Sign in to use this feature.

Years

Between: -

Search Results (27,463)

Search Parameters:
Keywords = water surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3203 KiB  
Article
Feasibility Study of Temperature Control Measures during the Construction of Large-Volume Concrete Gravity Dams in Cold Regions: A Case Study
by Ziyu Lv, Shu Yu, Anshuang Su, Rongcai Guan, Suizi Jia and Penghai Yin
Water 2024, 16(19), 2761; https://doi.org/10.3390/w16192761 (registering DOI) - 27 Sep 2024
Abstract
Effective temperature control measures are crucial for achieving temperature regulation and preventing cracking in the dam body during the construction of large-volume concrete gravity dams. Due to the low ambient temperatures in winter, it is especially important to focus on temperature control measures [...] Read more.
Effective temperature control measures are crucial for achieving temperature regulation and preventing cracking in the dam body during the construction of large-volume concrete gravity dams. Due to the low ambient temperatures in winter, it is especially important to focus on temperature control measures for concrete dam construction in cold regions. This paper employs a numerical simulation method that takes into account dam temperature control measures to simulate and predict the overall temperature and stress fields of the Guanmenzuizi Reservoir Dam, and validates these simulations with field monitoring results. This study finds that the ambient temperature significantly impacts the temperature and stress of the dam body’s concrete. The internal temperature of the dam reaches its highest value approximately 7 days after pouring, followed by periodic fluctuations, with the dam body’s temperature changes exhibiting a certain lag compared to the ambient temperature. The interior of the dam is under compression, while the upstream and downstream surfaces experience significant tensile stress. This project adopts targeted temperature control measures for the cold environmental conditions of the region, which are reasonably implemented and effectively reduce the temperature rise of the concrete during construction, achieving the temperature control objectives. This study also explores the impact of the cooling water pipe density on the dam body. The research results offer valuable references for the implementation of temperature control measures and the establishment of temperature control standards for concrete gravity dams in cold regions. Full article
12 pages, 2060 KiB  
Article
Multienzyme Immobilization on PVDF Membrane via One-Step Mussel-Inspired Method: Enhancing Fouling Resistance and Self-Cleaning Efficiency
by Jéssica Mulinari, Diane Rigo, Carolina Elisa Demaman Oro, Alessandra Cristina de Meneses, Guilherme Zin, Rafael Vidal Eleutério, Marcus Vinícius Tres and Rogério Marcos Dallago
Membranes 2024, 14(10), 208; https://doi.org/10.3390/membranes14100208 (registering DOI) - 27 Sep 2024
Abstract
Immobilizing different enzymes on membranes can result in biocatalytic active membranes with a self-cleaning capacity toward a complex mixture of foulants. The membrane modification can reduce fouling and enhance filtration performance. Protease, lipase, and amylase were immobilized on poly(vinylidene fluoride) (PVDF) microfiltration membranes [...] Read more.
Immobilizing different enzymes on membranes can result in biocatalytic active membranes with a self-cleaning capacity toward a complex mixture of foulants. The membrane modification can reduce fouling and enhance filtration performance. Protease, lipase, and amylase were immobilized on poly(vinylidene fluoride) (PVDF) microfiltration membranes using a polydopamine coating in a one-step method. The concentrations of polydopamine precursor and enzymes were optimized during the immobilization. The higher hydrolytic activities were obtained using 0.2 mg/mL of dopamine hydrochloride and 4 mg/mL of enzymes: 0.90 mgstarch/min·cm2 for amylase, 10.16 nmoltyrosine/min·cm2 for protease, and 20.48 µmolp-nitrophenol/min·cm2 for lipase. Filtration tests using a protein, lipid, and carbohydrate mixture showed that the modified membrane retained 41%, 29%, and 28% of its initial water permeance (1808 ± 39 L/m2·h·bar) after three consecutive filtration cycles, respectively. In contrast, the pristine membrane (initial water permeance of 2016 ± 40 L/m2·h·bar) retained only 23%, 12%, and 8%. Filtrations of milk powder solution were also performed to simulate dairy industry wastewater: the modified membrane maintained 28%, 26%, and 26% of its initial water permeance after three consecutive filtration cycles, respectively, and the pristine membrane retained 34%, 21%, and 7%. The modified membrane showed increased fouling resistance against a mixture of foulants and presented a similar water permeance after three cycles of simulated dairy wastewater filtration. Membrane fouling is reduced by the immobilized enzymes through two mechanisms: increased membrane hydrophilicity (evidenced by the reduced water contact angle after modification) and the enzymatic hydrolysis of foulants as they accumulate on the membrane surface. Full article
(This article belongs to the Special Issue Membrane Technologies in Food Industry and Bioprocessing)
10 pages, 427 KiB  
Article
Efficacy of Virucidal Treatments against Poliovirus Type 1 Deposited on Stainless-Steel Carriers
by Cory Chiossone, Tanya Kapes, Robert Good, Raymond W. Nims and S. Steve Zhou
Microorganisms 2024, 12(10), 1964; https://doi.org/10.3390/microorganisms12101964 - 27 Sep 2024
Abstract
Safe containment of infectious poliovirus (PV) within Poliovirus-Essential Facilities (PEFs) will require the implementation of reliable PV-inactivation approaches for decontaminating work surfaces. Such approaches should be demonstrated empirically to display adequate efficacy at the use temperature, and the contact times required should be [...] Read more.
Safe containment of infectious poliovirus (PV) within Poliovirus-Essential Facilities (PEFs) will require the implementation of reliable PV-inactivation approaches for decontaminating work surfaces. Such approaches should be demonstrated empirically to display adequate efficacy at the use temperature, and the contact times required should be characterized to ensure efficacy. Such efficacy is judged by the ability of the inactivation approach to completely inactivate any PV deposited, with the demonstrated total log10 reduction in PV titer being as high as empirically achievable. We screened several approaches for their efficacy in inactivating wild-type PV type 1 Chat strain experimentally deposited on stainless-steel carriers at room temperature. On the basis of the results, we selected two approaches (5000 ppm sodium hypochlorite in water and 95% v/v ethanol in water) for further characterization for repeatability of efficacy (log10 reduction in PV titer) and time kinetics of inactivation. We now report that both PV-inactivation approaches, which should be readily available to all PEF laboratories globally, fulfill the expectations expressed above, with 5000 ppm sodium hypochlorite reproducibly causing ≥5.38 log10 inactivation and 95% ethanol reproducibly causing ≥4.46 log10 inactivation of PV on stainless-steel surfaces within a 5 min contact time at room temperature. Full article
(This article belongs to the Special Issue Epidemiology and Pathogenesis of Human Enteroviruses: 2nd Edition)
22 pages, 3196 KiB  
Article
The Role of Hypergenic and Technogenic Processes in Contamination the Ecosphere
by Valentina Zvereva and Konstantin Frolov
Minerals 2024, 14(10), 976; https://doi.org/10.3390/min14100976 - 27 Sep 2024
Abstract
Mining in the Russian Far East has been developing for more than 100 years, resulting in the formation of mining technogenic systems that negatively affect all components of the environment. The purpose of this paper is to develop and present an ecological and [...] Read more.
Mining in the Russian Far East has been developing for more than 100 years, resulting in the formation of mining technogenic systems that negatively affect all components of the environment. The purpose of this paper is to develop and present an ecological and geochemical model of supergene processes in tinsulfide and polymetallic ore mining systems. This paper presents, for the first time, the results of long-term field observations (more than 50 years): studies of numerous secondary minerals (more than 80) identified in mine workings and tailings, their natural associations, as well as the sequence, zonality, and stages of mineral formation as well as the characteristics of hydrochemical samples of river waters, contaminated by acid mine drainage (30 years of observations). Experimental modeling of sulfide oxidation was carried out under laboratory conditions (electrochemical method) and using Selektor software, which made it possible to study the process of acid mine drainage formation and to show the metal ions and ionic complexes composition, to establish Eh-pH parameters of crystallization for 52 secondary minerals, associations of primary and secondary minerals. The influence of water components on the formation of slurry and drainage in different time periods (dry, heavy rainfall, and snowmelt) is shown, and their mixing at the geochemical barrier “acid mine drainage—surface natural waters” is described. Experimental results are verified with numerous in-situ observations and mineralogical studies. The work allowed for the presentation of an environmental–geochemical model of ecosphere pollution, which describes not only the negative impact of sulfide-bearing systems of Russian Far East mining districts but locations all over the world. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
18 pages, 5195 KiB  
Article
Quantifying Water Storage Changes and Groundwater Drought in the Huaihe River Basin of China Based on GRACE Data
by Zunguang Zhou, Baohong Lu, Zhengfang Jiang and Yirui Zhao
Sustainability 2024, 16(19), 8437; https://doi.org/10.3390/su16198437 - 27 Sep 2024
Abstract
The Huaihe River Basin is an important ecological function conservation area in China, and it is also an important production area for national food, energy, minerals, and manufacturing. The groundwater storage and groundwater drought in this region are of great significance for ecological [...] Read more.
The Huaihe River Basin is an important ecological function conservation area in China, and it is also an important production area for national food, energy, minerals, and manufacturing. The groundwater storage and groundwater drought in this region are of great significance for ecological maintenance and water resources management. In this study, based on GRACE data and GLDAS data, a dynamic calculation method for groundwater storage in the Huaihe River Basin was developed, and a groundwater drought index (GRACE-GDI) was derived. By coupling GRACE-GDI with run theory, the quantitative identification of groundwater drought events, as well as their duration, intensity, and other characteristics within the basin, was achieved. The spatiotemporal changes in groundwater storage and groundwater drought in the Huaihe River Basin were analyzed using the developed method. The results showed that GRACE data are highly applicable in the Huaihe River Basin and is capable of capturing the spatiotemporal variations in groundwater storage in this region. Over the study period, mainly affected by rainfall, the terrestrial water storage and surface water storage in the Huaihe River Basin showed a decreasing trend, while groundwater storage showed a slight increasing trend. The duration of groundwater drought events in the basin ranged from 78 to 152 months, with an intensity of 82.77 to 104.4. The duration of drought gradually increased from north to south, while the intensity increased from south to north. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

14 pages, 8002 KiB  
Article
A UAV Thermal Imaging Format Conversion System and Its Application in Mosaic Surface Microthermal Environment Analysis
by Lu Jiang, Haitao Zhao, Biao Cao, Wei He, Zengxin Yun and Chen Cheng
Sensors 2024, 24(19), 6267; https://doi.org/10.3390/s24196267 - 27 Sep 2024
Abstract
UAV thermal infrared remote sensing technology, with its high flexibility and high temporal and spatial resolution, is crucial for understanding surface microthermal environments. Despite DJI Drones’ industry-leading position, the JPG format of their thermal images limits direct image stitching and further analysis, hindering [...] Read more.
UAV thermal infrared remote sensing technology, with its high flexibility and high temporal and spatial resolution, is crucial for understanding surface microthermal environments. Despite DJI Drones’ industry-leading position, the JPG format of their thermal images limits direct image stitching and further analysis, hindering their broad application. To address this, a format conversion system, ThermoSwitcher, was developed for DJI thermal JPG images, and this system was applied to surface microthermal environment analysis, taking two regions with various local zones in Nanjing as the research area. The results showed that ThermoSwitcher can quickly and losslessly convert thermal JPG images to the Geotiff format, which is further convenient for producing image mosaics and for local temperature extraction. The results also indicated significant heterogeneity in the study area’s temperature distribution, with high temperatures concentrated on sunlit artificial surfaces, and low temperatures corresponding to building shadows, dense vegetation, and water areas. The temperature distribution and change rates in different local zones were significantly influenced by surface cover type, material thermal properties, vegetation coverage, and building layout. Higher temperature change rates were observed in high-rise building and subway station areas, while lower rates were noted in water and vegetation-covered areas. Additionally, comparing the temperature distribution before and after image stitching revealed that the stitching process affected the temperature uniformity to some extent. The described format conversion system significantly enhances preprocessing efficiency, promoting advancements in drone remote sensing and refined surface microthermal environment research. Full article
(This article belongs to the Special Issue Advances on UAV-Based Sensing and Imaging)
Show Figures

Figure 1

14 pages, 3918 KiB  
Article
Preparations of Polyurethane Foam Composite (PUFC) Pads Containing Micro-/Nano-Crystalline Cellulose (MCC/NCC) toward the Chemical Mechanical Polishing Process
by Yi-Shen Huang, Yu-Wen Huang, Qiao-Wen Luo, Chao-Hsing Lin, Penjit Srinophakun, Supanicha Alapol, Kun-Yi Andrew Lin and Chih-Feng Huang
Polymers 2024, 16(19), 2738; https://doi.org/10.3390/polym16192738 - 27 Sep 2024
Abstract
Polyurethane foam (PUF) pads are widely used in semiconductor manufacturing, particularly for chemical mechanical polishing (CMP). This study prepares PUF composites with microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to improve CMP performance. MCC and NCC were characterized using scanning electron microscopy (SEM) [...] Read more.
Polyurethane foam (PUF) pads are widely used in semiconductor manufacturing, particularly for chemical mechanical polishing (CMP). This study prepares PUF composites with microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to improve CMP performance. MCC and NCC were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing average diameters of 129.7 ± 30.9 nm for MCC and 22.2 ± 6.7 nm for NCC, both with high crystallinity (ca. 89%). Prior to preparing composites, the study on the influence of the postbaked step on the PUF was monitored through Fourier-transform infrared spectroscopy (FTIR). After that, PUF was incorporated with MCC/NCC to afford two catalogs of polyurethane foam composites (i.e., PUFC-M and PUFC-N). These PUFCs were examined for their thermal and surface properties using a differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analyzer (DMA), and water contact angle (WCA) measurements. Tgs showed only slight changes but a notable increase in the 10% weight loss temperature (Td10%) for PUFCs, rising from 277 °C for PUF to about 298 °C for PUFCs. The value of Tan δ dropped by up to 11%, indicating improved elasticity. Afterward, tensile and abrasion tests were conducted, and we acquired significant enhancements in the abrasion performance (e.g., from 1.04 mm/h for the PUF to 0.76 mm/h for a PUFC-N) of the PUFCs. Eventually, we prepared high-performance PUFCs and demonstrated their capability toward the practical CMP process. Full article
(This article belongs to the Special Issue Polymer Materials for Sensors)
Show Figures

Figure 1

17 pages, 14769 KiB  
Article
Efficient Uranium Removal from Aqueous Solutions Using Silica-Based Adsorbents Functionalized with Various Polyamines
by Ping Zhang, Hongling Wang, Lifeng Chen, Wenlong Li, Toyohisa Fujita, Shunyan Ning and Yuezhou Wei
Toxics 2024, 12(10), 704; https://doi.org/10.3390/toxics12100704 - 27 Sep 2024
Abstract
With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins—SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA [...] Read more.
With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins—SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA (TETA: triethylenetetramine), and SiPMA-TEPA (TEPA: tetraethylenepentamine)—were successfully prepared, characterized, and evaluated in batch experiments. Characterization results showed that the silica-based polyamine resins were successfully prepared, and they exhibited a uniform shape and high specific surface area. SiPMA-DETA, SiPMA-TETA, and SiPMA-TEPA had nitrogen contents of 4.08%, 3.72%, and 4.26%, respectively. Batch experiments indicated that these adsorbents could efficiently remove uranium from aqueous solutions with a pH of 5–9. The adsorption kinetics of U(VI) were consistent with the pseudo-second-order model, indicating that the adsorption process was chemisorption and that adsorption equilibrium was achieved within 10 min. SiPMA-TEPA, with the longest polyamine chain, exhibited the highest adsorption capacity (>198.95 mg/g), while SiPMA-DETA, with the shortest polyamine chain, demonstrated the highest U(VI) adsorption efficiency (83%) with 100 mM Na2SO4. SiPMA-TEPA still removed over 90% of U(VI) from river water and tap water. The spectral analysis revealed that the N-containing functional groups on the ligand were bound to anionic uranium–carbonate species and possibly contributed to the adsorption efficiency. In general, this work presents three effective adsorbents for removing uranium from environmental water systems and thus significantly contributes to the field of environmental protection. Full article
(This article belongs to the Special Issue Radioactive Contamination and Radionuclide Removal)
Show Figures

Figure 1

16 pages, 2103 KiB  
Article
A Novel Surface Passivation Method of Pyrite within Rocks in Underwater Environments to Mitigate Acid Mine Drainage at Its Source
by Lijun Fan, Tiancheng Han, Xianxing Huang, Yixuan Yang, Tao Zhu, Weiwei Zhai, Daoyong Zhang and Xiangliang Pan
Minerals 2024, 14(10), 973; https://doi.org/10.3390/min14100973 - 27 Sep 2024
Abstract
Mitigating acid mine drainage (AMD) at its source, specifically within rocks containing pyrite in underwater environments, poses a significant environmental challenge worldwide. Existing passivation techniques are primarily designed for open-air conditions, involving direct contact with coating materials at a solid–liquid interface, making them [...] Read more.
Mitigating acid mine drainage (AMD) at its source, specifically within rocks containing pyrite in underwater environments, poses a significant environmental challenge worldwide. Existing passivation techniques are primarily designed for open-air conditions, involving direct contact with coating materials at a solid–liquid interface, making them ineffective beneath a water barrier. In this study, we introduce a novel passivation method inspired by the design of underwater bio-adhesives. Tannic acid (TA) combined with polyethylene glycol (PEG) was employed to form a hydrophobic film directly on the pyrite surface, overcoming water resistance and addressing the limitations of current techniques. Electrochemical experiments and chemical leaching experiments were conducted to evaluate the oxidation resistance of the passivating films. TA–PEG-coated pyrite exhibited a lower oxidation rate and a higher static contact angle of 126.2°, achieving suppression efficiencies of 71.6% for total Fe release and 68.1% for total S release. A comprehensive characterization approach, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), was employed to investigate the passivation mechanism. The results of this study may provide new insights into the preparation of simpler and greener passivating agents to suppress pyrite oxidation at its source in underwater environments. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

19 pages, 9463 KiB  
Article
The Sandwich-Structured PVA/PA/PVA Tri-Layer Nanofiltration Membrane with High Performance for Desalination and Pollutant Removal
by Weibin Cai, Yuzhe Wang, Yuannan Li, Hong Ye, Fuyuan Xiao, Lei Wang and Hengjun Gai
Water 2024, 16(19), 2752; https://doi.org/10.3390/w16192752 - 27 Sep 2024
Abstract
Nanofiltration (NF) has become a widely used technology in water treatment due to its environmental friendliness, energy efficiency, cost-effectiveness, and operational simplicity. However, polyamide (PA) NF membranes still face challenges, including low permeate flux, limited resistance to organic pollutants, and inadequate resilience to [...] Read more.
Nanofiltration (NF) has become a widely used technology in water treatment due to its environmental friendliness, energy efficiency, cost-effectiveness, and operational simplicity. However, polyamide (PA) NF membranes still face challenges, including low permeate flux, limited resistance to organic pollutants, and inadequate resilience to residual chlorine. To address these issues, this study developed a thin-film composite (TFC) NF membrane featuring a separation layer of sandwich structure. Initially, a single separation layer of polyvinyl alcohol (PVA) NF membrane was prepared, followed by the fabrication of a PA layer on its surface, and ultimately, a second PVA layer was constructed on the PA layer. The experimental results show that the PVA/PA/PVA sandwich structure TFC exhibits high permeability to pure water and robust resistance to both pollution and residual chlorine. The PVA-0.20/PA/PVA-0.20 TFC, prepared with a 0.20%w/v PVA solution, achieved a pure water flux of up to 22.05 L m−2 h−1 bar−1 (LMH/bar), which was 2.92 times higher than that of the control TFC membrane. Additionally, it demonstrated a salt rejection rate exceeding 96% for Na2SO4 and over 99% for Congo Red (CR) and Victoria Blue B (VB). In comparison with the control TFC membrane, the PVA-0.20/PA/PVA-0.20 membrane exhibited significantly enhanced resistance to pollution. Following immersion in a 1000 ppm NaClO solution for 4 h, the rejection rate of the control TFC membrane decreased markedly and that of the PVA-0.20/PA/PVA-0.20 membrane decreased marginally, indicating excellent resistance to residual chlorine. Due to the robust overall performance of the PVA/PA/PVA membrane, it holds potential advantages for application in treating reclaimed water or slightly polluted water. Full article
Show Figures

Figure 1

19 pages, 9800 KiB  
Article
Harnessing Chitosan Beads as an Immobilization Matrix for Zero-Valent Iron Nanoparticles for the Treatment of Cr(VI)-Contaminated Laboratory Residue
by Ignacio Daniel Rychluk, Ulises Casado, Víctor Nahuel Montesinos and Natalia Quici
Processes 2024, 12(10), 2101; https://doi.org/10.3390/pr12102101 - 27 Sep 2024
Abstract
Nanocomposites (NCs) consisting of zero-valent iron nanoparticles (nZVI) immobilized in chitosan (CS) were prepared and employed for the removal of hexavalent chromium (Cr(VI)) from both synthetic and real wastewater. Medium (MCS)- and high (HCS)-molecular-weight chitosan and stabilization with carboxymethylcellulose (CMC) and different nZVI [...] Read more.
Nanocomposites (NCs) consisting of zero-valent iron nanoparticles (nZVI) immobilized in chitosan (CS) were prepared and employed for the removal of hexavalent chromium (Cr(VI)) from both synthetic and real wastewater. Medium (MCS)- and high (HCS)-molecular-weight chitosan and stabilization with carboxymethylcellulose (CMC) and different nZVI loads were explored. Characterization through scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDS) and X-ray diffraction (XRD) revealed millimeter-sized spheres with micrometer-sized nZVI clusters randomly distributed. Better nanoparticle dispersion was observed in NCs from the CMC-MCS and HCS combinations. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that CS binds to Fe(II) or Fe(III) on the surface of nZVI through its functional groups -CONH-, -N-H, and -C-OH and through the -COO functional group of CMC, forming a bidentate bridge complex. Through experiments with synthetic waters, it was found that the elimination of Cr(VI) was favored by lowering the pH, obtaining the maximum percentage of Cr(VI) removal at pH 5.5. With real waters, it was shown that increasing the mass of NCs also improved the removal of Cr(VI), following a pseudo-second-order adsorption kinetics. The synthesized materials show great potential for applications in environmental remediation, showing good efficiency in the removal of Cr(VI) in wastewater. Full article
(This article belongs to the Special Issue Nanomaterials for Environmental Remediation Processes)
Show Figures

Graphical abstract

21 pages, 4318 KiB  
Article
Upgrading of Rice Straw Bio-Oil Using 1-Butanol over ZrO2-Fe3O4 Bimetallic Nanocatalyst Supported on Activated Rice Straw Biochar to Butyl Esters
by Alhassan Ibrahim, Islam Elsayed and El Barbary Hassan
Catalysts 2024, 14(10), 666; https://doi.org/10.3390/catal14100666 - 27 Sep 2024
Abstract
Bio-oil produced via fast pyrolysis, irrespective of the biomass source, faces several limitations, such as high water content, significant oxygenated compound concentration (35–40 wt.%), a low heating value (13–20 MJ/kg), and poor miscibility with fossil fuels. These inherent drawbacks hinder the bio-oil’s desirable [...] Read more.
Bio-oil produced via fast pyrolysis, irrespective of the biomass source, faces several limitations, such as high water content, significant oxygenated compound concentration (35–40 wt.%), a low heating value (13–20 MJ/kg), and poor miscibility with fossil fuels. These inherent drawbacks hinder the bio-oil’s desirable properties and usability, highlighting the necessity for advanced processing techniques to overcome these challenges and improve the bio-oil’s overall quality and applicability in energy and industrial sectors. To address the limitations of bio-oil, a magnetic bimetallic oxide catalyst supported on activated rice straw biochar (ZrO2-Fe3O4/AcB), which has not been previously employed for this purpose, was developed and characterized for upgrading rice straw bio-oil in supercritical butanol via esterification. Furthermore, the silica in the biochar, combined with the Lewis acid sites provided by ZrO2 and Fe3O4, offers Brønsted acid sites. This synergistic combination enhances the bio-oil’s quality by facilitating esterification, deoxygenation, and mild hydrogenation, thereby reducing oxygen content and increasing carbon and hydrogen levels. The effects of variables, including time, temperature, and catalyst load, were optimized using response surface methodology (RSM). The optimal reaction conditions were determined using a three-factor, one-response, and three-level Box-Behnken design (BBD). The ANOVA results at a 95% confidence level indicate that the results are statistically significant due to a high Fisher’s test (F-value = 37.07) and a low probability (p-value = 0.001). The minimal difference between the predicted R² and adjusted R² for the ester yield (0.0092) suggests a better fit. The results confirm that the optimal reaction conditions are a catalyst concentration of 1.8 g, a reaction time of 2 h, and a reaction temperature of 300 °C. Additionally, the catalyst can be easily recycled for four reaction cycles. Moreover, the catalyst demonstrated remarkable reusability, maintaining its activity through four consecutive reaction cycles. Its magnetic properties allow for easy separation from the reaction mixture using an external magnet. Full article
(This article belongs to the Collection Catalytic Conversion of Biomass to Bioenergy)
Show Figures

Figure 1

15 pages, 5818 KiB  
Article
Nano-Water-Alternating-Gas Simulation Study Considering Rock–Fluid Interaction in Heterogeneous Carbonate Reservoirs
by Seungmo Ko, Hyeri Park and Hochang Jang
Energies 2024, 17(19), 4846; https://doi.org/10.3390/en17194846 - 27 Sep 2024
Abstract
In carbonate reservoirs, nanoparticles can adhere to rock surfaces, potentially altering the rock wettability and modifying the absolute permeability. In the water-alternating-gas (WAG) process, the introduction of nanoparticles into the water phase, termed nano-water-alternating gas (NWAG), is a promising approach for enhancing oil [...] Read more.
In carbonate reservoirs, nanoparticles can adhere to rock surfaces, potentially altering the rock wettability and modifying the absolute permeability. In the water-alternating-gas (WAG) process, the introduction of nanoparticles into the water phase, termed nano-water-alternating gas (NWAG), is a promising approach for enhancing oil recovery and CO2 storage. The NWAG process can alter rock wettability and absolute permeability through the adsorption of nanoparticles on the rock surface. This study investigated the efficiency of the NWAG method, which utilizes nanofluids in CO2-enhanced oil recovery (EOR) processes to simultaneously recover oil and store CO2 using 1D core and 3D heterogeneous reservoir models. The simulation results of the 1D core model showed that applying the NWAG method enhanced both oil recovery and CO2 storage efficiency by increasing to 3%. In a 3D reservoir model, a Dykstra–Parsons coefficient of 0.4 was selected to represent reservoir heterogeneity. Additionally, the capillary trapping of CO2 during WAG injection was computed using Larsen and Skauge’s three-phase relative permeability hysteresis model. A sensitivity analysis was performed using the NWAG ratio, slug size, injection period, injection cycle, and nanofluid concentration. The results confirmed an increase of 0.8% in oil recovery and 15.2% in CO2 storage compared with the conventional WAG process. This mechanism suggests that nanofluids can enhance oil recovery and expand CO2 storage, improving the efficiency of both the oil production rate and CO2 storage compared to conventional WAG methods. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

14 pages, 5056 KiB  
Article
Fractal Analysis of Doped Strontium Titanate Photocatalyst
by Ivana Stajcic, Cristina Serpa, Bojana Simovic, Ivona Jankovic Castvan, Vladimir Dodevski, Vesna Radojevic and Aleksandar Stajcic
Fractal Fract. 2024, 8(10), 560; https://doi.org/10.3390/fractalfract8100560 - 27 Sep 2024
Abstract
In this research, the doping of SrTiO3 with Mn4+ was performed in order to evaluate the potential application as a photocatalyst for the degradation of organic dye pollutants. Since photocatalytic activity depends on grain microstructure, fractal analysis was used to estimate [...] Read more.
In this research, the doping of SrTiO3 with Mn4+ was performed in order to evaluate the potential application as a photocatalyst for the degradation of organic dye pollutants. Since photocatalytic activity depends on grain microstructure, fractal analysis was used to estimate the Hausdorff dimension to provide a more thorough investigation of Mn@SrTiO3 morphology. Structural analysis by infrared spectroscopy indicated the incorporation of Mn4+ into the SrTiO3 lattice, while by using x-ray diffraction, the crystallite size of 44 nm was determined. The photocatalytic activity test performed on complex ethyl violet organic dye revealed potential for Mn@SrTiO3 application in water treatment. Based on fractal regression analysis, a good estimate was obtained for the reconstruction of grain shape, with a Hasudorff dimension of 1.13679, which was used to find the best kinetics model for the photodegradation reaction. The experimental data showed a nearly linear fit with fractal-like pseudo-zero order. These findings and applications of fractal dimensions could contribute to future characterizations of photocatalysts, providing a deeper understanding of surface properties and their influence on photocatalytic activity. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

20 pages, 7811 KiB  
Article
Influence and Mechanism of Fertilization and Irrigation of Heavy Metal Accumulation in Salinized Soils
by Dandan Yu, Qingfeng Miao, Haibin Shi, Zhuangzhuang Feng, Weiying Feng, Zhen Li and José Manuel Gonçalves
Agriculture 2024, 14(10), 1694; https://doi.org/10.3390/agriculture14101694 - 27 Sep 2024
Abstract
The impact of fertilization and irrigation on heavy metal accumulation in saline–alkali soil and its underlying mechanisms are critical issues given the constraints that soil salinization places on agricultural development and crop quality. This study addressed these issues by investigating the effects of [...] Read more.
The impact of fertilization and irrigation on heavy metal accumulation in saline–alkali soil and its underlying mechanisms are critical issues given the constraints that soil salinization places on agricultural development and crop quality. This study addressed these issues by investigating the effects of adjusting organic fertilizer types, proportions, and irrigation volumes on the physicochemical properties of lightly to moderately saline–alkali soils and analyzing the interaction mechanisms between microorganisms and heavy metals. The results indicate that the rational application of organic fertilizers combined with supplemental irrigation can mitigate soil salinity accumulation and water deficits, and reduce the soil pH, thereby enhancing soil oxidation, promoting nitrogen transformation and increasing nitrate–nitrogen levels. As the proportion of organic fertilizers increased, heavy metal residues, enrichment, and risk indices in the crop grains also increased. Compared to no irrigation, supplemental irrigation of 22 mm during the grain-filling stage increased soil surface Cd content, Zn content, and the potential ecological risk index (HRI) by 10.2%, 3.1%, and 8%, respectively, while simultaneously reducing the heavy metal content in grains by 12–13.5% and decreasing heavy metal enrichment. Principal component analysis revealed the primary factors influencing Cu and Zn residues and Cd accumulation in the crop grains. Soil salinity was significantly negatively correlated with soil pH, organic matter, total nitrogen, and ammonium nitrogen, whereas soil organic matter, total nitrogen, ammonium nitrogen, soil pH, oxidation–reduction potential, soluble nitrogen, and microbial biomass nitrogen were positively correlated. The accumulation and residues of Zn and Cu in the soil were more closely correlated with the soil properties compared to those of Cd. Specifically, Zn accumulation on the soil surface was primarily related to aliphatic organic functional groups, followed by soil salinity. Residual Zn in the crop grains was primarily associated with soil oxidation–reduction properties, followed by soil moisture content. The accumulation of Cu on the soil surface was mainly correlated with the microbial biomass carbon (MBC), whereas the residual Cu in the crop grains was primarily linked to the soil moisture content. These findings provide theoretical insights for improving saline–alkali soils and managing heavy metal contamination, with implications for sustainable agriculture and environmental protection. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

Back to TopTop