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Abstract

In this paper a new discriminative word align-
ment method is presented. This approach
models directly the alignment matrix by a con-
ditional random field (CRF) and so no restric-
tions to the alignments have to be made. Fur-
thermore, it is easy to add features and so all
available information can be used. Since the
structure of the CRFs can get complex, the in-
ference can only be done approximately and
the standard algorithms had to be adapted. In
addition, different methods to train the model
have been developed. Using this approach the
alignment quality could be improved by up
to 23 percent for 3 different language pairs
compared to a combination of both IBM4-
alignments. Furthermore the word alignment
was used to generate new phrase tables. These
could improve the translation quality signifi-
cantly.

1 Introduction

In machine translation parallel corpora are one very
important knowledge source. These corpora are of-
ten aligned at the sentence level, but to use them
in the systems in most cases a word alignment is
needed. Therefore, for a given source sentence fJ

1

and a given target sentence eI1 a set of links (j, i) has
to be found, which describes which source word fj

is translated into which target word ei.
Most SMT systems use the freely available

GIZA++-Toolkit to generate the word alignment.
This toolkit implements the IBM- and HMM-
models introduced in (Brown et al., 1993; Vogel et
al., 1996). They have the advantage that they are

trained unsupervised and are well suited for a noisy-
channel approach. But it is difficult to include addi-
tional features into these models.

In recent years several authors (Moore et al.,
2006; Lacoste-Julien et al., 2006; Blunsom and
Cohn, 2006) proposed discriminative word align-
ment frameworks and showed that this leads to im-
proved alignment quality. In contrast to generative
models, these models need a small amount of hand-
aligned data. But it is easy to add features to these
models, so all available knowledge sources can be
used to find the best alignment.

The discriminative model presented in this pa-
per uses a conditional random field (CRF) to model
the alignment matrix. By modeling the matrix no
restrictions to the alignment are required and even
n:m alignments can be generated. Furthermore, this
makes the model symmetric, so the model will pro-
duce the same alignment no matter which language
is selected as source and which as target language.
In contrast, in generative models the alignment is a
function where a source word aligns to at most one
target word. So the alignment is asymmetric.

The training of this discriminative model has to be
done on hand-aligned data. Different methods were
tested. First, the common maximum-likelihood ap-
proach was used. In addition to this, a method to
optimize the weights directly towards a word align-
ment metric was developed.

The paper is structured as follows: Section 2 and
3 present the model and the training. In Section 4
the model is evaluated in the word alignment task as
well as in the translation task. The related work and
the conclusion are given in Sections 5 and 6.
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Figure 1: Alignment Example

2 The Model

In the approach presented here the word alignment
matrix is modeled by a conditional random field
(CRF). A CRF is an unidirectional graphical model.
It models the conditional distribution over random
variables. In most applications like (Tseng et al.,
2005; Sha and Pereira, 2003), a sequential model is
used. But to model the alignment matrix the graphi-
cal structure of the model is more complex.

The alignment matrix is described by a random
variable yji for every source and target word pair
(fj , ei). These variables can have two values, 0
and 1, indicating whether these words are transla-
tions of each other or not. An example is shown
in Figure 1. Gray circles represent variables with
value 1, white circles stand for variables with value
0. Consequently, a word with zero fertility is indi-
rectly modeled by setting all associated random vari-
ables to a value of 0.

The structure of the CRF is described by a fac-
tored graph like it was done, for example, in (Lan
et al., 2006). In this bipartite graph there are two
different types of nodes. First, there are hidden
nodes, which correspond to the random variables.
The second type of nodes are the factored nodes c
. These are not drawn in Figure 1 to keep the pic-
ture clear, but they are shown in Figure 2. They
define a potential Φc on the random variables Vc

they are connected to. This potential is used to
describe the probability of an alignment based on
the information encoded in the features. This po-
tential is a log-linear combination of some features

Fc(Vc) = (f1(Vc), . . . , fn(Vc)) and it can be written
as:

Φc(Vc) = exp(Θ ∗ Fc(Vc)) = exp(
∑
k

θk ∗ fk(Vc))

(1)
with the weights Θ. Then the probability of an
assignment of the random variables, which corre-
sponds to a word alignment, can be expressed as:

pΘ(y|e, f) =
1

Z(e, f)

∏
c∈VFN

Φc(Vc) (2)

with VFN the set of all factored nodes in the graph,
and the normalization factor Z(e, f) defined as:

Z(e, f) =
∑
Y

∏
c∈VFN

Φc(Vc) (3)

where Y is the set of all possible alignments.
In the presented model there are four different

types of factored nodes corresponding to four groups
of features.

2.1 Features

One main advantage of the discriminative frame-
work is the ability to use all available knowledge
sources by introducing additional features. Differ-
ent features have been developed to capture different
aspects of the word-alignment.

The first group of features are those that depend
only on the source and target words and may there-
fore be called local features. Consequently, the
factored node corresponding to such a feature is
connected to one random variable only (see Figure
2(a)). The lexical features, which represent the lexi-
cal translation probability of the words belong to this
group. In our experiments the IBM4-lexica in both
directions were used. Furthermore, there are source
and target normalized lexical features for every lexi-
con. The source normalized feature, for example, is
normalized in a way, that all translation probabilities
of one source word to target words in the sentences
sum up to one as shown in equation 4.

psourceN (fj , ei) =
plex(fj , ei)∑

1≤j≤J plex(fj , ei)
(4)

ptargetN (fj , ei) =
plex(fj , ei)∑

1≤i≤I plex(fj , ei)
(5)
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Figure 2: Different features

(a) Local features (b) Fertility features (c) First order features

They compare the possible translations in one sen-
tence similar to the rank feature used in the approach
presented by Moore (2006). In addition, the follow-
ing local features are used: The relative distance of
the sentence positions of both words. This should
help to aligned words that occur several times in the
sentence. The relative edit distance between source
and target word was used to improve the align-
ment of cognates. Furthermore a feature indicating
if source and target words are identical was added
to the system. This helps to align dates, numbers
and names, which are quite difficult to align using
only lexical features since they occur quite rarely.
In some of our experiments the links of the IBM4-
alignments are used as an additional local feature.
In the experiments this leads to 22 features. Lastly,
there are indicator features for every possible com-
bination of Parts-of-Speech(POS)-tags and for Nw

high frequency words. In the experiments the 50
most frequent words were used, which lead to 2500
features and around 1440 POS-based features were
used. The POS-feature can help to align words, for
which the lexical features are weak.

The next group of features are the fertility fea-
tures. They model the probability that a word trans-
lates into one, two, three or more words, or does not
have any translation at all. The corresponding fac-
tored node for a source word is connected to all I
random variables representing the links to the target
words, and the node for a target word is connected
to all the J nodes for the links to source words (s.
Figure 2(b)). In this group of features there are two
different types. First, there are indicator features for
the different fertilities. To reduce the complexity of
the calculation this is only done up to a given max-
imal fertility Nf and there is an additional indicator
feature for all fertilities larger than Nf . This is an

extension of the empty word indicator feature used
in other discriminative word alignment models. Fur-
thermore, there is a real-valued feature, which can
use the GIZA++ probabilities for the different fer-
tilities. This has the advantage compared to the in-
dicator feature that the fertility probabilities are not
the same for all words. But here again, all fertilities
larger than a givenNf are not considered separately.
In the evaluation Nf = 3 was selected. So 12 fertil-
ity features were used in the experiments.

The first-order features model the first-order de-
pendencies between the different links. They are
grouped into different directions. The factored node
for the direction (s, t) is connected to the variable
nodes yji and y(j+s)(i+t). For example, the most
common direction is (1, 1), which describes the sit-
uation that if the words at positions j and i are
aligned, also the immediate successor words in both
sentences are aligned as shown in Figure 2(c). In
the default configuration the directions (1, 1), (2, 1),
(1, 2) and (1,−1) are used. So this feature is able to
explicitly model short jumps in the alignment, like
in the directions (2, 1) and (1, 2) as well as crossing
links like in the directions (1,−1). Furthermore, it
can be used to improve the fertility modeling. If a
word has got a fertility of two, it is often aligned to
two consecutive words. Therefore, for example in
the Chinese-English system the directions (1, 0) and
(0, 1) were used in addition. This does not mean,
that other directions in the alignment are not possi-
ble, but other jumps in the alignment do not improve
the probability of the alignment. For every direction,
an indicator feature that both links are active and an
additional one, which also depends on the POS-pair
of the first word pair is used. For a configuration
with 4 directions this leads to 4 indicator features
and, for example, 5760 POS-based features.
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The last group of features are phrase features,
which are introduced to model context dependen-
cies. First a training corpus is aligned. Then, groups
of source and target words are extracted. Words
build a group, if all source words in the group are
aligned to all target words. The relative frequency
of this alignment is used as the feature and indicator
features for 1 : 1, 1 : n, n : 1 and n : m alignments.
The corresponding factored node is connected to all
links that are important for this group.

2.2 Alignment

The structure of the described CRF is quite complex
and there are many loops in the graphical structure,
so the inference cannot be done exactly. For exam-
ple, the random variables y(1,1) and y(1,2) as well as
y(2,1) and y(2,2) are connected by the source fertil-
ity nodes of the words f1 and f2. Furthermore the
variables y(1,1) and y(2,1) as well as y(1,2) and y(2,2)

are connected by the target fertility nodes. So these
nodes build a loop as shown in Figure 2(b). The first
order feature nodes generate loops as well. Conse-
quently an approximation algorithm has to be used.
We use the belief propagation algorithm introduced
in (Pearl, 1966). In this algorithm messages consist-
ing of a pair of two values are passed along the edges
between the factored and hidden nodes for several it-
erations. In each iterations first messages from the
hidden nodes to the connected factored nodes are
sent. These messages describe the belief about the
value of the hidden node calculated from the incom-
ing messages of the other connected factored nodes.
Afterwards the messages from the factored nodes
to the connected hidden nodes are send. They are
calculated from the potential and the other incom-
ing messages. This algorithm is not exact in loopy
graphs and it is not even possible to prove that it con-
verges, but in (Yedidia et al., 2003) it was shown,
that this algorithm leads to good results.

The algorithm cannot be used directly, since the
calculation of the message sent from a factored node
to a random variable has an exponential runtime
in the number of connected random variables. Al-
though we limit the number of considered fertili-
ties, the number of connected random variables can
still be quite large for the fertility features and the
phrase features, especially in long sentences. To re-
duce this complexity, we leverage the fact that the

potential can only have a small number of different
values. This will be shown for the fertility feature
node. For a more detailed description we refer to
(Niehues, 2007). The message sent from a factored
node to a random variable is defined in the algorithm
as:

mc→(j,i)(v) =
∑
Vc/v

Φc(Vc) (6)

∏
(j,i)′∈N(c)/(j,i)

n(j,i)′→c(v
′)

where Vc is the set of random variables connected
to the factored node and

∑
Vc/v is the sum over all

possible values of Vc where the random variable yji

has the the value v. So the value for the message is
calculated by looking at every possible combination
of the other incoming messages. Then the belief for
this combination is multiplied with the potential of
this combination. This can be rewritten, since the
potential only depends on how many links are active,
not on which ones are active.

mc→(j,i)(v) =
Nf∑
n=0

Φc(n+ v) ∗ α(n) (7)

+ Φc(Nf + 1) ∗ α(Nf + 1)

with α(n) the belief for a fertility of n of the other
connected nodes and α(Nf +1) the belief for a fertil-
ity bigger than Nf with Φc(Nf + 1) the correspond-
ing potential. The belief for a configuration of some
random variables is calculated by the product over
all out-going messages. So α(n) is calculated by the
sum over all possible configurations that lead to a
fertility of n over these products.

α(n) =
∑

Vc/v:|Vc|=n

∏
(j,i)′∈Vc/(j,i)

n(j,i)′→c(v
′)

α(Nf + 1) =
∑

Vc/v:|Vc|>Nf

∏
(j,i)′∈Vc/(j,i)

n(j,i)′→c(v
′)

The values of the sums can be calculated in linear
time using dynamic programming.

3 Training

The weights of the CRFs are trained using a gradient
descent for a fixed number of iterations, since this
approach leads already to quite good results. In the
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experiments 200 iterations turned out to be a good
number.

The default criteria to train CRFs is to maximize
the log-likelihood of the correct solution, which is
given by a manually created gold standard align-
ment. Therefore, the feature values of the gold stan-
dard alignment and the expectation values have to be
calculated for every factored node. This can be done
using again the belief propagation algorithm.

Often, this hand-aligned data is annotated with
sure and possible links and it would be nice, if the
training method could use this additional informa-
tion. So we developed a method to optimize the
CRFs towards the alignment error rate (AER) or the
F-score with sure and possible links as introduced
in (Fraser and Marcu, 2007). The advantage of the
F-score is, that there is an additional parameter α,
which allows to bias the metric more towards pre-
cision or more towards recall. To be able to use
a gradient descent method to optimize the weights,
the derivation of the word alignment metric with re-
spect to these weights must be computed. This can-
not be done for the mentioned metrics since they are
not smooth functions. We follow (Gao et al., 2006;
Suzuki et al., 2006) and approximate the metrics us-
ing the sigmoid function. The sigmoid function uses
the probabilities for every link calculated by the be-
lief propagation algorithm.

In our experiments we compared the maximum
likelihood method and the optimization towards the
AER. We also tested combinations of both. The best
results were obtained when the weights were first
trained using the ML method and the resulting fac-
tors were used as initial values for the AER opti-
mization. Another problem is that the POS-based
features and high frequency word features have a
lot more parameters than all other features and with
these two types of features overfitting seems to be a
bigger problem. Therefore, these features are only
used in a third optimization step, in which they are
optimized towards the AER, keeping all other fea-
ture weights constant. Initial results using a Gaus-
sian prior showed no improvement.

4 Evaluation

The word alignment quality of this approach was
tested on three different language pairs. On the

Spanish-English task the hand-aligned data provided
by the TALP Research Center (Lambert et al., 2005)
was used. As proposed, 100 sentences were used as
development data and 400 as test data. The so called
“Final Text Edition of the European Parliament Pro-
ceedings” consisting of 1.4 million sentences and
this hand-aligned data was used as training corpus.
The POS-tags were generated by the Brill-Tagger
(Brill, 1995) and the FreeLing-Tagger (Asterias et
al., 2006) for the English and the Spanish text re-
spectively. To limit the number of different tags for
Spanish we grouped them according to the first 2
characters in the tag names.

A second group of experiments was done on
an English-French text. The data from the 2003
NAACL shared task (Mihalcea and Pedersen, 2003)
was used. This data consists of 1.1 million sen-
tences, a validation set of 37 sentences and a test
set of 447 sentences, which have been hand-aligned
(Och and Ney, 2003). For the English POS-tags
again the Brill Tagger was used. For the French side,
the TreeTagger (Schmid, 1994) was used.

Finally, to test our alignment approach with lan-
guages that differ more in structure a Chinese-
English task was selected. As hand-aligned data
3160 sentences aligned only with sure links were
used (LDC2006E93). This was split up into 2000
sentences of test data and 1160 sentences of devel-
opment data. In some experiments only the first
200 sentences of the development data were used to
speed up the training process. The FBIS-corpus was
used as training corpus and all Chinese sentences
were word segmented with the Stanford Segmenter
(Tseng et al., 2005). The POS-tags for both sides
were generated with the Stanford Parser (Klein and
Manning, 2003).

4.1 Word alignment quality

The GIZA++-toolkit was used to train a baseline
system. The models and alignment information
were then used as additional knowledge source for
the discriminative word alignment. For the first two
tasks, all heuristics of the Pharaoh-Toolkit (Koehn
et al., 2003) as well as the refined heuristic (Och and
Ney, 2003) to combine both IBM4-alignments were
tested and the best ones are shown in the tables. For
the Chinese task only the grow-diag-final heuristic
was used.
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Table 1: AER-Results on EN-ES task

Name Dev Test
IBM4 Source-Target 21.49
IBM4 Target-Source 19.23
IBM4 grow-diag 16.48
DWA IBM1 15.26 20.82
+ IBM4 14.23 18.67
+ GIZA-fert. 13.28 18.02
+ Link feature 12.26 15.97
+ POS 9.21 15.36
+ Phrase feature 8.84 14.77

Table 2: AER-Results on EN-FR task

Name Dev Test
IBM4 Source-Target 8.6
IBM4 Target-Source 9.86
IBM4 intersection 5.38
DWA IBM1 5.54 6.37
+ HFRQ/POS 3.67 5.57
+ Link Feature 3.13 4.80
+ IBM4 3.60 4.60
+ Phrase feature 3.32 4.30

The results measured in AER of the discrimina-
tive word alignment for the English-Spanish task are
shown in Table 1. In the experiments systems using
different knowledge sources were evaluated. The
first system used only the IBM1-lexica of both di-
rections as well as the high frequent word features.
Then the IBM4-lexica were used instead and in
the next system the GIZA++-fertilities were added.
As next knowledge source the links of both IBM4-
alignments were added. Furthermore, the system
could be improved by using also the POS-tags. For
the last system, the whole EPPS-corpus was aligned
with the previous system and the phrases were ex-
tracted. Using them as additional features, the best
AER of 14.77 could be reached. This is an improve-
ment of 1.71 AER points or 10% relative to the best
baseline system.

Similar experiments have also been done for the
English-French task. The results measured in AER
are shown in Table 2. The IBM4 system uses
the IBM4 lexica and links instead of the IBM1s

Table 3: AER-Results on CH-EN task

Name Test
IBM4 Source-target 44.94
IBM4 Target-source 37.43
IBM4 Grow-diag-final 35.04
DWA IBM4 30.97
- similarity 30.24
+ Add. directions 27.96
+ Big dev 27.26
+ Phrase feature 27.00
+ Phrase feature(high P.) 26.90

and adds the GIZA++-fertilities. For the “phrase
feature”-system the corpus was aligned with the
“IBM4”-system and the phrases were extracted.
This led to the best result with an AER of 4.30. This
is 1.08 points or 20% relative improvement over the
best generative system. One reason, why less knowl-
edge sources are needed to be as good as the base-
line system, may be that there are many possible
links in the reference alignment and the discrimina-
tive framework can better adapt to this style. So a
system using only features generated by the IBM1-
model could already reach an AER of 4.80.

In Table 3 results for the Chinese-English align-
ment task are shown1. The first system was only
trained on the smaller development set and used the
same knowledge source than the “IBM4”-systems
in the last experiment. The system could be im-
proved a little bit by removing the similarity fea-
ture and adding the directions (0, 1) and (1, 0) to
the model. Then the same system was trained on
the bigger development set. Again the parallel cor-
pus was aligned with the discriminative word align-
ment system, once trained towards AER and once
more towards precision, and phrases were extracted.
Overall, an improvement by 8.14 points or 23% over
the baseline system could be achieved.

These experiments show, that every knowledge
source that is available should be used. For all lan-
guages pairs additional knowledge sources lead to
an improvement in the word alignment quality. A
problem of the discriminative framework is, that
hand-aligned data is needed for training. So the

1For this task no results on the development task are given
since different development sets were used
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Table 4: Translation results for EN-ES

Name Dev Test
Baseline 40.04 47.73

DWA 41.62 48.13

Table 5: Translation results for CH-EN

Name Dev Test
Baseline 27.13 22.56

AER 27.63 23.85∗

F0.3 26.34 22.35
F0.7 26.40 23.52∗

Phrase feature AER 25.84 23.42∗

Phrase feature F0.7 26.41 23.92∗

French-English dev set may be too small, since the
best system on the development set does not cor-
respond to the best system on the test set. And as
shown in the Chinese-English task additional data
can improve the alignment quality.

4.2 Translation quality

Since the main application of the word alignment is
statistical machine translation, the aim was not only
to generate better alignments measured in AER, but
also to generate better translations. Therefore, the
word alignment was used to extract phrases and use
them then in the translation system. In all translation
experiments the beam decoder as described in (Vo-
gel, 2003) was used together with a 3-gram language
model and the results are reported in the BLUE met-
ric. For test set translations the statistical signifi-
cance of the results was tested using the bootstrap
technique as described in (Zhang and Vogel, 2004).
The baseline system used the phrases build with the
Pharaoh-Toolkit.

The new word alignment was tested on the
English-Spanish translation task using the TC-Star
07 development and test data. The discriminative
word alignment (DWA) used the configuration de-
noted by +POS system in Table 1. With this con-
figuration it took around 4 hours to align 100K sen-
tences. But, of course, generating the alignment can
be parallelized to speed up the process. As shown
in Table 4 the new word alignment could generate
better translations as measured in BLEU scores.

For the Chinese-English task some experiments
were made to study the effect of different training
schemes. Results are shown in Table 5. The sys-
tems used the MT’03 eval set as development data
and the NIST part of the MT’06 eval set was used as
test set. Scores significantly better than the baseline
system are mark by a ∗. The first three systems used
a discriminative word alignment generated with the
configuration as the one described as “+ big dev”-
system in Table 3. The first one was optimized to-
wards AER, the other two were trained towards the
F-score with an α-value of 0.3 (recall-biased) and
0.7 (precision-biased) respectively. A higher pre-
cision word alignment generates fewer alignment
links, but a larger phrase table. For this task, the
precision seems to be more important. So the sys-
tem trained towards the AER and the F-score with
an α-value of 0.7 performed better than the other
systems. The phrase features gave improved perfor-
mance only when optimized towards the F-score, but
not when optimized towards the AER.

5 Comparison to other work

Several discriminative word alignment approaches
have been presented in recent years. The one most
similar to ours is the one presented by Blunsom
and Cohn (2006). They also used CRFs, but they
used two linear-chain CRFs, one for every direc-
tions. Consequently, they could find the optimal so-
lution for each individual CRF, but they still needed
the heuristics to combine both alignments. They
reached an AER of 5.29 using the IBM4-alignment
on the English-French task (compared to 4.30 of our
approach).

Lacoste-Julien et al. (2006) enriched the bipartite
matching problem to model also larger fertilities and
first-or der dependencies. They could reach an AER
of 3.8 on the same task, but only if they also included
the posteriors of the model of Liang et al. (2006).
Using only the IBM4-alignment they generated an
alignment with an AER of 4.5. But they did not use
any POS-based features in their experiments.

Finally, Moore et al. (2006) used a log-linear
model for the features and performed a beam search.
They could reach an AER as low as 3.7 with both
types of alignment information. But they presented
no results using only the IBM4-alignment features.
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6 Conclusion

In this paper a new discriminative word alignment
model was presented. It uses a conditional random
field to model directly the alignment matrix. There-
fore, the algorithms used in the CRFs had to be
adapted to be able to model dependencies between
many random variables. Different methods to train
the model have been developed. Optimizing the F-
score allows to generate alignments focusing more
on precision or on recall. For the model a multitude
of features using the different knowledge sources
have been developed. The experiments showed that
the performance could be improved by using these
additional knowledge sources. Furthermore, the use
of a general machine learning framework like the
CRFs enables this alignment approach to benefit
from future improvements in CRFs in other areas.

Experiments on 3 different language pairs have
shown that word alignment quality as well as trans-
lation quality could be improved. In the translation
experiments it was shown that the improvement is
significant at a significance level of 5%.
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