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Abstract. Energy efficiency and thermal management have become ma-
jor concerns in both embedded and HPC systems. The progress of silicon
technology and the subsequent growth of the dark silicon phenomena are
negatively affecting the reliability of computing systems. As a result, in
the next future we expect run-time variability to increase in terms of both
performance and computing resources availability. To address these is-
sues, systems and applications must be able to adapt to such scenarios.
This work provides a brief overview of the Barbeque Run-Time Resource
Manager (BarbequeRTRM ) and the application execution model that it
exploits, in order to deal with run-time performance and available re-
sources variability.

1 Introduction

The need of resource-aware and adaptive applications is driven by several issues
and requirements that are typical of modern computing systems. For instance,
embedded mobile devices must deal with the limited energy budget provided
by the battery, while HPC centers must afford huge costs due to the power
consumption and the cooling of the infrastructure. Furthermore, the dark silicon
phenomenon affecting modern processors is becoming prominent[1], since it is
increasing the amount of silicon area that must be turned off, to guarantee the
power envelope of the processor. For all these reasons, a continuous and full usage
of the whole set of system computing resources is often impossible to achieve.

On the application side, we can gain efficiency by implementing suitable
adaptive behaviors like enabling/disabling the execution of a task, or scaling the
accuracy of the output depending on the availability of computing resources.
A run-time resource management framework can implement such approach by
constraining the resource allocation according to system level requirements or
runtime conditions, and providing to the applications suitable interfaces to check
and negotiate the resource assignment.



Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

Run-time application libraryFIFOs/Binder
DBus

RPC Channel Plain API

AEM API AS-RTM API

Synchronization 
Protocol

Recipes

Linux kernel-spacePlatform DriversCPUfreq

Resource Manager 
daemonPlatform ProxyPower

Manager

Application Proxy

Resource ManagerScheduler ManagerSynchronization 
Manager

Application 
Manager

Resource 
AccounterScheduler PolicySynchronization 

Policy

Applications

C++ OpenCLC

Control Groups 

Fig. 1. The BarbequeRTRM Architecture. On top the programming languages sup-
ported by the application Run-Timr Library (RTLib). In red the resource manager
core, on top of the support provided by the Linux OS to control the system resources.

2 Run-time Resource Management

The BarbequeRTRM is a modular and portable run-time resource manager tar-
geting both embedded and High-Performance Computing (HPC) systems. From
the hardware resources perspective, the framework can manage homogeneous
and heterogeneous multi-core processors, as well as heterogeneous systems in-
cluding devices characterized by completely different ISA (e.g., CPU and GPU).

The modularity of the BarbequeRTRM comes from a software architecture
in which we can distinguish between core components and plugin modules. Typ-
ically, the latter are platform-specific extensions and selectable resource man-
agement policies.

The portability instead, is guaranteed by the exploitation of some underlying
Linux operating system frameworks, like cpufreq and cgroups, that allows the
BarbequeRTRM to enforce the resource allocation decisions [2].

2.1 Abstract Execution Model

The resource manager exposes its services to the applications through a run-time
library (RTLib). The library accomplishes a two-fold objective: 1) to provide a
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Fig. 2. Abstract Execution Model

communication channel between the resource manager and the applications; 2)
to expose an execution model to support the implementation of the resource-
aware adaptive execution of the applications[3].

In Figure 2 we show the Abstract Execution Model (AEM), that the run-time
manageable applications must implemented accordingly. This execution model
is put in place by defining and implementing a suitable C++ class, derived from
the BbqueEXC class provided by the RTLib.

At run-time, the BbqueEXC member functions are called by a control thread,
which is responsible of synchronizing the application execution with the de-
cisional process of the resource manager. The rationale behind each member
function implementation is the following:

onSetup(): setting up the application (initialize variables and structures,
starting threads, . . . ). onConfigure(): check the amount of assigned resources
and configure the application accordingly. onRun(): single cycle of computation
(e.g., computing a single frame during a video encoding). onMonitor(): perfor-
mance and QoS monitoring. onRelease(): cleanup and termination code.

Therefore, once the application ends the initialization step (onSetup), the
control thread waits for the resource allocation decision coming from the Barbe-
queRTRM. As soon as it has been received, the onConfigure function is called.
In this function, the application can then check the amount of assigned resources,
and configure itself accordingly, before starting (or continuing) the execution, as
sketched here below.
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RTLIB ExitCode t BlackscholesEXC : : onConfigure ( i n t 8 t awm id ){
// Get the number o f CPU cores as s i gned
GetAssignedResources ( RTLIB ResourceType : : PROC NR, nr cpu ) ;

// Conf igure . . .
}

The functions onRun and onMonitor are then sequentially called and exe-
cuted in a loop, until the entire computation is over.

The RTLib estimates the current performance of the application, in terms of
cycles-per-second (CPS), such that the application could check the gap between
the required performance level and the one currently achieved. After that, the
application can notify the resource manager about this gap.

Considering also that the performance goal can vary depending on input data
and external events, a effective approach is to exploit the SetCPSGoal function to
specify the performance goal and the notification rate, as shown in the following
example of onMonitor implementation:

RTLIB ExitCode t BlackscholesEXC : : onMonitor ( ) {
// S p e c i f i c event cond i t i on t r i g g e r i n g the
// change o f performance requirements
i f ( . . . )

SetCPSGoal ( 2 . 5 , 1 0 ) ;
// . . .

}

In the example, the application sets a performance goal of 2.5 CPS, and a
notification rate of 10 cycles. The library keeps track of the application per-
formance, computing the average CPS value over a (configurable) number of
last execution cycles. Whenever the performance gap overcomes a given (con-
figurable) threshold, such a gap value is sent to the resource manager. As a
consequence, the amount of assigned resources can be adjusted accordingly. The
notification rate is then exploited to bound the application reconfiguration rate,
and hence the related overhead. In other words, the application asks the resource
manager to send back a reconfiguration request after not less than 10 execution
cycles or more.

3 Experimental Scenario

In this section we show results of the resource-aware adaptive execution of
blackscholes from the PARSEC benchmark suite [4] on a embedded develop-
ment board that features an ARM Cortex A9 dual-core CPU. The benchmark
has been properly modified to fit the Abstract Execution Model. The frequency
of the CPU has been set to its maximum value, which is 920 MHz. The full CPU
usage, which is shown in Figure 3a, causes the chip temperature to raise over
100◦C, thus triggering the thermal throttling response of the operating system.
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(a) CPS = 4
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(b) CPS = 1

Fig. 3. PARSEC blackscholes execution: CPU load, temperature and clock frequency
variations according to two performance requirements: a) 4 cycles-per-second; b) 1
cycle-per-second.

A continuous frequency scaling is operated in order to cool down the CPU, with
performance variability as a further consequence.

In Figure 3b, the application sets a performance goal of CPS=1. The resource
manager takes into account such information shrinking the amount of CPU time
assigned. The implicit result is a lower but more stable performance level, along
with a reduced thermal stress.
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