccharide levels, according to Mantel analysis. Nutritional and medicinal analyses revealed that Malus toringoides (Rehd.) Hughes outperformed Malus transitoria (Batal.) Schneid in all metrics except for the sugar-acid ratio. Given the mineral content and taste, Malus transitoria (Batal.) Schneid is better suited for consumption, while Malus toringoides (Rehd.) Hughes has superior medicinal properties, making it more appropriate for medicinal use. In the Malus transitoria (Batal.) Schneid regions, both Luhuo and Daofu are in the Xianshui River basin, with Daofu County producing the higher quality fruit. Among the nine Malus toringoides (Rehd.) Hughes regions, the M10 (Tuoba Township, Ganzi County) near the Yalong River had the highest overall score, followed by M7 (Yade Township, Luhuo County) and M6 (Keke, Xiala Tuo Town, Luhuo County), both of which are near the Xianshui River. In summary, Malus transitoria (Batal.) Schneid generally has higher mineral content, but Malus toringoides (Rehd.) Hughes has larger fruit and higher medicinal value, making the latter more suitable as a medicinal resource. At the same time, the medicinal quality of Xianshui River fruit was higher in the two watersheds of Malus toringoides (Rehd.) Hughes. Full article
(This article belongs to the Special Issue Chemical and Biological Research on Bioactive Natural Products)
Show Figures

Graphical abstract

18 pages, 590 KiB  
Article
Chemical Composition, Antioxidant and Anti-Enzymatic Activities, and In Vitro Insecticidal Potential of Origanum compactum (Benth.) Essential Oils
by Mohamed Ouknin, Hassan Alahyane, Jean Costa and Lhou Majidi
Plants 2024, 13(17), 2424; https://doi.org/10.3390/plants13172424 - 30 Aug 2024
Viewed by 301
Abstract
This study aimed to investigate the variation in the chemical composition of Origanum compactum essential oils (EOs) from four geographically distinct locations. Additionally, we evaluated their antioxidant properties and potential inhibitory effects on acetylcholinesterase (AChE), tyrosinase, and α-glucosidase enzymes and their insecticidal proprieties. [...] Read more.
This study aimed to investigate the variation in the chemical composition of Origanum compactum essential oils (EOs) from four geographically distinct locations. Additionally, we evaluated their antioxidant properties and potential inhibitory effects on acetylcholinesterase (AChE), tyrosinase, and α-glucosidase enzymes and their insecticidal proprieties. Notably, this research also marks the first examination of the mineral composition of O. compactum. The chemical composition was determined using gas chromatography–mass spectrometry (GC-MS), which identified thymol (28.72–80.39%), carvacrol (6.54–61.84%), p-cymene (0.27–8.64%), linalool (1.44–1.96%), and caryophyllene oxide (1.34–1.56%) as the major constituents. Concurrently, inductively coupled plasma atomic emission spectroscopy (ICP-AES) revealed significant levels of macro and microelements, including calcium (295.50–512.20 mg/kg), potassium (195.99–398.45 mg/kg), magnesium (59.70–98.45 mg/kg), and iron (43.55–112.60 mg/kg). The EOs demonstrated notable antiradical activities through DPPH (1,1-diphenyl-2-picrylhydrazyl), FRAP (ferric reducing antioxidant power), and β-carotene bleaching assays. Regarding the insecticidal effect, all studied essential oils showed a significant toxicity against C. capitata adults, and the toxicity was dose and time dependent. The highest insecticidal effect was observed for O. compactum essential oils collected from Gouman (LC50 = 2.515 µL/mL, LC90 = 5.502 µL/mL) after 48 h of treatment. Furthermore, at a concentration of 1 mg/mL, the EOs exhibited strong inhibitory effects against AChE (84.75–94.01%), tyrosinase (84.75–94.01%), and α-glucosidase (79.90–87.80%), highlighting their potential as natural inhibitors of these enzymes. The essential oils of O. compactum contain components that could be used as a basis for synthetizing derivatives or analogs with potential medicinal applications and pest control properties. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

12 pages, 1769 KiB  
Article
Upcycling Shellfish Waste: Distribution of Amino Acids, Minerals, and Carotenoids in Body Parts of North Atlantic Crab and Shrimp
by Abul Hossain and Fereidoon Shahidi
Foods 2024, 13(17), 2700; https://doi.org/10.3390/foods13172700 - 27 Aug 2024
Viewed by 506
Abstract
The snow/pink crab (Chionoecetes opilio) and Northern shrimp (Pandalus borealis) are widely distributed in the North Atlantic Ocean. During processing/consumption, about 80% of the harvest is discarded as processing waste, which is a rich source of protein, chitin, minerals, [...] Read more.
The snow/pink crab (Chionoecetes opilio) and Northern shrimp (Pandalus borealis) are widely distributed in the North Atlantic Ocean. During processing/consumption, about 80% of the harvest is discarded as processing waste, which is a rich source of protein, chitin, minerals, and carotenoids. This study, for the first time, investigated the proximate composition and individual amino acids, minerals, and carotenoids from different body parts (carapace, shoulder, claw, tip, and leg) of snow crabs and shrimp shells. Shrimp proteins were found to be abundant and well-balanced in their amino acid composition. Compared to shrimp shells, a lower content of amino acids was found in the snow crab, depending on the part of the shell used. Moreover, crab shells, mainly crab claws, contained a higher (p < 0.05) level of chitin compared to shrimp shells. Seven micro-elements (Mn, Fe, Cu, Zn, As, Ba, and Ce) and six macro-elements (Ca, Na, K, Mg, P, and Sr) were identified using inductively coupled plasma-mass spectrometry (ICP-MS). Among them, calcium and iron were higher in crab carapaces (p < 0.05), followed by shrimp shells and other crab shell segments. Additionally, shrimp and crab carapaces contained a significant level of carotenoids, and these were mainly composed of astaxanthin and its mono- and diesters, along with zeaxanthin, astacene, canthaxanthin, and lutein. Thus, this investigation provides detailed information to allow upcycling of shellfish waste and addresses the knowledge gap concerning the availability of various nutrients in different crab sections and shrimp shells. Full article
Show Figures

Figure 1

16 pages, 3577 KiB  
Article
Establishment of a Rapid Detection Method for Cadmium Ions via a Specific Cadmium Chelator N-(2-Acetamido)-Iminodiacetic Acid Screened by a Novel Biological Method
by Yali Wang, Wenxue Sun, Tinglin Ma, Joseph Brake, Shuangbo Zhang, Yanke Chen, Jing Li and Xiaobin Wu
Foods 2024, 13(17), 2684; https://doi.org/10.3390/foods13172684 - 26 Aug 2024
Viewed by 362
Abstract
Heavy metal ions such as cadmium, mercury, lead, and arsenic in the soil cannot be degraded naturally and are absorbed by crops, leading to accumulation in agricultural products, which poses a serious threat to human health. Therefore, establishing a rapid and efficient method [...] Read more.
Heavy metal ions such as cadmium, mercury, lead, and arsenic in the soil cannot be degraded naturally and are absorbed by crops, leading to accumulation in agricultural products, which poses a serious threat to human health. Therefore, establishing a rapid and efficient method for detecting heavy metal ions in agricultural products is of great significance to ensuring the health and safety. In this study, a novel optimized spectrometric method was developed for the rapid and specific colorimetric detection of cadmium ions based on N-(2-Acetamido)-iminodiacetic acid (ADA) and Victoria blue B (VBB) as the chromogenic unit. The safety evaluation of ADA showed extremely low biological toxicity in cultured cells and live animals. The standard curve is y = 0.0212x + 0.1723, R2 = 0.9978, and LOD = 0.08 μM (0.018 mg/kg). The liner concentrations detection range of cadmium is 0.1–10 μM. An inexpensive paper strip detection method was developed with a detection limit of 0.2 μM to the naked eye and a detection time of less than 1 min. The method was successfully used to assess the cadmium content of rice, soybean, milk, grape, peach, and cabbage, and the results correlated well with those determined by inductively coupled plasma–mass spectrometry (ICP-MS). Thus, our study demonstrated a novel rapid, safe, and economical method for onsite, real-time detection of cadmium ions in agricultural products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

Back to TopTop