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Abstract

Word alignments that violate syntactic cor-
respondences interfere with the extraction
of string-to-tree transducer rules for syntax-
based machine translation. We present an
algorithm for identifying and deleting incor-
rect word alignment links, using features of
the extracted rules. We obtain gains in both
alignment quality and translation quality in
Chinese-English and Arabic-English transla-
tion experiments relative to a GIZA++ union
baseline.

1 Introduction

1.1 Motivation

Word alignment typically constitutes the first stage
of the statistical machine translation pipeline.
GIZA++ (Och and Ney, 2003), an implementation
of the IBM (Brown et al., 1993) and HMM (?)
alignment models, is the most widely-used align-
ment system. GIZA++unionalignments have been
used in the state-of-the-art syntax-based statistical
MT system described in (Galley et al., 2006) and in
the hierarchical phrase-based system Hiero (Chiang,
2007). GIZA++refinedalignments have been used
in state-of-the-art phrase-based statistical MT sys-
tems such as (Och, 2004); variations on the refined
heuristic have been used by (Koehn et al., 2003)
(diaganddiag-and) and by the phrase-based system
Moses (grow-diag-final) (Koehn et al., 2007).

GIZA++ union alignments have high recall but
low precision, whileintersectionor refined align-

ments have high precision but low recall.1 There are
two natural approaches to improving upon GIZA++
alignments, then: deleting links from union align-
ments, or adding links to intersection or refined
alignments. In this work, we delete links from
GIZA++ union alignments to improve precision.

The low precision of GIZA++ union alignments
poses a particular problem for syntax-based rule ex-
traction algorithms such as (Quirk et al., 2005; Gal-
ley et al., 2006; Huang et al., 2006; Liu et al.,
2006): if the incorrect links violate syntactic corre-
spondences, they force the rule extraction algorithm
to extract rules that are large in size, few in number,
and poor in generalization ability.

Figure 1 illustrates this problem: the dotted line
represents an incorrect link in the GIZA++ union
alignment. Using the rule extraction algorithm de-
scribed in (Galley et al., 2004), we extract the rules
shown in the leftmost column (R1–R4). Rule R1 is
large and unlikely to generalize well. If we delete
the incorrect link in Figure 1, we can extract the
rules shown in the rightmost column (R2–R9): Rule
R1, the largest rule from the initial set, disappears,
and several smaller, more modular rules (R5–R9) re-
place it.

In this work, we present a supervised algorithm
that uses these two features of the extracted rules
(size of largest rule and total number of rules), as
well as a handful of structural and lexical features,
to automatically identify and delete incorrect links
from GIZA++ union alignments. We show that link

1For a complete discussion of alignment symmetrization
heuristics, including union, intersection, and refined, refer to
(Och and Ney, 2003).
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Figure 1: The impact of incorrect alignment links upon rule extraction. Using the original alignment (including all
links shown) leads to the extraction of the tree-to-string transducer rules whose left hand sides are rooted at the solid
boxed nodes in the parse tree (R1, R2, R3, and R4). Deleting the dotted alignment link leads to the omission of rule
R1, the extraction of R9 in its place, the extraction of R2, R3, and R4 as before, and the extraction of additional rules
whose left hand sides are rooted at the dotted boxed nodes in the parse tree (R5, R6, R7, R8).
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deletion improves alignment quality and translation
quality in Chinese-English and Arabic-English MT,
relative to a strong baseline. Our link deletion al-
gorithm is easy to implement, runs quickly, and has
been used by a top-scoring MT system in the Chi-
nese newswire track of the 2008 NIST evaluation.

1.2 Related Work

Recently, discriminative methods for alignment
have rivaled the quality of IBM Model 4 alignments
(Liu et al., 2005; Ittycheriah and Roukos, 2005;
Taskar et al., 2005; Moore et al., 2006; Fraser and
Marcu, 2007b). However, except for (Fraser and
Marcu, 2007b), none of these advances in align-
ment quality has improved translation quality of a
state-of-the-art system. We use a discriminatively
trained model to identify and delete incorrect links,
and demonstrate that these gains in alignment qual-
ity lead to gains in translation quality in a state-
of-the-art syntax-based MT system. In contrast to
the semi-supervised LEAF alignment algorithm of
(Fraser and Marcu, 2007b), which requires 1,500-
2,000 CPUdaysper iteration to align 8.4M Chinese-
English sentences (anonymous, p.c.), link deletion
requires only 450 CPUhoursto re-align such a cor-
pus (after initial alignment by GIZA++, which re-
quires 20-24 CPU days).

Several recent works incorporate syntactic fea-
tures into alignment. (May and Knight, 2007) use
syntactic constraints to re-align a parallel corpus that
has been aligned by GIZA++ as follows: they extract
string-to-tree transducer rules from the corpus, the
target parse trees, and the alignment; discard the ini-
tial alignment; use the extracted rules to construct a
forest of possible string-to-tree derivations for each
string/tree pair in the corpus; use EM to select the
Viterbi derivation tree for each pair; and finally, in-
duce a new alignment from the Viterbi derivations,
using the re-aligned corpus to train a syntax-based
MT system. (May and Knight, 2007) differs from
our approach in two ways: first, the set of possible
re-alignments they consider for each sentence pair is
limited by the initial GIZA++ alignments seen over
the training corpus, while we consider all alignments
that can be reached by deleting links from the ini-
tial GIZA++ alignment for that sentence pair. Sec-
ond, (May and Knight, 2007) use a time-intensive
training algorithm to select the best re-alignment

for each sentence pair, while we use a fast greedy
search to determine which links to delete; in con-
trast to (May and Knight, 2007), who require 400
CPU hours to re-align 330k Chinese-English sen-
tence pairs (anonymous, p.c), link deletion requires
only 18 CPU hours to re-align such a corpus.

(Lopez and Resnik, 2005) and (Denero and Klein,
2007) modify the distortion model of the HMM
alignment model (Vogel et al., 1996) to reflect tree
distance rather than string distance; (Cherry and
Lin, 2006) modify an ITG aligner by introducing
a penalty for induced parses that violate syntac-
tic bracketing constraints. Similarly to these ap-
proaches, we use syntactic bracketing to constrain
alignment, but our work extends beyond improving
alignment quality to improve translation quality as
well.

2 Link Deletion

We propose an algorithm to re-align a parallel bitext
that has been aligned by GIZA++ (IBM Model 4),
then symmetrized using the union heuristic. We then
train a syntax-based translation system on the re-
aligned bitext, and evaluate whether the re-aligned
bitext yields a better translation model than a base-
line system trained on the GIZA++ union aligned
bitext.

2.1 Link Deletion Algorithm

Our algorithm for re-alignment proceeds as follows.
We make a single pass over the corpus. For each sen-
tence pair, we initialize the alignmentA = Ainitial

(the GIZA++ union alignment for that sentence
pair). We represent the score ofA as a weighted
linear combination of featureshi of the alignment
A, the target parse treeparse(e) (a phrase-structure
syntactic representation ofe), and the source string
f :

score(A) =
n∑

i=0

λi · hi(A, parse(e), f)

We define abranchof links to be acontiguous1-
to-many alignment.2 We define two alignments,A

2In Figure 1, the 1-to-many alignment formed by{ýýý)))-
its, ýýý)))- own,ýýý)))-country} constitutes a branch, but the
1-to-many alignment formed by{ñññ���-starts,ñññ���-out,ñññ���-
needs} does not.
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and A′, to beneighborsif they differ only by the
deletion of a link orbranchof links. We consider all
alignmentsA′ in the neighborhoodof A, greedily
deleting the linkl or branch of linksb maximizing
the score of the resulting alignmentA′ = A \ l or
A′ = A \ b. We delete links until no further increase
in the score ofA is possible.3

In section 2.2 we describe the featureshi, and in
section 2.4 we describe how to set the weightsλi.

2.2 Features

2.2.1 Syntactic Features

We use two features of the string-to-tree trans-
ducer rules extracted fromA, parse(e), andf ac-
cording to the rule extraction algorithm described in
(Galley et al., 2004):

ruleCount: Total number of rules extracted from
A, parse(e), and f . As Figure 1 illustrates, in-
correct links violating syntactic brackets tend to de-
creaseruleCount; ruleCount increases from 4 to 8
after deleting the incorrect link.

sizeOfLargestRule: The size, measured in terms
of internal nodes in the target parse tree, of the single
largest rule extracted fromA, parse(e), andf . In
Figure 1, the largest rules in the leftmost and right-
most columns are R1 (with 9 internal nodes) and R9
(with 4 internal nodes), respectively.

2.2.2 Structural Features

wordsUnaligned: Total number of unaligned
words.

1-to-many Links: Total number of links for which
one word is aligned to multiple words, in either di-
rection. In Figure 1, the links{ñññ���-starts,ñññ���-
out,ñññ���-needs} represent a 1-to-many alignment.
1-to-many links appear more frequently in GIZA++
union alignments than in gold alignments, and are
therefore good candidates for deletion. The cate-
gory of 1-to-many links is further subdivided, de-
pending on the degree ofcontiguitythat the link ex-
hibits with its neighbors.4 Each link in a 1-to-many

3While using a dynamic programming algorithm would
likely improve search efficiency and allow link deletion to find
an optimal solution, in practice, the greedy search runs quickly
and improves alignment quality.

4(Deng and Byrne, 2005) observe that, in a manually aligned
Chinese-English corpus, 82% of the Chinese words that are

alignment can have 0, 1, or 2 neighbors, according
to how many links are adjacent to it in the 1-to-many
alignment:

zeroNeighbors: In Figure 1, the linkñññ���-needs
has 0 neighbors.

oneNeighbor: In Figure 1, the linksñññ���-starts
andñññ���-out each have 1 neighbor–namely, each
other.

twoNeighbors: In Figure 1, in the 1-to-many
alignment formed by{ýýý)))-its,ýýý)))-own,ýýý)))-
country}, the link ýýý)))-own has 2 neighbors,
namelyýýý)))-it andýýý)))-country.

2.2.3 Lexical Features

highestLexProbRank: A link ei-fj is “max-
probable fromei to fj” if p(fj |ei) > p(fj′ |ei) for
all alternative wordsfj′ with which ei is aligned
in Ainitial. In Figure 1,p(������|needs) > p(ñññ���|needs), so ������-needs is max-probable for
“needs”. The definition of “max-probable fromfj to
ei” is analogous, and a link is max-probable (nondi-
rectionally) if it is max-probable in either direction.
The value ofhighestLexProbRankis the total num-
ber of max-probable links. The conditional lexical
probabilitiesp(ei|fj) andp(fj |ei) are estimated us-
ing frequencies of aligned word pairs in the high-
precision GIZA++ intersectionalignments for the
training corpus.

2.2.4 History Features

In addition to the above syntactic, structural,
and lexical features ofA, we also incorporate
two features of the link deletion history itself into
Score(A):

linksDeleted: Total number of links deleted
Ainitial thus far. At each iteration, either a link or
a branch of links is deleted.

aligned to multiple English words are aligned to acontiguous
block of English words; similarly, 88% of the English words
that are aligned to multiple Chinese words are aligned to acon-
tiguousblock of Chinese words. Thus, if a Chinese word is cor-
rectly aligned to multiple English words, those English words
are likely to be “neighbors” of each other, and if an English
word is correctly aligned to multiple Chinese words, those Chi-
nese words are likely to be “neighbors” of each other.
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stepsTaken: Total number of iterations thus far in
the search; at each iteration, either a link or a branch
is deleted. This feature serves as a constant cost
function per step taken during link deletion.

2.3 Constraints

Protecting Refined Links from Deletion: Since
GIZA++ refined links have higher precision than
union links5, we do not consider any GIZA++ re-
fined links for deletion.6

Stoplist: In our Chinese-English corpora, the 10
most common English words (excluding punc-
tuation marks) include{a,in,to,of,and,the}, while
the 10 most common Chinese words include
{êêê,444,óóó,ZZZ,{{{}. Of these,{a,the} and {êêê,{{{}
have no explicit translational equivalent in the other
language. These words are aligned with each other
frequently (and erroneously) by GIZA++ union, but
rarely in the gold standard. We delete all links in
the set{a, an, the} × {{{{, êêê} from Ainitial as a
preprocessing step.7

2.4 Perceptron Training

We set the feature weightsλ using a modified ver-
sion of averaged perceptron learning with structured
outputs (Collins, 2002). Following (Moore, 2005),
we initialize the value of our expected most infor-
mative feature (ruleCount) to 1.0, and initialize all
other feature weights to 0. During each pass over the
discriminative training set, we “decode” each sen-
tence pair by greedily deleting links fromAinitial in
order to maximize the score of the resulting align-
ment using the current settings ofλ (for details, refer
to section 2.1).

5On a 400-sentence-pair Chinese-English data set, GIZA++
union alignments have a precision of 77.32 while GIZA++ re-
fined alignments have a precision of 85.26.

6To see how GIZA++ refined alignments compare to
GIZA++ union alignments for syntax-based translation, we
compare systems trained on each set of alignments for Chinese-
English translation taskA. Union alignments result in a test set
BLEU score of 41.17, as compared to only 36.99 for refined.

7The impact upon alignment f-measure of deleting these
stoplist links is small; on Chinese-English Data SetA, the f-
measure of the baseline GIZA++ union alignments on the test
set increases from 63.44 to 63.81 after deleting stoplist links,
while the remaining increase in f-measure from 63.81 to 75.14
(shown in Table 3) is due to the link deletion algorithm itself.

We construct a set of candidate alignments
Acandidates for use in reranking as follows. Starting
with A = Ainitial, we iteratively explore all align-
mentsA′ in the neighborhoodof A, adding each
neighbor to Acandidates, then selecting theneigh-
bor that maximizesScore(A′). When it is no
longer possible to increaseScore(A) by deleting
any links, link deletion concludes and returns the
highest-scoring alignment,A1-best.

In general, Agold /∈ Acandidates; following
(Collins, 2000) and (Charniak and Johnson, 2005)
for parse reranking and (Liang et al., 2006) for trans-
lation reranking, we defineAoracle as alignment in
Acandidates that is mostsimilar to Agold.8 We up-
date each feature weightλi as follows: λi = λi +
hAoracle

i − hA1-best

i .9

Following (Moore, 2005), after each training
pass, we average all the feature weight vectors seen
during the pass, and decode the discriminative train-
ing set using the vector of averaged feature weights.
When alignment quality stops increasing on the dis-
criminative training set, perceptron training ends.10

The weight vector returned by perceptron training is
the average over the training set of all weight vectors
seen during all iterations; averaging reduces overfit-
ting on the training set (Collins, 2002).

3 Experimental Setup

3.1 Data Sets

We evaluate the effect of link deletion upon align-
ment quality and translation quality for two Chinese-
English data sets, and one Arabic-English data set.
Each data set consists of newswire, and contains a
small subset of manually aligned sentence pairs. We
divide the manually aligned subset into a training set
(used to discriminatively set the feature weights for
link deletion) and a test set (used to evaluate the im-
pact of link deletion upon alignment quality). Table
1 lists the source and the size of the manually aligned
training and test sets used for each alignment task.

8We discuss alignment similarity metrics in detail in Section
3.2.

9(Liang et al., 2006) report that, for translation reranking,
suchlocal updates (towards the oracle) outperformboldupdates
(towards the gold standard).

10We discuss alignment quality metrics in detail in Section
3.2.
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Using the feature weights learned on the manually
aligned training set, we then apply link deletion to
the remainder (non-manually aligned) of each bilin-
gual data set, and train a full syntax-based statistical
MT system on these sentence pairs. After maximum
BLEU tuning (Och, 2003a) on a held-out tuning set,
we evaluate translation quality on a held-out test set.
Table 2 lists the source and the size of the training,
tuning, and test sets used for each translation task.

3.2 Evaluation Metrics

AER (Alignment Error Rate) (Och and Ney, 2003)
is the most widely used metric of alignment qual-
ity, but requires gold-standard alignments labelled
with “sure/possible” annotations to compute; lack-
ing such annotations, we can compute alignment f-
measure instead.

However, (Fraser and Marcu, 2007a) show that,
in phrase-based translation, improvements in AER
or f-measure do not necessarily correlate with im-
provements in BLEU score. They propose two mod-
ifications to f-measure: varying the precision/recall
tradeoff, andfully-connectingthe alignment links
before computing f-measure.11

Weighted Fully-Connected F-Measure Given a
hypothesized set of alignment linksH and a gold-
standard set of alignment linksG, we defineH+ =
fullyConnect(H) andG+ = fullyConnect(G),
and then compute:

f -measure(H+) =
1

α
precision(H+) + 1−α

recall(H+)

For phrase-based Chinese-English and Arabic-
English translation tasks, (Fraser and Marcu, 2007a)
obtain the closest correlation between weighted
fully-connected alignment f-measure and BLEU
score usingα=0.5 andα=0.1, respectively. We
use weighted fully-connected alignment f-measure
as the training criterion for link deletion, and to eval-
uate alignment quality on training and test sets.

Rule F-Measure To evaluate the impact of link
deletion upon rule quality, we compare the rule pre-
cision, recall, and f-measure of the rule set extracted

11In Figure 1, the fully-connected version of the alignments
shown would include the links������-starts and������- out.

Language Train Test
Chinese-EnglishA 400 400
Chinese-EnglishB 1500 1500
Arabic-English 1500 1500

Table 1: Size (sentence pairs) of data sets used in align-
ment link deletion tasks

from our hypothesized alignments and a Collins-
style parser against the rule set extracted from gold
alignments and gold parses.

BLEU For all translation tasks, we report case-
insensitive NIST BLEU scores (Papineni et al.,
2002) using 4 references per sentence.

3.3 Experiments

Starting with GIZA++ union (IBM Model 4) align-
ments, we use perceptron training to set the weights
of each feature used in link deletion in order to opti-
mize weighted fully-connected alignment f-measure
(α=0.5 for Chinese-English andα=0.1 for Arabic-
English) on a manually aligned discriminative train-
ing set. We report the (fully-connected) precision,
recall, and weighted alignment f-measure on a held-
out test set after running perceptron training, relative
to the baseline GIZA++ union alignments. Using
the learned feature weights, we then perform link
deletion over the GIZA++ union alignments for the
entire training corpus for each translation task. Us-
ing these alignments, which we refer to as “GIZA++
union + link deletion”, we train a syntax-based trans-
lation system similar to that described in (Galley et
al., 2006). After extracting string-to-tree translation
rules from the aligned, parsed training corpus, the
system assigns weights to each rule via frequency
estimation with smoothing. The rule probabilities,
as well as trigram language model probabilities and
a handful of additional features of each rule, are used
as features during decoding. The feature weights are
tuned using minimum error rate training (Och and
Ney, 2003) to optimize BLEU score on a held-out
development set. We then compare the BLEU score
of this system against a baseline system trained us-
ing GIZA++ union alignments.

To determine which value ofα is most effective
as a training criterion for link deletion, we setα=0.4
(favoring recall), 0.5, and 0.6 (favoring precision),
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Language Train Tune Test1 Test2
Chinese-EnglishA 9.8M/newswire 25.9k/NIST02 29.0k/NIST03 –
Chinese-EnglishB 12.3M/newswire 42.9k/newswire 42.1k/newswire –
Arabic-English 174.8M/newswire 35.8k/NIST04-05 40.3k/NIST04-05 53.0k/newswire

Table 2: Size (English words) and source of data sets used in translation tasks

and compare the effect on translation quality for
Chinese-English data setA.

4 Results

For each translation task, link deletion improves
translation quality relative to a GIZA++ union base-
line. For each alignment task, link deletion tends to
improve fully-connected alignment precision more
than it decreases fully-connected alignment recall,
increasing weighted fully-connected alignment f-
measure overall.

4.1 Chinese-English

On Chinese-English translation taskA, link deletion
increases BLEU score by 1.26 points on tuning and
0.76 points on test (Table 3); on Chinese-English
translation taskB, link deletion increases BLEU
score by 1.38 points on tuning and 0.49 points on
test (Table 3).

4.2 Arabic-English

On the Arabic-English translation task, link dele-
tion improves BLEU score by 0.84 points on tuning,
0.18 points on test1, and 0.56 points on test2 (Ta-
ble 3). Note that the training criterion for Arabic-
English link deletion usesα=0.1; because this pe-
nalizes a loss in recall more heavily than it re-
wards an increase in precision, it is more difficult
to increase weighted fully-connected alignment f-
measure using link deletion for Arabic-English than
for Chinese-English. This difference is reflected in
the average number of links deleted per sentence:
4.19 for Chinese-EnglishB (Table 3), but only 1.35
for Arabic-English (Table 3). Despite this differ-
ence, link deletion improves translation results for
Arabic-English as well.

4.3 Varying α

On Chinese-English data setA, we explore the ef-
fect of varyingα in the weighted fully-connected
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Figure 2: Effect of discriminative training set size on link
deletion accuracy for Chinese-EnglishB, α=0.5

alignment f-measure used as the training criterion
for link deletion. Usingα=0.5 leads to a higher gain
in BLEU score on the test set relative to the base-
line (+0.76 points) than eitherα=0.4 (+0.70 points)
or α=0.6 (+0.67 points).

4.4 Size of Discriminative Training Set

To examine how many manually aligned sentence
pairs are required to set the feature weights reli-
ably, we vary the size of the discriminative training
set from 2-1500 sentence pairs while holding test
set size constant at 1500 sentence pairs; run per-
ceptron training; and record the resulting weighted
fully-connected alignment f-measure on the test set.
Figure 2 illustrates that using 100-200 manually
aligned sentence pairs of training data is sufficient
for Chinese-English; a similarly-sized training set is
also sufficient for Arabic-English.

4.5 Effect of Link Deletion on Extracted Rules

Link deletion increases thesize of the extracted
grammar. To determine how thequality of the ex-
tracted grammar changes, we compute the rule pre-
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Language Alignment Prec Rec α F-measure
Links Del/ Grammar BLEU
Sent Size Tune Test1 Test2

Chi-EngA GIZA++ union 54.76 75.38 0.5 63.44 – 23.4M 41.80 41.17 –

Chi-EngA
GIZA++ union +

79.59 71.16 0.5 75.14 4.77 59.7M 43.06 41.93 –
link deletion

Chi-EngB GIZA++ union 36.61 66.28 0.5 47.16 – 28.9M 39.59 41.39 –

Chi-EngB
GIZA++ union +

65.52 59.28 0.5 62.24 4.19 73.0M 40.97 41.88 –
link deletion

Ara-Eng GIZA++ union 35.34 84.05 0.1 73.87 – 52.4M 54.73 50.9 38.16

Ara-Eng
GIZA++ union +

52.68 79.75 0.1 75.85 1.35 64.9M 55.57 51.08 38.72
link deletion

Table 3: Results of link deletion. Weighted fully-connected alignment f-measure is computed on alignment test sets
(Table 1); BLEU score is computed on translation test sets (Table 2).

Alignment Parse
Rule

Precision Recall F-measure Total Non-Unique
gold gold 100.00 100.00 100.00 12,809
giza++ union collins 50.49 44.23 47.15 11,021
giza++ union+link deletion,α=0.5 collins 47.51 53.20 50.20 13,987
giza++ refined collins 44.20 54.06 48.64 15,182

Table 4: Rule precision, recall, and f-measure of rules extracted from 400 sentence pairs of Chinese-English data

cision, recall, and f-measure of the GIZA++ union
alignments and various link deletion alignments on
a held-out Chinese-English test set of 400 sentence
pairs. Table 4 indicates the total (non-unique) num-
ber of rules extracted for each alignment/parse pair-
ing, as well as the rule precision, recall, and f-
measure of each pair. As more links are deleted,
more rules are extracted–but of those, some are of
good quality and others are of bad quality. Link-
deleted alignments produce rule sets with higher rule
f-measure than either GIZA++ union or GIZA++ re-
fined.

5 Conclusion

We have presented a link deletion algorithm that im-
proves the precision of GIZA++ union alignments
without notably decreasing recall. In addition to lex-
ical and structural features, we use features of the ex-
tracted syntax-based translation rules. Our method
improves alignment quality and translation quality
on Chinese-English and Arabic-English translation
tasks, relative to a GIZA++ union baseline. The
algorithm runs quickly, and is easily applicable to

other language pairs with limited amounts (100-200
sentence pairs) of manually aligned data available.
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