

Jan Mendling (Ed.)

BPM Demo Session 2006

at the

4th International Conference on

Business Process Management (BPM 2006)

in Vienna (Austria),

5-7 Sept 2006

Proceedings

Preface

This proceedings volume contains the papers presented at BPM Demo Session 2006

which was part of the 4th International Conference on Business Process Management

(BPM 2006) in Vienna (Austria), on 5-7 Sept 2006.

BPM 2006 brought together research and industry as well as crossed the boundaries of

existing research communities in all areas of business process management. We invited

submissions for demos to be included in the BPM 2006 Demonstration Program. This

program was intended to showcase innovative business process related implementations,

technologies, and analysis tools.

Each demo paper was reviewed by at least three members of the program committee.

Submissions were evaluated on the basis of their innovation, scientific contribution,

presentation, industrial and application relevance. We encouraged the authors to make

the tools available for download and to mention the web address of the tool in the paper.

Each paper was presented at the BPM conference and a A/1 poster summarizing the tool

and the demo paper was exhibited in the BPM conference lounge.

This proceedings volume includes six carefully selected papers presented at the BPM

demo session. The topics of the demos ranges from querying process repositories,

verification, configurable execution to modeling of service interaction and middleware

support for BPEL process execution.

We thank the authors, the members of the program committee, and the local organization

team of the BPM conference for contributing to the realization of this demo session.

Vienna, August 2006 Jan Mendling

Program Committee

Boudewijn van Dongen, TU Eindhoven, The Netherlands

Michael Hafner, University of Innsbruck, Austria

Patrick Hung, University of Ontario, Canada

Matjaz Juric, University of Maribor, Slovenia

Rania Khalaf, IBM Research, United States

Agnes Koschmider, University of Karlsruhe (TH), Germany

Kristian Bisgaard Lassen, University of Aarhus, Denmark

Marek Lehmann, University of Vienna, Austria

Jan Mendling, WU Vienna, Austria (Chair)

Frank Puhlmann, HPI Potsdam, Germany

Jan Recker, QUT Brisbane, Australia

Stefanie Rinderle, University of Ulm, Germany

Florian Rosenberg, TU Vienna, Austria

Nick Russell, QUT Brisbane, Australia

Oliver Thomas, University of Saarland, Germany

Martin Vasko, TU Vienna, Austria

Eric Verbeek, TU Eindhoven, The Netherlands

Barbara Weber, University of Innsbruck, Austria

Petia Wohed, Stockholm University, Sweden

Andreas Wombacher, University of Twente, The Netherlands

Table of Contents

Avi Wasser, Maya Lincoln, Reuven Karni
ProcessGene Query – a Tool for Querying the Content Layer of Business Process

Models ..1

Frank Puhlmann
A Tool Chain for Lazy Soundness ..9

S. Jablonski, M. Faerber, M. Götz, B. Volz, S. Müller, S. Dornstauder

Configurable Execution Environments for Medical Processes ...17

Jussi Vanhatalo, Jana Koehler, and Frank Leymann

Repository for Business Processes and Arbitrary Associated Metadata25

Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas
Maestro for Let’s Dance: An Environment for Modeling Service Interactions32

Anis Charfi, Mira Mezini
Middleware Support for BPEL Workflows in the AO4BPEL Engine..............................39

ProcessGene Query – a Tool for Querying

the Content Layer of Business Process Models

Avi Wasser1, Maya Lincoln1 Reuven Karni1

1 ProcessGene Ltd.

15303 Ventura Boulevard, Sherman Oaks, California, 91403, USA

{avi.wasser, maya.lincoln, Reuven.karni}@processgene.com

Abstract. One of the main challenges currently facing the world of enterprise

information technology in general and ERP/SCM/CRM systems in particular, is

visibility into the business of organizations. While the phenomena of devising

supporting tools for process execution frameworks is widespread in academia

and practice, there have been few attempts to develop methodologies and soft-

ware tools that support structured analysis of the business process content layer.

The incorporation of content into a business process model produces complex-

ity in the sense that it adds semantics and relationships of actual business data.

To confront this complexity, this research suggests a framework and a support-

ing software tool “ProcessGene Query” for conducting search-queries on busi-

ness process models.

1 Introduction

One of the main challenges currently facing the world of enterprise information tech-

nology, and ERP systems in particular, is visibility into the business of organizations,

�[10]. The prevalent approach utilizes conceptual business process modeling as the

foundation for creating and managing this visibility, aiming to connect the business

activity and its supporting information technology (IT) systems �[6].

The current main thrust of business process modeling research has focused on the

study of structural frameworks and execution patterns �[9], putting little emphasis on

the content layer that is supposed to populate these frameworks. “Real life” business

process models, which contain practical content objects, have been disregarded �[9],

except in illustrative examples.

Structural process frameworks define formal architectures and standards for

representing business activities and processes. The spectrum (Fig. 1) ranges from

simple descriptive frameworks such as activity diagrams, suitable mostly for business

users, through more formal frameworks such as OPM �[11] and Petri-nets, suitable

mostly for software implementers and IT system analysts, to code-compatible

structures such as BPEL and XLANG �[12], suitable for software developers.

11

Fig. 1: The structural frameworks spectrum

The practical deployment of these frameworks, involves an attempt to enumerate

actual business processes carried out within enterprises. Modeling in this context

focuses on the content layer of business process models. We define the content layer

as the itemization of the suite of actual business processes constituting the framework

of business-related activity within a particular industrial sector, or, alternatively,

within a particular enterprise. Only a few scientific publications address the topic of

business process content �[7]-�[9]. On the other hand the initiative has been taken and

business process content was developed and applied, by enterprise software vendors,

IT integrators, and BPM commercial firms.

Fig. 2: Business process content examples

Fig. 2 presents some business process content compendia, divided into three main

types: (a) particular, enterprise specific content; (b) vendor/integrator content such as

the OBM (Oracle Business Models) library �[4] and SAP solution maps �[5] and (c)

collaborative/consortia content frameworks such as the MIT process handbook �[1],

OAGIS �[13] and Rosettanet �[14]. Thus, while the phenomena of formulating

structural execution frameworks is widespread in academia (e.g. �[15]), there seem to

be few attempts to develop theories, empirical studies and supporting tools �[9] (such

Public/ConsortiaIntegrator/Vendor-basedParticular

Any self –

generated enter-

prise specific

business process

descriptions

Oracle business models

SAP blueprints

Accenture repository

Rosettanet

MIT process

handbook

SCOR

SSA reference model

OAGIS

OPM

UML2

XLANG

WSFL

ebXML

BPEL

Wf-XML

EPC

Event Driven

Diagrams Petri-nets

Level of Information Technology (IT) proximity

Flowcharts

IDEF

Decomposition

models

22

as generation, customization, validation and search mechanisms) for “complete”

business process models which incorporate an actual content layer (Fig. 3).

Fig. 3: A process model as a combination of structure and content layers

When this research addresses business process models it refers to “complete”

models that also include a content layer, so that the combination of structure and

content can display the actual suite of business processes constituting the framework

of activity within the enterprise and enable subsequent implementation through IT. For

example: a flowchart describing bottleneck leveling in production, or a Petri-net

describing the process of managing a service request in CRM. Such business process

models are considered complex since they include a large number of interconnected

data objects (processes, roles, events, related data, etc.). This complexity increases

when the models are to be expressed and actualized by a corresponding IT system

(e.g. ERP/SCM/CRM), which requires verification and validation of the business

process models from a functional and managerial point of view prior to actual

implementation and subsequent execution. To confront this complexity, and in order

to enable effective handling of the business process models content, this research

suggests a framework and a supporting software tool for conducting search-queries on

business process models.

The paper features the following sections: a demonstration of a standardized

format for describing the content of a business processes based on current offerings of

ERP vendors – (section 2); the “ProcessGene Query” methodology and tool for

searching the content of process models (section 3); an example for running content

search queries (section 4); conclusions and suggestions for further work (section 5).

2 Describing the Content of Business Process Models

Due to their dominance in industry, we will focus on content layers from ven-

dor/integrator commercial business process models. These include, for example,

SAP’s industry and cross-industry Business Solution Maps �[5], Lawson-Intentia’s

ERM (Enterprise Reference Models) �[2] and Oracle’s OBM (Oracle Business Mod-

els) library �[4]. In the Oracle business process flows, for example (Table 1), the top

level “high level flow” for an industrial sector presents names and descriptions of the

high level functionalities for that industry (about 7), and their corresponding business

flows (about 7). Business flows are then broken into activities and tasks, holding simi-

lar amount of items at each level.

Structural Framework

Content

33

Table 1: Oracle E-Business suite process content hierarchy

(1) High Level Flow = “Procure to Pay” (top hierarchal level)

(2) Business Flow = “Analyze to Agreement” (second level)

(3) Activity/Procedure = “Negotiate and Select Suppliers” (third level)

(4) Task = “Enter supplier information” (fourth level)- with a link to corre-

sponding IT components such as setups and customizations of datasets

From these categorizations vendors and integrators develop a suite of processes, re-

flecting what an enterprise does, or needs to do, in order to achieve its objectives �[3].

Furthermore- the content includes pointers to additional content items that are in use

during an implementation process such as user requirements, test scripts, setup pa-

rameters, flow diagrams, workflows and related documents. If we assume an amount

of seven items at each hierarchal content level we would reach almost 20,000 inter-

connected data items, not counting the additional process-related content items. It is

also important to realize that each item holds a certain amount of metadata, which

users may need to retrieve and review. Research into a vendor/integrator defined

commercial business process models has introduced several concepts: (a) the necessity

for a compendium of realistic business processes in order to be able to generate prac-

tical enterprise models; (b) the inclusion of cross-references between business proc-

esses, additional content items and IT components offered by software vendors; and

(c) the complexity in a concurrent management of a relatively large dataset. To con-

front complexity, this research suggests a query methodology and supporting tool for

assisting in the retrieval and management of the business process content layer.

3 Methodological Framework

In order to formulate and demonstrate the proposed query framework, we present

two data models that organize the business process data and form the foundation for

running search-queries on the content layer. Then we elaborate on the query method.

3.1 Process Data Structure Models

Process Descriptor Decomposition Model. This model introduces the basic ideas

and notations for formally representing business process model content objects by a

hierarchal graph of descriptors, as shown in Fig. 4. The process model contains n

levels of process hierarchy (L1, L2, … , Ln). At each level, each process is repre-

sented by a single process descriptor, and each process descriptor consists of one

action, one object that the action acts upon, and possibly one or more action qualifiers,

object qualifiers and means.

44

Fig. 4: The process descriptor decomposition model

For example, a process descriptor can be defined as: “Issue confirmed purchase or-

der to local supplier by e-mail”, comprising an object, an action and their qualifiers.

Business Action and Object Taxonomy Model. This model organizes a set of proc-

ess descriptors, attempting to determine the relationships between business actions and

objects both longitudinally (hierarchically) and latitudinally (in terms of execution

order) as described in Fig 5. In this model an action is related to an object by an oper-

ability connector, e.g. the action “receive” is related to the object “invoice”. Longitu-

dinally- the action “issue” is considered a subclass (a more specific form) of “pro-

duce”, and the object “purchase order” is a subclass of “purchasing document” (note

that the operability connectivity applies also to relations between different hierarchy

levels). Latitudinally, each object holds a list of ordered actions applied on that object

(e.g. the object “product” is related to the actions “plan” followed by “produce”); (b) a

list of ordered objects that express the object lifecycle (e.g. the following lifecycle

sequence: “raw material”�, (…)�, “product”�, (…)�, “returns”�, (…)).

Fig 5: Business action and object taxonomy model

These longitudinal and latitudinal viewpoints contribute another dimension for

analyzing and learning the business process model content layer in terms of identify-

ing action and object hierarchies and execution sequences.

3.2 The ProcessGene Content Query Method

The method aims to provide a simple yet powerful query interface in which users are

able to express and perform a large set of queries using intuitive definitions.

55

The ProcessGene Query mechanism includes four main components. At the front-

end: a Scoping-Assistant (SA), for defining the content query range; and a Query

Specification Interface (QSI), for expressing the user’s data extraction requirements.

At the back-end: a Query Interpreter (QI) for interpreting the user specification into a

set of normalized queries; and a Query Results Packager (QRP) for packaging the

retrieved results to include only data that is of interest to the user. The SA uses busi-

ness processes as means for query focusing, since at any hierarchy level, these objects

are related with all other data components. After defining the query’s underlying data

scope, the QSI enables users to specify data requirements. This module is based on

two specification layers, offering at the first layer a simple interface, which enfolds

more advanced options for users that wish to drill-down and expand the query capabil-

ity. The first query specification layer presents all business process model component

types as a flat checklist, enabling the user to select query components. Each compo-

nent can then be expanded, presenting additional data fields and enabling the user to

specify different criteria for each field. Conditions are expressed using regular expres-

sions (strings, keywords, wildcards), or by selecting one or more values from a list of

values, depending on the data field type. In addition, the QSI also assists in defining

the query result structure and content. Instead of generating pre-defined result segment

structures, the user can define which data components are to be included in the result

set. After the specification phase, the QI analyzes the user request and composes a set

of all compatible normalized queries. The QRP then modifies the retrieved results to

include only data fields that were required by the user. These manipulated results are

eventually presented to the user according to the business process model hierarchy.

4 Example: Process Content Query

To illustrate the proposed framework for supporting a search query on business proc-

ess content we present an example, in which a user is interested to find out “how or-

der-based decisions are handled by sales representatives”. Using the SA, the user

selects a level 1 process, “Order to Cash”, based on the information that orders can be

handled by sales representatives at pertaining lower-hierarchy business processes (e.g.

Order Management, Shipping Management, …) (Fig. 6).

66

Fig. 6: The query scoping assistant (SA)

At the next step, the user uses the QSI to select process levels and define content

requirements for the relevant process fields (Fig 7).

Fig 7. The query specification interface (QSI)

Following our example, the user will limit the “Name” field to include the string

“order”, the “Description” field to include the string “decision”, and the “Owner” field

to include the string “sales”. He leaves the “exact phrase” option unchecked in order

to retrieve more results. If, in addition, the user is interested only in “new” processes

defined in the organization after a new sales strategy was implemented during 2006,

he will add to the “Creation date” field the expression: “01-01-2006 - *”. On top of

these data fields the user can also check other required data fields. At the next step,

the QI interprets QSI definitions into a set of normalized SQL queries, and the QRP

joins all resulted data fields into query results ordered by hierarchal location witin the

business process model. The example demonstrates how a user without any in-depth

understanding of the data structure can extract relevant results for a relatively complex

query – all by using the SA and the QSI.

77

5 Summary

The ProcessGene Query system provides a method for searching business processes,

allowing users to phrase queries without extensive knowledge of the underlying data-

base structure. Although the system provides a good starting point for developing the

field of business process search queries, many innovations are needed to exploit open

issues such as optimization of result sets, adding business logic for determining se-

mantically related answers, query relaxation and the ranking of results. These issues

were discussed extensively in the literature, but have not been addressed yet within the

context of business process management.

It is hoped that by expanding the search and query capabilities on business proc-

esses content, researchers and IT practitioners will be able to generate complete and

consistent business process models as part of their services to ERP/CRM/SCM com-

munity.

6 References

[1] Malone, T. W. The Future of Work: How the New Order of Business Will Shape Your

Organization, Your Management Style, and Your Life. Boston, MA: Harvard Business

School Press, 2004.

[2] Intentia. Reference Models, http://www.intentia.com/WCW.nsf/pub/tools_index, 2004.

[3] M. Lincoln, Karni R. A Generic Business Function Framework for Industrial Enterprises.

CD Proceedings of 17th ICPR Conference, Blacksburg, VA, USA, October 2003.

[4] Oracle. Business Models (OBM),

http://www.oracle.com/consulting/offerings/implementation/methods_tools/, 2006.

[5] SAP Solution Composer, http://www.sap.com/solutions/businessmaps/composer/ 2006.

[6] C.P. Holland, B. Light, A critical success factors model for ERP implementations, IEEE

Software 16, 1999, 30–35.

[7] Fettke, P.; Loos, P.; Zwicker, J.: Business Process Reference Models - Survey and

Classification. In: Kindler, E.; Nottgens, M.: Business Process Reference Models – BPRM

workshop proceedings: 1-15, 2005, BPM2005 workshop.

[8] A. Bernstein. Process Recombination: An Ontology Based Approach for Business Process

Re-Design. SAP Design Guild, Vol. 7, October 2003.

[9] Avi Wasser, Maya Lincoln, Reuven Karni: Accelerated Enterprise Process Modeling

Through a Formalized Functional Typology. BPM 2005: LNCS 3649 446-451.

[10] C. Rolland, N. Prakash, Bridging the gap between organizational needs and ERP

functionality, Requirements Eng. 41, 2000, 180–193.

[11] Dov Dori, Iris Reinhartz-Berger: An OPM-Based Metamodel of System Development

Process. ER 2003: 105-117

[12] G. Yang. Towards a Library for Process Programming. In W.M.P. van der Aalst, A.H.M.

ter Hofstede, and M. Weske, editors, BPM 2003, volume 2678 of Lecture Notes in

Computer Science, pages 120-135. Springer-Verlag, Berlin, 2003.

[13] OAGIS. Best Practices and XML Content for Everywhere-to-Everywhere Integration,

http://www.openapplications.org/, 2004.

[14] Rosettanet. Lingua Franca for Business, http://www.rosettanet.org/, 2004.

[15] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede: YAWL: yet another workflow

language. Inf. Syst. 30(4): 245-275, 2005.

88

A Tool Chain for Lazy Soundness

Frank Puhlmann

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

puhlmann@hpi.uni-potsdam.de

Abstract. This paper introduces a prototypic tool chain to investigate
the feasibility of deciding lazy soundness for Business Process Diagrams
(BPD). We utilize a graphical editor to create BPDs, export them to
XML, convert them to formal π-calculus expressions, and finally use
existing π-calculus reasoners to decide lazy soundness.

1 Introduction

Business Process Management (BPM) aims at designing, enacting, managing,
analyzing, and adapting business processes [1]. This paper focuses on a special
kind of analysis, called verification. Verification proves correctness of business
processes regarding structural constrains like deadlocks or livelocks that require
a formal semantics of the routing constructs contained in business processes.
The correctness criterion investigated is called Lazy Soundness [2].

In order to show the feasibility of deciding lazy soundness for business pro-
cesses we developed a prototypic tool chain. A business process diagrams (BPD)
is created graphically using the Business Process Modeling Notation (BPMN)
[3]. The BPDs are then exported to an intermediate XML file that provides a
generic abstraction from concrete modeling notations. The business processes
contained in the XML file can already be checked for structural constraints like
connectedness of the nodes. To prove lazy soundness, the XML file is converted
to π-calculus expressions. The π-calculus is a generic process algebra that is
used to give formal semantics to common patterns of behavior found in business
processes [4]. The formalizations are then applied to prove lazy soundness using
existing tools.

The remainder of this paper is structured as follows. It starts by introducing
the context, i.e. give a definition of lazy soundness and introduce the π-calculus
representation of business processes. Thereafter we discuss the architecture of
the tool chain and illustrate it using an example. Finally the paper is concluded
by discussing related work and further developments.

2 Context

The tool chain is based on the concepts and algorithms for lazy soundness intro-
duced in [2]. The theoretical foundations are given by the π-calculus [5]. While

99

2 Frank Puhlmann

lazy soundness is a new correctness criterion for the BPM domain, the π-calculus
is already in discussion as a formal foundation for BPM [6,7]. Lazy soundness is
based on structural soundness, informally given by:

A business process is structural sound if and only if there is (a) exactly
one initial activity, (b) exactly one final activity, and (c) all activities
are on a path from the initial to the final activity.

Furthermore, lazy soundness requires semantic reachability, meaning that an
activity B is reachable from another activity A (i.e. their exists a path between
them) according to the semantics of all other activities such as splits and joins.
Lazy soundness is then given by:

A business process is lazy sound if and only if (a) the final activity is
semantically reachable from every other activity semantically reachable
from the initial activity until the final activity has been executed, and
(b) the final activity is executed exactly once.

The definition states that a lazy sound business process is deadlock and livelock
free as long as the final activity has not been executed. So called lazy activi-
ties might still be or become executed. Those are usually required for clean–up
or subsequent activities. Examples are activities before a discriminator or n–
out–of–m–join that has already been executed (i.e. receive remaining messages
in interacting business processes) or activities triggered by multiple–instances–
without synchronization patterns [8]. In terms of Petri nets, lazy soundness sup-
ports processes where tokens can remain in the net. Again, a detailed discussion
can be found in [2].

A formal semantics for business processes is given by the π-calculus. In [4,9]
we have shown how different routing patterns are mapped to π-calculus expres-
sions. Basically, each activity of a business process is mapped to a corresponding
π-calculus process. The processes then trigger themselves using a pre– and post-
condition approach. Reasoning about lazy soundness is done using weak open
bisimulation. Informally, two π-calculus processes are weak open bisimulation
equivalent if they have the same observable behavior regarding certain observ-
ability predicates. Weak open bisimulation can be evaluated using existing tools.

3 Architecture

Figure 1 depicts the tool dependencies and document flows in the tool chain.
Tools or scripts are shown as rectangles, whereas documents are denoted as
notes. The components developed by our group are shown inside the dotted
area.

First of all, we utilize a graphical editor for designing business process dia-
grams. The editor is equipped with a set of BPMN stencils annotated with ad-
ditional information. Based on this information, an XML exporter script is able
to generate an XML description of the business process diagram by interacting
with the editor. The XML representation of the business process can already

1010

A Tool Chain for Lazy Soundness 3

XML
Graphical

Editor
XML

Exporter

Struct. Sound.
Checker

Pi-Calculus
Converter

Pi
Pi-Calculus

Tools

BPMN Stencils

Fig. 1. Architecture of the tool chain.

be proved to be structural sound by a structural soundness checker script. Fur-
thermore, it can be used as input for a pi-calculus converter script that maps
the XML file to a proprietary ASCII notation representing π-calculus processes.
The implemented algorithm is described in [2]. The file containing the π-calculus
processes can then directly be used as an input for existing π-calculus tools for
reasoning.

Technically, the feasibility study has been developed on Mac OS X. Omni-
Graffle Professional is utilized as a graphical editor1, but other editors are also
possible. OmniGraffle is fully programmable using AppleScript that was used
for implementing the XML exporter. Both, OmniGraffle and AppleScript, pro-
vide an easy and convenient way of designing and exporting business process
diagrams. The π-calculus converter and the structural soundness checker have
been implemented as Ruby scripts, so they are OS–independent. The π-calculus
tools compatible with our scripts are MWB and ABC, the two major reasoners
for π-calculus [10,11]. Both are also available on various platforms.

4 Example

After introducing the theoretical foundations and architecture of the tool chain,
we are now ready to give an illustrating example. Figure 2 shows a business pro-
cess starting with a parallel split, leading to the parallel execution of activities
A, B, and C. These activities can represent sub-processes for contacting three
different experts for writing an expertise. A 2–out–of–3–join continues the exe-
cution at activity D after two of them are ready. However, some cleanup work
is left for the remaining activity, e.g. receiving the last expertise and paying
the expert. Activity D spawns of three multiple instances of itself, sending the
accepted expertises to three different involved persons. While the expertises are
still in delivery, the business process is already finished.

The interesting point regarding lazy soundness are the lazy activities that
are left behind. This might be one of A, B, or C, as well as the three instances
of D. To prove the business process to be lazy sound, we need to export it from
our graphical editor using the XML exporter tool. The tool creates an XML
file representing a so called process graph of the BPD. A process graph is a

1 http://www.omnigroup.com/applications/omnigraffle

1111

4 Frank Puhlmann

A

B

C

2 D
3

Fig. 2. Example business process diagram.

mathematical structure to describe the static aspects of a business process (see
also [2]). The XML representation of the process graph looks as follows:

Example 1 (XML representation of the example).

<model>
<process id="1" type="BPMN">

<node id="1025" type="MI without Sync" name="D" count="3"/>
<node id="538" type="End Event"/>
<node id="748" type="N-out-of-M-Join" continue="2"/>
<node id="790" type="Task" name="C"/>
<node id="789" type="Task" name="B"/>
<node id="717" type="AND Gateway"/>
<node id="677" type="Task" name="A"/>
<node id="534" type="Start Event"/>
<flow id="799" type="Sequence Flow" from="1025" to="538"/>
<flow id="798" type="Sequence Flow" from="748" to="1025"/>
<flow id="797" type="Sequence Flow" from="790" to="748"/>
<flow id="796" type="Sequence Flow" from="789" to="748"/>
<flow id="795" type="Sequence Flow" from="677" to="748"/>
<flow id="794" type="Sequence Flow" from="717" to="790"/>
<flow id="792" type="Sequence Flow" from="717" to="789"/>
<flow id="791" type="Sequence Flow" from="717" to="677"/>
<flow id="671" type="Sequence Flow" from="534" to="717"/>

</process>
</model>

Using the structural soundness checker script, the process graph contained in
the XML file can be proved to be structural sound (omitted here). The dynamic
aspects of the business process are generated out of the type descriptions for
each node contained in the XML file by the π-calculus converter. The formal
description is furthermore enhanced with lazy soundness annotations as well as
a special process called SLAZY used for reasoning later on:

Example 2 (π-calculus representation of the example).

agent N1025(e798,e799)=e798.(t.0 | t.0 | t.0 | ’e799.0 | N1025(e798,e799))
agent N717(e671,e794,e792,e791)=e671.t.(’e794.0 | ’e792.0 | ’e791.0 |

N717(e671,e794,e792,e791))
agent N677(e791,e795)=e791.t.(’e795.0 | N677(e791,e795))
agent N534(e671,i)=i.t.’e671.0
agent N538(e799,o)=e799.t.’o.N538(e799,o)
agent N748(e797,e796,e795,e798)=(^h,run)(N748_1(e797,e796,e795,e798,h,run) |

N748_2(e797,e796,e795,e798,h,run))
agent N748_1(e797,e796,e795,e798,h,run)=e797.’h.0 | e796.’h.0 | e795.’h.0
agent N748_2(e797,e796,e795,e798,h,run)=h.h.’run.h.N748(e797,e796,e795,e798) |

run.t.’e798.0
agent N790(e794,e797)=e794.t.(’e797.0 | N790(e794,e797))
agent N789(e792,e796)=e792.t.(’e796.0 | N789(e792,e796))
agent N(i,o)=(^e799,e798,e797,e796,e795,e794,e792,e791,e671)(N1025(e798,e799) |

1212

A Tool Chain for Lazy Soundness 5

N717(e671,e794,e792,e791) | N677(e791,e795) | N534(e671,i) | N538(e799,o) |
N748(e797,e796,e795,e798) | N790(e794,e797) | N789(e792,e796))

agent S_LAZY(i,o)=i.t.’o.0

The input style generated corresponds to MWB as well as ABC. Each node of
the XML file has been mapped to a π-calculus process (denoted as agent in the
syntax). For instance, the initial node is given by N534, or the 2–out–of–3–join by
N748. Helper agents are denoted with an index, like 748 1. BPMN sequence flows
have been mapped to π-calculus names, representing dependencies between the
agents. For instance, N717 can only start after N534 has emitted the name e671
(an agent emits a name using ′name and receives a name by simply stating it,
i.e. name). To make reasoning possible, all agents representing nodes are placed
in parallel in agent N . For accuracy, the identifiers provided by the graphical
editor are used. The generated agents can now be imported into existing π-
calculus reasoners such as MWB:

The Mobility Workbench
(MWB’99, version 4.136, built Fri Apr 7 16:02:07 2006)

1
MWB>input "agents.mwb"
MWB>weq N(i,o) S_LAZY(i,o)
The two agents are equal.
Bisimulation relation size = 317.

The first statement imports the π-calculus process definitions. Lazy sound-
ness can now be decided using weak open bisimulation between process N(i, o)
and SLAZY (i, o). The parameters i and o can be observed for deciding whether
the business process is started (by observing i) or the final activity is reached
(by o). If o is not observed exactly once, the process is not lazy sound. SLAZY is
already proved to be lazy sound, since it simply receives i one time and emits o

one time. The weq statement now checks if N(i, o) equals SLAZY regarding the
observable behavior. As both are equal, also N(i, o) is lazy sound. Interestingly,
components of N(i, o) representing lazy activities are still active. However, they
do not trigger the final activity (the one that emits o) again.

A counterexample can be given by modifying the parallel split of figure 2 to
an exclusive decision. This results in a change of agent N717 of the π-calculus
representation:

agent N717(e671,e794,e792,e791)=e671.t.(’e794.N717(e671,e794,e792,e791) +
’e792.N717(e671,e794,e792,e791) + ’e791.N717(e671,e794,e792,e791))

Now, either activity A, B, or C are activated. As can easily be deduced, this
leads to a deadlock since the 2–out–of–3–join expects at least two activities to
be finished beforehand. By asking MWB using the changed agent N717 this can
be proved:

MWB>weq N(i,o) S_LAZY(i,o)
The two agents are NOT equal.

Hence, the modified business process is not lazy sound.

Drawbacks. During early experiments using MWB and ABC for deciding lazy
soundness of different business processes, we already discovered several issues.
First of all, weak open bisimulation is undecidable in general. Thus, some inputs
will not give a result. To make matters worse, current implementations of MWB
and ABC rely on depth first search, wasting computing power where breadth

1313

6 Frank Puhlmann

first search would already disprove lazy soundness (i.e. finding other paths that
lead to deadlocks and livelocks). However, small to mid-size processes can be
proved in reasonable time (see [2] for timing results). Furthermore, due to the
non–local semantics of the synchronizing merge pattern (or–join), business pro-
cesses containing this pattern are never lazy sound. As a concluding remark, also
backtracking of errors found in the π-calculus representation to the graphical no-
tation is currently quite difficult. Using optimized reasoners and enhancing the
π-calculus representation with additional debugging information, most of the
problems can be solved.

5 Related Work

An important piece of related work is Woflan (http://is.tm.tue.nl/research/
woflan.htm). Woflan is able to prove if two Petri nets are in a certain inheri-
tance relation [12]. Most interesting is checking for projection inheritance, that
has been derived from process algebra [13]. An informal description is as follows:

”If it is not possible to distinguish the behaviors of x and y [x and y are
Petri nets] when arbitrary tasks of x are executed, but only the effects
of tasks that are also present in y are considered, then x is a subclass of
y.” [12].

Hence, y represents the SLAZY process and x an arbitrary Petri net to check
for conformance. SLAZY is given as a Petri net consisting of two places and a
transition t:

t

The transition t can be enhanced with arbitrary process structures. Since pro-
jection inheritance ignores remaining tokens in the Petri net, lazy soundness for
Petri nets can be proved using Woflan. However, just as with ABC and MWB for
π-calculus, the only feedback is a yes/no answer. Furthermore, using Petri nets
for proving business processes to be lazy sound has two major drawbacks. First
of all, not all workflow patterns can be represented in low-level Petri nets [14].
Thus, the number of possible business processes is restricted. Second, branch-
ing bisimilarity used for projection inheritance does not take into account link
passing mobility. Link passing mobility is used inside service oriented architec-
tures to represent dynamic binding of interaction partners [9]. Since weak open
bisimulation supports link passing mobility, lazy soundness can be extended to
interaction soundness. Interaction soundness proves an orchestration to be (lazy)
sound regarding also its interactions inside a choreography. Since not all of the
interaction partners are statically known (i.e. connected) to the orchestration at
design–time, but instead are bound at run–time, a bisimulation technique based
on link passing mobility is required.

1414

A Tool Chain for Lazy Soundness 7

6 Conclusion

In this paper we introduced a first prototypic tool chain to show the feasibility
of deciding lazy soundness using π-calculus. In order to evaluate the tool chain,
the scripts and examples are provided at http://pi-workflow.org. While the
graphical editing and export is currently OS depended (Mac OSX 10.4 required),
the conversion of the examples to π-calculus and reasoning runs on a variety of
platforms. The very next step regarding the tool chain is to create a stable
implementation. This implementation can then be used to analyze existing π-
calculus tools as well as the proposed pattern formalizations for conformance
regarding lazy soundness.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Manage-
ment: A Survey. In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.:
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, Berlin, Springer-Verlag (2003) 1–12

2. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: Proceedings of the 4th International
Conference on Business Process Management (BPM 2006), volume 4102 of LNCS,
Berlin, Springer Verlag (2006) 145–160

3. BPMI.org: Business Process Modeling Notation. 1.0 edn. (2004)
4. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-

terns. In van der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the
3rd International Conference on Business Process Management, volume 3649 of
LNCS, Berlin, Springer-Verlag (2005) 153–168

5. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II.
Information and Computation 100 (1992) 1–77

6. Smith, H., Fingar, P.: Business Process Management – The Third Wave. Meghan-
Kiffer Press, Tampa (2002)

7. Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In Abramowicz, W., Mayr, H., eds.: 9th International Conference on
Business Information Systems (BIS 2006), volume P-85 of LNI, Bonn, Gesellschaft
für Informatik (2006) 77–89

8. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow Patterns. Technical Report BETA Working Paper Series, WP 47, Eindhoven
University of Technology (2000)

9. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

10. Briais, S.: ABC Bisimulation Checker. Available at: http://lamp.epfl.ch/
∼sbriais/abc/abc.html (2003)

11. Victor, B., Moller, F., Dam, M., Eriksson, L.H.: The Mobility Workbench. Avail-
able at: http://www.it.uu.se/research/group/mobility/mwb (2005)

12. van der Aalst, W., Basten, T.: Inheritance of Workflows: An approach to tack-
ling problems related to change. Computing science reports 99/06, Eindhoven
University of Technology, Eindhoven (1999)

1515

8 Frank Puhlmann

13. Basten, T.: In Terms of Nets: System Design with Petri Nets and Process Alge-
bra. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands
(1998)

14. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

1616

Configurable Execution Environments

for Medical Processes

S. Jablonski*, M. Faerber*, M. Götz*, B. Volz*, S. Dornstauder*, S. Müller**

*) Chair for Databases and Information Systems, University of Bayreuth

Universitätsstrasse 30, 95447 Bayreuth, Germany

**) Chair for Database Systems, University of Erlangen-Nuremberg

Martensstraße 3, 91058 Erlangen, Germany

Abstract. We present the process modeling and execution tools iPM and iPE

that can dynamically be adjusted to domain specific requirements. While many

publications about iPM are focusing on its modeling flexibility, this paper con-

centrates on its capability to execute such customized process models. The iPM

execution environment (called iPE) is based upon a template driven generation

approach: for each domain specific process modeling language, templates are

provided which are compiled into a specialized execution environment.

1. Introduction

Gathering and organizing data is a major problem for many, especially complex ap-

plication domains like the clinical / medical application domain. Here, data from dif-

ferent medical devices have to be collected and prepared for various analyzing steps

such as diagnosis and reporting. We investigate such a clinical application currently in

a research project funded by the German Research Society [1] at the ophthalmic de-

partment of the University of Erlangen-Nuremberg. Our task is to integrate various

diagnostic data into a common database (the so called Glaucoma Register) and to

provide physicians and researchers with data and tools to effectively and efficiently

perform research in that medical realm.

Due to the dual purpose of the application – especially of the medical devices – as

medical research infrastructure on one hand side and as infrastructure for the normal

clinical consultation on the other hand side, the application scenarios for clinical de-

vices become very difficult and complex. Thus, clinical processes are chosen to de-

scribe and illustrate these scenarios. In another DFG funded research project we found

out that clinical processes are a powerful means to model complex application sys-

tems [2]. Some reasons foster this approach: first, (clinical) processes are recognized

to illustrate complex scenarios in a clear and concise way such that a user can easily

comprehend their content. Secondly, changes can easily be performed on process

models – we will see that changes are a challenge in our application.

In a first step we used standard process modeling tools (e.g. ARIS, VISIO) to de-

scribe the clinical processes. However, we were experiencing two major problems:

The semantics to be described was so complex that the resulting process models

were hard to comprehend (Figure 1a, a VISIO example). The physicians could not

understand – and thus could not review – this complex process model. As a conse-

1717

2 S. Jablonski*, M. Faerber*, M. Götz*, B. Volz*, S. Dornstauder*, S. Müller**

quence from this observation, we created application specific process modeling

elements that describe application semantics in a compact and comprehensible way

which is a first contribution of this paper. Figure 1b depicts the resulting process

model. The grey process step comprises the same semantics as the process of

Figure 1a. By the way, for the purpose of this paper the content of the process de-

picted in Figure 1 it is not of interest; the comparison of the two representations in

Figure 1a and Figure 1b should rather illustrate that tailored, compact modeling

constructs facilitate the readability and comprehension of process models.

Another major challenge of the clinical domain is its constant change; this feature

is primarily due to the research character of the application. To meet this require-

ment we are also fostering process modeling to describe the application: thereby

changes in the application can be reconstructed quickly in the process model. A

challenge here is that such a change must not only be reflected in a process model

but must also be reflected in the process execution environment. A second major

contribution of this paper is to present the design and implementation of a process

execution infrastructure that perfectly matches this requirement.

a)

b)

Figure 1: The advantage of domain specific modeling

1818

Configurable Execution Environments

for Medical Processes 3

From the above discussion two components of our solution approach can be derived:

The required use of specialized process modeling constructs needs a domain spe-

cific modeling language (Section 2).

The implementation of clinical process requires a flexible process execution infra-

structure. This must be extremely adaptable, since it firstly must be able to inter-

pret domain specific constructs introduced "on the fly", and secondly to interpret,

i.e. to execute them in an efficient way. This is a demanding feature since adapta-

tion and flexibility are – in principle – mutually contradictory (Section 3).

If these two requirements can be met, we are able to provide a powerful process mod-

eling and execution environment for flexible process models.

2. Domain Specific Process Modeling

Domain-Specific Modeling is an approach that facilitates communication between

domain experts and software developers, as it uses modeling concepts directly con-

nected to the domain the software will be applied in [7]. This way errors caused by

misunderstandings between modeling experts and domain experts can be avoided or

can be detected earlier [6]. Consequently, for each domain a Domain Specific Lan-

guage (DSL) must be constructed that contains domain specific modeling elements.

However, in our case having a DSL is just the first step. Since modeled processes

must be executed subsequently, a domain, i.e. a DSL specific process execution facil-

ity must also be provided. The modeling elements contained in a DSL for Process

Modeling can be partitioned in two subcategories:

Elements that are needed in every process model, independent of the cur-

rent application domain (common process modeling elements)

Elements that are especially introduced for one application domain (spe-

cific process modeling elements)

At the end of this section we will present some examples for common and for specific

process modeling elements, respectively.

This partition and the flexibility demanded in Section 1 require a specific modeling

concept. We have developed an approach that is called perspective oriented process

modeling [2, 4]; this concept is implemented by our process modeling tool iPM (inte-

grated ProcessManager) that will be demonstrated. Its main idea is the following:

When a process model is needed that has to be adapted to new requirements fre-

quently, it must be divided into small “pieces” in order to better cope with such

changes. This is nothing but the well known principle of "divide and conquer", a

synonym for the term "modularization" in software engineering.

The only firm and static part of our perspective oriented process model is referred

to as the modeling construct skeleton. This skeleton knows that so-called perspectives

are defined; together these perspectives establish a (process) modeling construct. The

typical perspectives of a modeling construct for processes are [4]:

The functional perspective describes the tasks of a process.

The organizational perspective identifies the agents (e.g. physicians) re-

sponsible to perform a task.

The operational aspect specifies applications needed to execute a process.

1919

4 S. Jablonski*, M. Faerber*, M. Götz*, B. Volz*, S. Dornstauder*, S. Müller**

The control flow perspective defines the execution order between work-

flows.

The data perspective defines both the in and out parameters of workflows

and how data flows between workflow steps.

In order to create a new modeling construct, each perspective must be customized.

Therefore, for each perspective a meta model is provided that facilitates customiza-

tion. Having the perspective oriented process model, (almost) arbitrary modeling lan-

guages can be constructed. Hereby, we use the following interpretation: a modeling

language is constituted through the modeling constructs it comprises. Thus, for each

application domain, a domain specific process modeling language can be provided.

It is out of the scope of this paper to present a complete set of modeling constructs

for process modeling, separated into common and specific constructs. However, some

examples should illustrate the meaning and purpose. The two major common model-

ing elements for the functional perspective are elementary and composite process

steps. Elementary process steps cannot be refined any more, while composite process

steps consist of elementary or other composite process steps. One of the major com-

mon modeling elements for the control flow perspective is the choice construct with

two or more exits. In the application depicted in Figure 1a, a medical decision has to

be made that determines whether a suspicion of Glaucoma must be confirmed or can

be abandoned. The whole process consists of two sorts of elements: in the choices

(diamonds) certain criteria are interrogated. Depending on the outcome of these ques-

tions, certain variables are increased (or decreased). Finally, a decision is taken. We

kind of summarize this whole decision into the compact, domain specific construct of

Figure 1b: the main criteria for this decision are depicted by the grey modeling con-

struct and can therefore be read and interpreted by a physician who immediately un-

derstands which criteria are relevant in the decision process. In order to get more de-

tailed information about the medical algorithm being executed, the physician can

zoom into the modeling construct.

The example of Figure 1 shows that compact, customized modeling constructs in-

crease the readability of process models: while the contents of Figure 1a and Figure

1b are the same, the physicians much easier and faster comprehend the meaning of the

process in Figure 1b and therefore accept process modeling much more. As we al-

ready stated in Section 1 the main challenge is to also provide an execution environ-

ment for such flexible modeling constructs. The next section introduces iPE, the exe-

cution environment for process models developed with the iPM process modeling

tool.

3. Executing Domain Specific Processes: iPE

3.1. Architecture of iPE

For each process model (defined in a domain specific process modeling language) a

so-called iPE (“integrated Process Execution”) application is generated by the iPE

compiler (Figure 2). The iPE application is a domain specific execution environment

for processes modeled in a domain specific process modeling language. There are two

main inputs for the iPE compiler: first, the process model that has to be executed, and

2020

Configurable Execution Environments

for Medical Processes 5

second, a series of so called iPE templates. Among these iPE templates there is one

template defining the domain specific process language used to describe the process

model under consideration. Some other templates are needed to construct the compo-

nents of the generated iPE application as they are also shown in Figure 2 (e.g. Run-

time Persistence Service, Dynamic Navigation Service).

The generation of the iPE application starts with a transformation of the corre-

sponding process model into a language neutral representation which can be seen as a

superset of the modeling languages iPM can support principally. Secondly, the com-

ponents of the iPE application are generated from the iPE templates. By exchanging

the iPE templates different components can be created. For example, the Runtime

Persistence Service can be based on a database system or on a file system, respec-

tively.

The iPE application is based on a three tier architecture which separates the fron-

tend, the data manipulation and the data storage layer from each other by well defined

interfaces. The frontend of the iPE application implements the interface for the proc-

ess participants. Typically, the process users have to input data and interact with the

iPE application (e.g. determine the next steps to be executed). This input is then sent

to the process control layer. The process control layer forwards the incoming calls to

the attached services. According to the use of different iPE templates, different ser-

vices can be deployed. For instance, the frontend (i.e. the user interface) could be im-

plemented as a web application (running in a standard browser) or a stand-alone ap-

plication. The following list gives a glimpse on the function of each service shown in

Figure 2:

Runtime Persistence Service: Stores the data of the process during execution in

such a way that the path along a process can be easily tracked back afterwards.

Offline Persistence Service: According to strict regulations in the medical applica-

tion field, it is necessary to store some parts of the data into special databases for a

longer period of time. This service synchronizes such databases by transferring the

important data of a process from the Runtime Persistence Service to these storages

Knowledge Management Service: This service supports the execution of one par-

ticular process by providing additional information from a knowledge management

system. In the clinical application field one can think of providing information

about medical treatment or diseases using this service.

External Application Execution Service: Often it is necessary to execute external

applications like a word processor or retrieving data from a medical device (e.g. an

X-ray image, blood pressure).

Dynamic Navigation Service: The path along a process is not fixed but will be de-

termined during runtime of the process depending on the data available in the

process and the process execution history.

2121

6 S. Jablonski*, M. Faerber*, M. Götz*, B. Volz*, S. Dornstauder*, S. Müller**

Figure 2: The iPE compiler generates the iPE application

We implemented prototypic templates for the frontend using JavaServer Faces [8].

The iPE compiler (implemented in Java 1.5) then generates a WAR file which can be

deployed to every Servlet Container.

3.2. Executing Processes

This section provides a short introduction into the execution of processes by an iPE

application. Therefore, we take a short process as example (Figure 3) and explain how

the components of the iPE application are used to execute this sample process.

In the step “Anamnesis” patient data (e.g. name and age) are entered. These data

are needed in the next step “Examination” as the tests are set up individually for pa-

tients of different age. In the last step, the finding of an examination is composed.

Consequently, all data used in the process up to now, are needed.

Figure 3: A sample process

To execute a process, e.g. the sample process of (Figure 3), a user must log into the

iPE application using the frontend of the iPE application. In this example, we provide

a default frontend which runs in a standard web browser. In the step “Anamnesis”

some input fields like "name" and "age" are shown which have to be filled by the

process user. Another default frontend to enter examination data is used in the process

step "Examination". However, the third process step "Finding" is different: here, a

word processor (e.g. MS Word) must be called in order to fill out a template for find-

ings. In the following, we briefly show how the components of the iPE application are

interacting in order to execute the sample process.

2222

Configurable Execution Environments

for Medical Processes 7

All data entered by the process users are collected by the Process Control Layer

(Figure 2) and subsequently forwarded to the underlying services of the iPE applica-

tion like Runtime Persistence Service (RPS), Knowledge Management Service

(KMS), and External Application Execution Service (EAES). After a process step was

executed, e.g. the step "Anamnesis", the data collected by the Process Control Layer

are stored in a database by the RPS. After having entered such data, the KMS could

be called to search for relevant information in the scope of interest (e.g. the glaucoma

disease). This search is depending on the data collected at the corresponding process

step. To call the KMS is optional whereas calling some other services like the RPS is

mandatory. It must be specified in the iPE templates whether service calls are optional

or mandatory. In the third step of our sample process model ("Finding"), the EAES

needs to be called. It is responsible to start the MS Word text processing system in or-

der to write the diagnostic findings. Hereby, a MS Word template for findings is used,

which is specified in the process model. The finding will then be stored in the data-

base (as "Medical Letter"). In order to accomplish this, the RPS is called. If in the

course of process execution, this finding must be revisited again, the two services

EAES and RPS are again responsible to present this finding to the process user.

The iPE application also assigns user or roles to process steps. For example, while

the first step in the process (Figure 3) must be executed by an Assistant Medical

Technician, the second and the third step must be performed by a physician.

According to the scenario presented above, the various services are called by the

Process Control Layer in order to execute process models. However, even this small

scenario depicts how flexible process execution can be organized. Consequently proc-

ess models (i.e. the process languages) and iPE templates can be customized in such a

way that they ideally fit the requirements of specific process execution semantics.

4. Demonstration: Presented Application Areas

While this paper mainly focuses on the medical domain, the iPE execution environ-

ment can also be used for other application scenarios. This is due to its Meta model-

ing approach and its modular architecture. To support another application domain

means to provide an alternative domain specific process modeling language. While

the process modeling language of our medical domain is called iPM4MED, we are

also able to provide the process modeling language iPM4QM for the quality man-

agement domain. This process language is compliant to the reference models of the

ISO 15504 quality standards [5]. In our demonstration we will present both modeling

domains, the medical domain (iPM4MED, cf. [3]) and the quality management do-

main (iPM4QM). For both domains we will demonstrate

how to specify new modeling constructs,

how to define and modify new process models, and

how to execute such process models for different application domains.

Through these three demonstrations we can show how to extend a modeling language

and how to execute processes that are defined according to this customized modeling

language. That way, the whole flexibility of our two tools iPM (for process modeling)

and iPE (for process execution) will be shown. Below, you'll find a screenshot of the

iPE frontend. On the left hand side, the fields to input data for the process step "An-

2323

8 S. Jablonski*, M. Faerber*, M. Götz*, B. Volz*, S. Dornstauder*, S. Müller**

amneses" can be seen. On the right hand side, context information provided by the

KMS can be shown.

References

1. Special Research Area 539: „Glaukome einschließlich Pseudoexfoliationssyndrom“ Ho-

mepage. http://www.sfb539.forschung.uni-erlangen.de/. Retrieved 2006-05-30.

2. Jablonski, S.; Lay, R.; Meiler, C.; Müller, S.; Hümmer, W.: Data Logistics as a Means of

Integration in Healthcare Applications. Proceedings of the 2005 ACM Symposium on Ap-

plied Computing (SAC) - Special Track on Computer Appplications in Health Care, Santa

Fe, New Mexico, 2005.

3. Jablonski, S.: Process Based Data Logistics: Data Integration for Healthcare Applications.

ECEH 2006 (1st European Conference on eHealth Fribourg, Switzerland), 2006.

4. Jablonski S., Bußler C., 1996. Workflow management - modeling concepts, architecture

and implementation. London. International Thomson Computer Press, 1996.

5. Jablonski, S.; Faerber, M.; Schlundt, J.; Bridging the gap between SPICE Reference Proc-

esses and OU Processes: An iterative business process modelling approach. SPiCE 2006

(Proceedings of the 6th International SPICE Conference on Process Assessment and Im-

provement (ISO/IEC 15504 standard)), 2006.

6. Cook, S.: Domain-Specific Modeling an Model Driven Architecture. MDA Journal, Janu-

ary 2004.

7. Luoma, J.; Kelly, S.; Tolvanen, J.: Defining Domain-Specific Modeling Languages: Col-

lected Experiences. Proceedings of the 4th OOPSLA Workshop on Domain-Specific

Modeling (DSM’04), Vancouver, British Columbia, Canada, Oct 2004, Computer Science

and Information System Reports, Technical Reports, TR-33, University of Jyväskylä,

Finland, 2004

8. Sun Developer Network: JavaServer Faces Technology,

http://java.sun.com/javaee/javaserverfaces/, retrieved 2006-07-11

2424

Repository for Business Processes

and Arbitrary Associated Metadata

Jussi Vanhatalo12, Jana Koehler1, and Frank Leymann2

1 IBM Research GmbH, Zurich Research Laboratory,
Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{juv, koe}@zurich.ibm.com
2 Institute of Architecture of Application Systems, Universität Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@informatik.uni-stuttgart.de

Abstract. We have published a repository for storing business processes
and associated metadata. The BPEL Repository is an Eclipse plug-in
originally built for BPEL business processes and other related XML data.
It provides a framework for storing, finding and using these documents.
Other research prototypes can reuse these features and build on top of
it. The repository can easily be extended with new types of XML doc-
uments. It provides a Java API for manipulating the XML files as Java
objects hiding the serialization and de-serialization from a user. This has
the advantage that the user can manipulate the data as more convenient
Java objects, although the data is stored as XML files compliant with the
standard XML schemas. The data can be queried as Java objects using
an object-oriented query language, namely the Object Constraint Lan-
guage (OCL). Moreover, the flexible design allows the OCL query engine
to be replaced with another engine based on other query language.

1 Introduction

Interoperability based on several XML standards is one of the corner stones
of Web services. The Business Process Execution Language for Web Services
(BPEL) [2] is the defacto industry standard for representing business processes.
It is tightly related to other XML standards, such as the Web Service Definition
Language (WSDL) and XML Schema. In addition, arbitrary metadata repre-
sented in XML format may be associated to business processes depending on
the context and applications that use the data.

XML data is commonly used by different applications. However, currently
managing the documents and searching information from their contents is labo-
rious and inefficient. It is beneficial to store the data in a repository that takes
care of data access and executes queries. Although it is important for interoper-
ability to exchange data in XML format across organizations and systems, it is
often more convenient for a developer to manipulate the data as Java objects,
instead of XML. Our goal was to build a business process repository that stores
data as documents compliant to the XML standards, but allows applications to
be implemented directly on the Java representation of the data model.

2525

We have implemented the BPEL Repository, which is an Eclipse plug-in built
to store business processes together with other XML data. It provides a frame-
work for storing, finding and using these documents. Other research prototypes
can reuse these features and build on top of it. The repository can easily be
extended with additional XML schemas because of its flexible architecture. By
default it supports the common Web service standards, such as BPEL, WSDL
and XML schema, and it can easily be extended to support other XML schemas
for business processes and other data.

The object-oriented approach frees developers from the burden of the under-
lying XML data model and allows them to concentrate on the object model of
their application, which they usually know well. The Eclipse Modeling Frame-
work (EMF) [10] is used to hide data serialization and de-serialization from the
user. The framework takes care of representing the XML data as EMF objects
that are Java objects. As a novel feature, it is possible to query the XML files as
EMF objects using an object-oriented query language, namely the Object Con-
straint Language (OCL) [7] that is part of the UML specification. Native XML
databases support typically XQuery as their query language. A major advantage
of OCL over an XQuery is its ability to navigate through the data model and
follow all the associations of an object model. In contrast, XQuery forces the
user to formulate the queries based on the tree structure of the underlying XML
schema.

In contrast to our file system based solution, there are other business process
repositories [12] [14] that are built on top of a database system. However, their
database schemas are created manually. Flexibility is an advantage of the BPEL
Repository, because EMF is used to automatically generate support for new and
modified XML schemas. In research projects, data structures are often modified
and new ones are introduced. The automatization makes adapting these changes
easier. Nevertheless, repositories based on a database have typically better per-
formance and scalability than our solution.

The BPEL Repository was recently published in IBM alphaWorks [16] with
special licensing terms for academic use. The software has been integrated with
a change management system called CHAMPS [3], [13].

2 Solution

The architecture of the BPEL Repository is presented in Figure 1. All compo-
nents are plug-ins on the Eclipse platform. The core component of the solution
is the Repository API, which provides an application programming interface for
external software to build on.

The Repository User Interface (UI) is an example implementation that uses
the Repository API. However, it is also a useful graphical user interface to man-
age the contents of the repository. The user interface is integrated in the Eclipse
workbench and built on the Standard Widget Toolkit (SWT) and JFace libraries.

The Data Handler is a sub-component that takes care of the data access
on a file system. It abstracts the choice of the storage medium from the other

2626

��������	
�
	���
���
�

������
������	
��
�

��������������

�������������

�����
�����������

��� 	 �����

	
�!"��!��#

�������	
�
	���
���

�$
�#%&�
	
��
���'�����

�$
�#%&�	
��
�

(�
��#%&
	
��
���'�����

(�
��#%&
	
��
�

���

��)���	
�
����
���
�

*�� �

��)���
+������
��
��

�����,�
'���

	
��	'����

	
���'�����

Fig. 1. Repository architecture showing components and technologies used.

components. The data access component could be replaced with another one
storing data in a database by using a technology such as the Service Data Objects
[10]. The Data Handler uses the Eclipse Modeling Framework to serialize EMF
objects into XML files and de-serialize the files back to EMF objects. Thus, all
repository components manipulate data as EMF objects rather than of XML.

2.1 Flexibility of Manipulating Data as EMF Objects

In the repository, data is represented as EMF objects. Therefore, all data must
have an EMF model. However, the EMF model can be automatically generated
from an XML schema, a UML class diagram or Java classes [4], [10]. As in the
business process management context data is often stored as XML conforming
standardized XML schemas, it is trivial to obtain EMF models for XML files.
The repository can be extended to support a new data type by plugging in the
EMF model of this new data type.

The components providing EMF models for the repository are shown on the
left-hand side of the Repository API in Figure 1. The Default EMF Extensions
plug-in contains EMF models for BPEL, WSDL and XML schema standards.
Thus, the repository supports the respective file types by default. This compo-
nent can be replaced by another component supporting a different version of
these standards or completely different file types. Because the Eclipse plug-in
mechanism is used, this does not require any modifications in the other parts of
the repository.

2727

Similarly, other EMF extensions can be plugged into the repository. In the
evolving research community, extensibility is an asset. For instance, in the con-
text of combining business process management with semantic Web, the reposi-
tory can easily be extended to support a new document type containing metadata
related to a business process.

The Sample EMF Extension contains an EMF model that is used in the user
guide [16] to illustrate, step by step, how to create an EMF model and plug it
into the repository. It is also explained how EMF can be used to automatically
generate a graphical editor for the instances of an EMF model.

First, the data structure can be modeled as a UML class diagram, which
is usually much faster than describing the same structure as an XML schema.
Next, the UML class diagram is transformed to an EMF model. An editor can be
automatically generated for the EMF model. An XML schema can be generated
from the EMF model, if desired. In any case, instances of an EMF model can be
serialized to interoperable XML files. Instances of the model can be generated
for testing purposes with the editor, which takes care of proper syntax. Finally,
the EMF model is plugged into the repository, which persists the data and
provides capabilities for querying data. A chief advantage is that queries can
be formulated using the same object-oriented model as was used to create the
data structure in the first place. Thus, the XML representation is used only for
interoperability with other systems, and the developers need not bother with
the concrete XML syntax.

2.2 Query Engines

We used existing query engines with the repository. The repository handles the
iteration over the queried objects, but each sub-query is executed in the query
engine plugged into to the repository. It is possible to change the query engine
to another pre-registered one between queries. The available query engines are
shown on the right-hand side of the Repository API in Figure 1. The repository
has been tested with two OCL query engines, that query Java objects with an
object-oriented query language, namely OCL.

If the repository is installed on top of the IBM Rational Software Architect
(RSA) product, the OCL engine of the latter can be used. However, as we did
not want to limit the repository to a single commercial query engine or a specific
query language, the query engine interface has been built generic. Therefore, the
IBM OCL engine is plugged into the repository using an adapter. The IBM OCL
Engine Adapter is delivered together with the repository.

Another OCL engine was built at the University of Kent [1]. It is an open
source tool that can be plugged into the repository using the Kent OCL Engine
Adapter. The Eclipse Modeling Framework Technology project [11] is building
another open source OCL engine that could also be adapted to the repository. We
have not yet implemented the corresponding adapter because this OCL engine
is still under development.

It is straightforward to plug a new query engine into the repository or adapt
an existing query engine for it. An example of how to adapt an OCL engine

2828

is included in the user guide [16]. The Dummy Query Engine is an example
implementation to show how a new query engine can directly be integrated into
the repository. Thus, also query engines based on another query languages can
be used.

The repository is not aware of the query language that is used. The repository
merely passes the query and other parameters from the user interface or external
software to the query engine selected together with the EMF object that is to
be queried. Thus, any query engine that can execute queries on EMF objects
can be plugged into the repository.

One limitation of the query mechanism is that the performance is only linear
compared with the number of documents that are queried. Indexing data or other
ways to improve the query performance are not used. However, this performance
has been sufficient for research prototypes. For example, querying 100 BPEL files
took 3 seconds on a laptop in our performance tests [15]. One way to improve
OCL queries would be to map them to a query language, such as XQuery, that
is natively supported by a database system. In that case, the repository would
also be built directly on top of the database system. Some work on mapping
OCL to XQuery already exists [5], [6].

2.3 Data Structure

The data is organized in a tree of organizations. The organizations are mapped to
directories in a file system. Each organization may contain a business process and
associated metadata grouping the related files together. In addition to these data
documents, a descriptor document is stored in each organization. It contains the
file type and the role of each data document in the organization. This information
is used to make the conversion between EMF objects and XML files. In addition,
the role describes how the data document is related to the other documents in the
organization. For instance, a WSDL file stored with the repository may contain
the public interface or the partner links of the BPEL business process.

Queries can be applied to files with a specified role in an organization, a list
of organizations, or a list of sub-trees in the organization hierarchy. Related files
can be searched based on their roles.

Data can be accessed from the file system as XML files and through the
repository as EMF objects. Any directory in a file system can act as the root
organization of the repository contents. The data in the repository can be moved
to another location or a computer as simply as copying the directories.

2.4 Usage Scenario

The repository has been deployed with a change management system called
CHAMPS. As part of the solution, planning algorithms are used to facilitate
the automatization of the change and configuration management. The plans
are stored as BPEL files into the BPEL Repository. In addition, the plans are
analyzed and the results are stored as metadata associated to the plans. The

2929

metadata includes information about the plan such as its number of activities,
degree of concurrency, execution duration and correctness [13].

Storing the analysis results as metadata enables reuse of the data, and unnec-
essary recomputing of the results can be avoided. The suitable plans are found
from the repository by querying the content of the plans and their associated
metadata. For example, the plans that are structurally correct can be found by
querying the metadata. Among these plans the ones that reach a specified goal
can be found with a subsequent query.

During the development of the system, trying out different alternatives of
the metadata schema was uncomplicated, since the data structure was designed
as a UML class diagram and the corresponding EMF classes were used as the
basis of the implementation and the OCL queries. The developers were able to
avoid completely working with the XML representation of the data, because it
was automatically generated and used only as the serialization format behind
the scenes.

3 Conclusion

The repository has already been proved useful for IBM internal research proto-
types [13]. By publishing the repository, we wanted to make it widely available
to the research community as we are interested in more user experience with
it. We would also be interested in finding out how convenient users find OCL
as a query language, because currently OCL is more common as a language to
express constraints rather than queries.

As next steps, we plan to contribute our experiences gained while building
the repository to the IP-SUPER project [8], [9] funded by European Union.
The project merges business process management with semantic Web services.
As part of the project, we plan to build a business process library, most likely
on a database system rather than a file system in order to improve the query
performance for more extensive querying purposes. This would also be beneficial,
when the repository is used for searches based on an ontology or as a component
of a business process execution engine.

References

1. Dave Akehurst and Octavian Patrascoiu. Object constraint language library. Web
site, June 2004. http://www.cs.kent.ac.uk/projects/ocl/.

2. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish
Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business Process Ex-
ecution Language for Web Services. OASIS Org., 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

3. Aaron B. Brown, Alexander Keller, and Joseph L. Hellerstein. A model of con-
figuration complexity and its application to a change management system. In
Proceedings of the 9th International IFIP/IEEE Symposium on Integrated Man-
agement (IM 2005), May, 2005.

3030

4. Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley Profes-
sional, 2003.

5. Ahmed Gaafar and Sherif Sakr. Proposed framework for integrating XML/XQuery
and UML/OCL. In Proceedings of the 7th Conference in the UML series
(UML2004), pages 241–259, Lisbon, Portugal, 2004.

6. Ahmed Gaafar and Sherif Sakr. Towards a framework for mapping between
UML/OCL and XML/XQuery. In Proceedings of the IADIS e-Society 2004 Con-
ference (ES2004), pages 241–259, 2004.

7. Object Management Group. OCL 2.0 Specification. OMG, 2005.
http://www.omg.org/docs/ptc/05-06-06.pdf.

8. Martin Hepp, Frank Leymann, John Domingue, Alexander Wahler, and Dieter
Fensel. Semantic business process management: A vision towards using semantic
web services for business process management. In Proceedings of the IEEE ICEBE
2005, pages 535–540, Beijing, China, October 2005.

9. IP-SUPER. Semantics utilised for process management within and between enter-
prises. Web site, April 2006. http://www.ip-super.org/.

10. Eclipse Org. Eclipse modeling framework. Web site. http://www.eclipse.org/emf/.
11. Eclipse Org. Eclipse modeling framework technology. Web site, 2006.

http://www.eclipse.org/emft/projects/ocl/.
12. Minrong Song, John Miller, and Ismailcem Arpinar. RepoX: XML repository for

workflow designs and specifications. Technical Report #UGA-CS-LSDIS-TR-01-
011, University of Georgia, August 2001.

13. Biplav Srivastava, Jussi Vanhatalo, and Jana Koehler. Managing the life cycle of
plans. In Proceedings of the 17th Innovative Applications of Artificial Intelligence
Conference, pages 1569–1575, Pittsburgh, Pennsylvania, USA, 2005.

14. Tammo van Lessen. Konzipierung und Entwicklung eines Repository für
Geschäftsprozesse. Master’s thesis, Institute of Architecture of Application Sys-
tems, University of Stuttgart, March 2006.

15. Jussi Vanhatalo. Building and querying a repository of BPEL process specifica-
tions. Master’s thesis, Helsinki University of Technology, Institute Eurecom and
University of Nice – Sophia Antipolis, September 2004.

16. Jussi Vanhatalo. BPEL Repository. IBM alphaWorks, April 2006.
http://www.alphaworks.ibm.com/tech/bpelrepository.

3131

Maestro for Let’s Dance: An Environment for

Modeling Service Interactions

Gero Decker1, Margarit Kirov1, Johannes Maria Zaha2, Marlon Dumas2

1 SAP Research Centre, Brisbane, Australia
(g.decker,margarit.kirov)@sap.com

2 Queensland University of Technology, Brisbane, Australia
(j.zaha,m.dumas)@qut.edu.au

Abstract. In emerging web service development approaches, the de-
scription of interactions both from a global and from a local perspective
plays an increasingly important role. In earlier work we presented a vi-
sual language (namely Let’s Dance) for modeling service interactions at
different levels of abstraction. In this paper we present a modeling tool
for Let’s Dance. The tool supports the static analysis of global mod-
els, the generation of local models from global ones, and the interactive
simulation of both local and global models.

1 Introduction

As the first generation of web service technology based on XML, SOAP, and
WSDL gains maturity, a second generation targeting collaborative business pro-
cesses is gestating. Development methods associated to this second generation
of web services generally rely on the explicit representation of service interaction
behavior from two complementary perspectives: one where interactions are seen
from the perspective of each participating service, and the other where they
are seen from a global perspective. This leads to two types of models: In a
global model (also called a choreography) interactions and their dependencies are
captured from the viewpoint of an ideal observer who oversees all interactions
between a set of services. Meanwhile, a local model focuses on the perspective of
a given service, capturing only those interactions that directly involve it. Local
models are suitable for implementing individual services while choreographies
are instrumental during the early phases of analysis and design, when domain
analysts need a global picture of the system.

In previous work [4] we have identified requirements for a service interaction
modeling language and argued that existing languages, e.g. WS-CDL [2], fail to
fulfill these requirements. Indeed, existing languages are targeted at application
developers rather than at domain analysts who play a key role in the construc-
tion of these models. Accordingly, we have designed a language, namely Let’s
Dance, intended to support analysts in capturing both global and local service
interaction models. This paper introduces a tool that enables analysts to capture
and to analyze Let’s Dance choreographies. After analysis, the local models for

3232

2 Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas

the parties involved in the choreography can be generated and the execution of
both global and local models can be interactively simulated.

The paper is structured as follows. Section 2 gives an overview of the Let’s
Dance language. The architecture and the features of the tool are presented in
Section 3. Section 4 discusses future extensions.

2 Let’s Dance Choreographies

A choreography consists of a set of interrelated service interactions correspond-
ing to message exchanges. At the lowest level of abstraction, an interaction is
composed of a message sending action and a message receipt action (referred
to as communication actions). Communication actions are represented by non-
regular pentagons (symbol for send and for receive) that are juxtaposed
to form a rectangle denoting an elementary interaction. As illustrated in Fig-
ure 1, a communication action is performed by an actor playing a role, specified
at the top corner of a communication action. Roles are written in uppercase and
the actor playing this role (the “actor reference”) is written in lowercase between
brackets. The name of the message type for the receive actions can be omitted
(since the same type applies for both send and receive).

Fig. 1. Constructs of Let’s Dance

Interactions can be inter-related using the constructs depicted in Figure 1.
The relationship on the left-hand side is called “precedes” and is depicted by a
directed edge: the source interaction can only occur after the target interaction
has occurred. That is, after the receipt of a message “M1” by “B”, “B” is able to
send a message “M2” to “C”. The rectangle surrounding these two interactions
denotes a composite interaction, which can be related with other interactions
with any type of relationship. The relationship at the center of the figure is
called “inhibits”, depicted by a crossed directed edge. It denotes that after the
source interaction has occurred, the target interaction can no longer occur. That
is, after “B” has received a message “M1” from “A”, it may not send a message
“M2” to “C”. The latter interaction can be repeated until “x” messages have
been sent, which is indicated by the header on top of the interaction. The actor

3333

Maestro for Let’s Dance: An Environment for Modeling Service Interactions 3

executing the repetition instruction is noted in brackets. Finally, the relation-
ship on the right-hand side of the figure, called “weak-precedes”, denotes that
“B” is not able to send a message “M2” until “A” has sent a message “M1”
or until this interaction has been inhibited. That is, the target interaction can
only occur after the source interaction has reached a final status, which may
be “completed” or “skipped” (i.e. “inhibited”). In the example, the upper in-
teraction has a guard assigned, which is denoted by the header on top of the
interaction. This interaction is only executed if the guard evaluates to true. The
actor who evaluates the guard is noted in brackets.

3 Tool Overview

Figure 2 shows a screen shot of Maestro for Let’s Dance. The palette on the left-
hand side contains the diagram elements. Below this palette, layout options are
accessible. The main drawing area in the middle. On the right, there is a pane for
editing the properties of the selected element as well as a navigator that provides
an overview over the diagram. The analysis and simulation functionality can be
accessed via the “Let’s Dance” menu item in the menu bar at the top. Analysis
results and simulation status are shown within the editing area.

Fig. 2. Screen shot of Maestro for Let’s Dance

Maestro for Let’s Dance is built on top of the Maestro visual language frame-
work developed at SAP. It is the foundation for various modeling environments
including: Maestro for BPMN, an editor for the Business Process Modeling No-
tation, Maestro for BPEL, a modeling environment for the Business Process
Execution Language, and Maestro for SAM (Status-and-Action Management),
a modeling and simulation environment for business object lifecycles.

3434

4 Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas

Fig. 3. Architecture overview

Figure 3 describes the main architecture of Maestro for Let’s Dance using the
Fundamental Modeling Concepts (FMC) block diagram notation [3]. A core com-
ponent of the Let’s Dance prototype is the Tensegrity framework3. It provides
basic functionality that is needed for graphical editors such as rendering func-
tionality, editing facilities (selection, creation, deletion, resizing, etc. of diagram
elements), event propagation mechanisms, a command stack and a persistency
service for diagrams. The Maestro framework extends Tensegrity and provides
utility functionality for attribute management and refined application skeletons.

Tensegrity and Maestro can be compared to eclipse GMF4 (Graphical Mod-
eling Framework). Shape descriptions define what diagrams consist of and how
they look like. Anchor points, resizing behavior, color schemes, line widths and
line decorations can be defined for diagram elements. Furthermore, the palette is
configured. A strong point about GMF is that it very clearly separates the data
model from its graphical representation. However, GMF was not chosen because
at the time of development releases were still in a pre-1.0 state and significant
changes in the API from release to release caused major refactorings. It would
have been an option to use eclipse GEF5 (Graphical Editing Framework), the
foundation of GMF, without using GMF itself. The fact that GEF does not in-
clude layouting functionality like it is the case for Tensegrity and the possibility
of integrating the tool with Maestro for BPMN and Maestro for BPEL in the
future were the final arguments for choosing Maestro.

Choreographies are described using two different data structures in the tool.
The diagram data structure is optimized for the usage within the editor. E.g.
entities in the data structure directly relate to edges and nodes in the diagram
and layout information is attached to the entities. The choreography model data

3 See http://www.tensegrity-software.com/
4 See http://www.eclipse.org/gmf/
5 See http://www.eclipse.org/gef/

3535

Maestro for Let’s Dance: An Environment for Modeling Service Interactions 5

structure does not contain any layout information and follows the Let’s Dance
meta-model introduced in [4]. The choreography model is then used as input for
the analysis plugins and the simulation engine. A model transformation takes
place every time a check is triggered or a simulation is started. A reverse mapping
from entities in the choreography model to the entities in the diagram model is
later on used for displaying output of the checkers or the simulation engine.
Since EMF6 (Eclipse Modeling Framework) includes functionality to produce
XMI7(XML Metadata Interchange)-compliant files and since there is a good
integration of EMF with the UML modeling environment Rationale Rose8, EMF
was used for implementing the choreography data model.

A precondition for analyzing a choreography model is that it complies to
the well-formedness criteria defined in [5]. Therefore, a well-formedness check
precedes every analysis as well as the generation of local models. Examples for
ill-formedness could be e.g. an unspecified actor for a send or receive action or
a cycle of precedes and weak-precedes relationships.

Cardinality checker. Maestro for Let’s Dance provides a cardinality checker that
is able to identify how many times an interaction can occur, at least and at most,
within one execution of a choreography. The cardinality checker takes as input
a choreography and classifies its interactions into five groups: (0,0): interactions
that will never be executed (i.e. unreachable); (0,1): interactions that may be
executed once or skipped altogether (i.e. conditional); (1,1): interactions that will
be executed exactly once; (0,n): interactions that may be executed any number
of times; and (1,n): interactions that will be executed at least one.

The cardinality checker can help modelers to detect semantical errors, such
as unreachable interactions or interactions that may be skipped against the mod-
eler’s intent. It can also be used to determine characteristics required from the
communication channels. For example, if an interaction can be executed multiple
times, the corresponding channel may be required to guarantee orderly delivery.

Cardinality analysis is largely based on reachability analysis for which we
have presented two alternatives in previous work: In [1] the algorithm is based
on π-calculus bi-simulation whereas in [5] an ad-hoc algorithm is introduced.
It turned out that because of the computational complexity of bi-simulation
analysis only very small choreographies could be processed in a reasonable time.
The second algorithm has low polynomial complexity and scales up to real-world
choreographies. Therefore, it was chosen for the tool.

Enforceability checker. It has been shown that there might be relations between
interactions in a choreography model that cannot be enforced locally. I.e. It turns
out that not all global models can be mapped into local ones in such a way that
the resulting local models only contain interactions explicitly captured in the
choreography model and they collectively enforce all the constraints expressed in

6 See http://www.eclipse.org/emf/
7 See http://www.omg.org/technology/documents/formal/xmi.htm
8 See http://www.ibm.com/software/rational

3636

6 Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas

the global model. A counter-example is given in Figure 4. In this choreography it
is not possible to enforce the “precedes” constraint between the two interactions
without introducing additional interactions. Indeed, how can actors ’c’ and/or
’d’ know that the interaction between ’a’ and ’b’ has taken place in the absence
of any interaction between actors ’a’ and ’b’ on the one hand, and actors ’c
and ’d’ on the other? Thus, either the model needs to be enhanced with an
interaction between a/b and c/d, or the sequential execution constraint will
not be enforced (i.e. the interactions can occur in the opposite order from the
perspective of an ideal observer). Since domain analysts are supposed to sign off
on a choreography model it is undesirable to automatically introduce implicit
interactions to ensure the fulfilment of constraints. Instead, the modeler should
be warned of such issues, so that (s)he can refine the model as needed.

Fig. 4. Example of a non-locally enforceable choreography

Accordingly, Maestro for Let’s Dance incorporates an enforceability checker
that identifies non-enforceable constraints in a choreography model and reports
them to the modeler. The algorithm used for this purpose is described in [5].

Simulation In order to give choreography modelers a better idea of the semantics
of their models, the tool offers the possibility to simulate choreography instances.
The formalization of the execution semantics of Let’s Dance were presented in
[1]. It was used as a blueprint for the implementation of the simulation engine.

An interaction can be in one of the four states initialized (visualized as yel-
low), enabled (green), skipped (red) and completed (gray). Each instance starts
in the state initialized. The instance can now be skipped or it can be enabled.
Therefore, the transitions to the states skipped and enabled are possible. If an
instance is in state skipped nothing can happen to it any more. If an instance is in
state enabled the interaction can execute. During the execution the instance can
be skipped. Otherwise, it will eventually complete execution and move to state
completed. In the case of guarded interactions the user can decide whether the
interaction should be executed or if it should be skipped. In the case of repeated
interactions the user can decide whether the interaction should be executed once
more or if the repetition is terminated.

Local model generator. In [5] we have presented an algorithm for generating local
models. This algorithm is implemented in Maestro for Let’s Dance. A new dia-
gram containing all the interactions where a specific actor is involved is generated
and the layout functionality is applied to it.

3737

Maestro for Let’s Dance: An Environment for Modeling Service Interactions 7

4 Outlook

The next step in the development of “Maestro for Let’s Dance” is the refinement
of the generation of local models. The generation of local models with imple-
mentation configurations will be an important step towards the generation of
executable models, where BPEL will be the first target language. Other analy-
sis functions will be added. Conformance checking between local models and
choreography models will be one of the focus areas.

References

1. G. Decker, J. M. Zaha, M. Dumas: Execution Semantics for Service Choreographies.
Preprint # 4329, Faculty of IT, Queensland University of Technology, May 2006.
http://eprints.qut.edu.au/archive/00004329

2. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, November
2005. http://www.w3.org/TR/ws-cdl-10.

3. A. Knopfel, B. Grone, P. Tabeling: Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, May 2006.

4. J. M. Zaha, A. Barros, M. Dumas, A. ter Hofstede: Lets Dance: A Language for
Service Behavior Modeling. Preprint # 4468, Faculty of IT, Queensland University
of Technology, February 2006. http://eprints.qut.edu.au/archive/00004468

5. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker: Service Interaction
Modeling: Bridging Global and Local Views. In Proceedings of the 10th Interna-
tional EDOC Conference, Hong Kong, 2006.

3838

Middleware Support for BPEL Workflows in the

AO4BPEL Engine

Anis Charfi, Mira Mezini

Software Technology Group
Darmstadt University of Technology

{charfi,mezini}@informatik.tu-darmstadt.de

Abstract. This paper focuses on middleware concerns in BPEL work-
flows. When looking at those workflows from the implementation per-
spective, we observe that they have several BPEL-specific middleware
requirements, which are not supported by current WS-* specifications
and by most BPEL engines available to date. This demo paper will show
the AO4BPEL Engine, which implements a container framework that
allows the specification and enforcement of middleware requirements in
BPEL processes. A deployment descriptor is used to specify the quality
of service requirements of BPEL activities. A light-weight and aspect-
based process container is used to enforce those requirements by calling
dedicated middleware Web Services. We implemented those middleware
Web Services by extending open source implementations of WS-* speci-
fications for security, reliable messaging, and transactions.

1 Introduction

In BPEL [11], a composite Web Service is implemented by means of a workflow
process, which consists of a set of interactions between the composition and
the partner Web Services along with the flow of control and data around those
interactions. Whilst the functional side of the composition is specified by the
BPEL process, it is unclear how to handle non-functional middleware concerns
such as security, reliable messaging, and transactions.

The BPEL specification does not address middleware issues and leaves that
for good reasons to BPEL implementations, which should support these “de-
ployment issues” somehow. We observe however, that current BPEL engines do
no provide appropriate middleware support for BPEL processes. In addition, it
is widely assumed that WS-* specifications such as WS-Security [18] and WS-
ReliableMessaging [4] are sufficent to cope with the middleware requirements of
BPEL processes, for example by attaching appropriate policies [5] to the WSDL
of the composite Web Service or its partners. We argue that WS-* specifications
support only some of BPEL middleware requirements, namely those which have
corresponding operations and messages in WSDL. There are other BPEL-specific
middleware requirements that cannot be mapped to WSDL and SOAP as they
require knowledge about the process, its activities, and BPEL semantics. These
requirements are not supported by WS-* specifications.

3939

In [7], we presented a container framework, which addresses the problems of
specification and enforcement of middleware requirements in BPEL processes.
The framework introduces a deployment descriptor, which specifies the middle-
ware requirements of the process activities and a process container, which inter-
cepts the execution of the activities at well-defined points and plugs in calls for
dedicated middleware Web Services to enforce those requirements. In this paper,
we present an implementation of that framework on top of the AO4BPEL en-
gine, which is an aspect-aware engine based on IBM’s BPWS4J [15]. We will also
present some BPEL middleware Web Services that we developed by extending
open source implementations of WS-* specifications.

2 Middleware Requirements in BPEL Workflows

We distinguish simple requirements, which correspond to BPEL messaging ac-
tivities and could be supported somehow by using existing WS-* specifications
and complex requirements, which are specific to BPEL. We will elaborate on
reliable messaging, security, and transactions.

2.1 Reliable Messaging

A simple requirement of BPEL messaging activities is the reliable delivery of
their respective SOAP messages with guaranteed delivery assurances (e.g., with-
out message loss and/or duplication). Consider for instance two messaging ac-
tivities such as reply or one-way invoke that target different partners and are
nested in a sequence. The corresponding messages should be delivered in the
order, in which the activities appear in the sequence, i.e, the SOAP message of
the first activity should be received by the respective partner before the SOAP
message of the second activity. Current reliable messaging specifications [17, 4]
do not support this complex requirement because it involves more than two end
points (the process and the two partners). This requirement is about the ordered
message delivery in multi-party BPEL interactions [10].

2.2 Security

Messaging activities have simple requirements such as integrity, confidentiality,
and authentication, which are supported by WS-Security [18]. Complex require-
ments arise when we consider issues such as secure conversations, trust, and
federation in the context of BPEL processes. For example, we assume that we
have a sequence, which contains many messaging activities targeting the same
partner. From a performance point of view, it is inefficient to secure each mes-
saging activity individually as in WS-Security. Instead, using a security context
(according to WS-SecureConversation [14]) for all interactions with that partner
would improve the performance significantly.

4040

2.3 Transaction

Composite BPEL activities might require transaction semantics e.g., in a se-
quence with two invoke activities it might be necessary that either both invo-
cations succeed or both must be undone. It is also essential that the process
and the partners decide together the outcome of the transaction, which is called
external coordination [19]. This feature is not supported in BPEL. Moreover, a
way is needed to flexibly configure the transactional requirements of activities
according to the application semantics e.g., a sequence might need to be exe-
cuted as an atomic transaction or as a compensation-based transaction. WS-*
transaction specifications [12, 13] can support the transactional requirements of
BPEL activities if the BPEL engine is integrated properly with the Web Service
transaction middleware.

2.4 Discussion

The problem of middleware requirements in BPEL is two-fold. On the one hand,
appropriate means are needed to specify the requirements of BPEL activities.
On the other hand, appropriate infrastructure is necessary to enforce those re-
quirements during process execution. Even for simple requirements, most current
BPEL engine do not provide a way to say “this invoke or that reply must be
secure”. Moreover, the integration of BPEL engines with existing WS-* middle-
ware is still problematic.

3 The AO4BPEL Engine and the Container Framework

Our framework has three main components: a deployment descriptor, a process
container, and a set of middleware Web Services [7].

Fig. 1. Deployment Descriptor GUI Tool

4141

3.1 The Deployment Descriptor

An XML-based deployment descriptor specifies declaratively the middleware re-
quirements of the BPEL activities and the parameters that are needed to accom-
plish those requirements. Listing 1. shows an excerpt of a deployment descriptor
for a bank transfer process, which calls the operations credit and debit on two
partner Web Services.

The deployment descriptor defines one or more activity selectors, which are
XPath expressions to identify the activities that will be associated with some
requirement. The attribute selectorid attribute of the requirement element is
used for this association. The service elements group requirements that belong
to a specific middleware service.

<bpel−dd xmlns=”http://www.st.informatik.tu−darmstadt.de/bpel−dd”>

<selectors>

<selector id=”0” name=”credit” type=”activity”>/process//invoke[@operation=”credit”]</selector>

<selector id=”1” name=”debit” type=”activity”>/process//invoke[@operation=”debit”]</selector>

</selectors>

<services>

<service name=”reliability”>...
<requirement name=”req0” class=”semantics” type=”exactlyOnce” selectorid=”0”/>...

</service>

<service name=”security”>...
<requirement name=”req2” class=”confidentiality” type=”decryption” selectorid=”1”/>

<parameters>

<parameter name=”symmetricEncAlgorithm”>xmlenc#tripledes−cbc</parameter>

<parameter name=”keyEnc”>http://www.w3.org/2001/04/xmlenc#rsa−1 5</parameter>

<parameter name=”transportKeyId”>16c73ab6−b892−458f−abf5−2f875f74882e</parameter>...
</parameters>

</requirement>...
</service>

</services>

</bpel−dd>

Listing 1. The deployment descriptor

The deployment descriptor is the only component of the framework that the
BPEL programmer needs to know about. He/she could write it manually or use
the GUI tool shown in Fig. 1 to generate it.

One major advantage of the deployment descriptor against policies [16] is that
the deployment descriptor allows the specification of the necessary parameters
to enforce a given requirement. With policies, which are too declarative, this is
not possible. For instance, in a policy is not possible to specify the user name
and password that should be used to support authentication.

At process deployment time, the deployment descriptor file has to be specified
in addition to the BPEL file as shown in Figure 2.

3.2 The Process Container

The process container is an implementation concept that BPEL programmers
do not need to know about. It intercepts the execution of BPEL activities at
well-defined points and calls dedicated middleware Web Services that provide
the necessary functionality to enforce the middleware requirements.

We implemented a light-weight and aspect-based process container using a set
of AO4BPEL aspects [6] that are automatically generated from the deployment
descriptor. Automatic aspect generation is possible because the advices used

4242

Fig. 2. Process Deployment in AO4BPEL

for integrating middleware Web Services follow well-defined patterns. E.g., for
reliable messaging, there are recurring advice patterns for sending a message
with exactly-once semantics, etc.

AO4BPEL [6, 9] is an aspect-oriented extension to BPEL. AO4BPEL sup-
ports process-level join points and interpretation-level join points. The former
capture the execution of an activity. The latter capture internal points during
the interpretation of an activity e.g., the point where a SOAP message of an
invoke activity has been created. In AO4BPEL, an aspect defines one or more
pointcuts and advices. A pointcut is a construct for selecting a set of join points
e.g., to intercept some activities that have a common requirement. XPath is
used as pointcut language in AO4BPEL. The advice is a BPEL activity that
specifies some crosscutting functionality and can be used for example to enforce
a requirement by calling a middleware Web Service.

After deploying the BPEL process (cf. Fig. 1), container aspects are auto-
matically generated and deployed. We can see these aspects by switching to the
process-list view of the AO4BPEL engine shown in Fig. 3.

Listing 2 shows the second aspect in the aspects list of Fig. 3. This aspect
declares the reliable messaging service (RM) as partner and two variables for
the input and output parameters of the call to sendWithExactlyOnceSemantics.

The pointcut of this aspect intercepts the invoke activity that calls the op-
eration credit at the point where the SOAP request message has been created
(this is the semantics of the advice type around soapmessageout). The advice
contains an assign activity, which sets the input parameters of the call to the
operation sendWithExactlyOnceSemantics of the RM Service. The SOAP mes-
sage corresponding to the current join point (i.e., the invoke activity that calls
the operation credit) is accessed by means of the special AO4BPEL context
collection variable soapmessage. The second assign activity is used to pass the
response message for the current join point activity from the RM Service to
the BPEL process by using the special AO4BPEL context collection variable
newsoapmessage. This is necessary because the request message for calling the
operation credit was sent by the RM service on behalf of the BPEL process.

4343

Fig. 3. The List of Container Aspects in AO4BPEL

<aspect name=”credit semantics exactlyOnce”>

<partners><partner name=”rmService” partnerLinkType=”rms:RMService”/></partners>

<variables>

<variable messageType=”rms:sendWithExactlyOnceSemanticsRequest” name=”inputMessage”/>

<variable messageType=”rms:sendWithExactlyOnceSemanticsResponse” name=”outputMessage”/>

</variables>

<pointcut name=”creditExactlyOnce”>/process//invoke[@operation=”credit”]</pointcut>

<advice type=”around soapmessageout”>

<bpws:sequence>

<bpws:assign>

<bpws:copy><bpws:from part=”message” variable=”soapmessage”/>

<bpws:to part=”message” variable=”inputMessage”/></bpws:copy>

<bpws:copy><bpws:from part=”isInonly” variable=”ThisJPActivity”/>

<bpws:to part=”inonly” variable=”inputMessage”/></bpws:copy>

<bpws:copy><bpws:from part=”partnerEndpoint” variable=”ThisJPActivity”/>

<bpws:to part=”endpoint” variable=”inputMessage”/></bpws:copy>

</bpws:assign>

<bpws:invoke name=”rmInvoke” operation=”sendWithExactlyOnceSemantics” partner=”rmService”
inputVariable=”inputMessage” outputVariable=”outputMessage” portType=”rms:RMService”/>

<bpws:assign>

<bpws:copy><bpws:from part=”sendWithExactlyOnceSemanticsReturn” variable=”outputMessage”/>

<bpws:to part=”newmessage” variable=”newsoapmessage”/></bpws:copy>

</bpws:assign>

</bpws:sequence>

</advice>

</aspect>

Listing 2. A container aspect for reliable messaging

3.3 The Middleware Web Services

The middleware Web Services are not part of the AO4BPEL engine. They are
based on open source implementations of WS-* specifications.

The reliable messaging service [10] provides operations that are called by the
container to enforce a delivery assurance for messaging activities (e.g., exactly-
once) and to support the in-order delivery of messages even between more than
two endpoints. Our implementation of this service is based on Apache Sandesha
[1], which was extended to support mutli-party reliable messaging [10].

The security service [8] provides two port types: one for secure messaging
according to WS-Security and one for secure conversations according to WS-
SecureConversation with operations such as createContext, encryptWithContext,
etc. The implementation of this service is based on Apache WSS4J [2].

4444

The transaction service provides operations that are called by the container to
enforce atomic transactions [12] such as begin(transid), participate(transid, soap),
and commit(transid). The implementation of this service is based on Apache
Kandula [3], an implementation of WS-Coordination and WS-AtomicTransaction.

4 The Demo

In this demo, we will use a travel agency scenario with several BPEL processes
that compose the Web Services of airline companies and hotel chains. We will
deploy these processes on the AO4BPEL engine and specify a deployment de-
scriptor file that defines the middleware requirements of the process activities.

Once the process is deployed, the audience will see how AO4BPEL container
aspects will be generated automatically and activated. Then, we will start some
instances of the deployed processes and use a tool to monitor the SOAP messages
that are exchanged between the processes and their partners. Thus, we verify
that the middleware Web Services are called correctly by the process container
and the requirements of the different activities are fulfilled.

5 Conclusion

In this paper, we presented a user-friendly implementation of a container frame-
work for the specification and enforcement of the middleware requirements of
BPEL processes. The framework was inspired from enterprise component mod-
els and it can be reused with other BPEL engines. The engine has to provide a
process container that is able to intercept the execution of BPEL activities and
call the middleware Web Services. The deployment descriptor and the middle-
ware Web Services could be reused without any changes.

The AO4BPEL engine presented here provides support for many BPEL-
specific middleware requirements and paves the way toward a new breed of
BPEL engines that we devise application servers for BPEL.

References

1. Apache. Sandehsa 1.0, July 2005.
2. Apache. Wss4j, March 2005.
3. Apache. Kandula 0.2, May 2006.
4. C. Ferris and D. Langworthy (Eds.). Web Services Reliable Messaging Protocol

(WS-ReliableMessaging), February 2005.
5. C. Sharp (Eds.). Web Services Policy Attachment (WS-PolicyAttachment), Sep-

tember 2004.
6. Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition with

AO4BPEL. In Proceedings of the European Conference on Web Services (ECOWS),
volume 3250 of LNCS, pages 168–182. Springer, September 2004.

7. Anis Charfi and Mira Mezini. An Aspect-based Process Container for BPEL.
In Proceedings of the 1st Workshop on Aspect-Oriented Middleware Development
(AOMD), November 2005.

4545

8. Anis Charfi and Mira Mezini. Using Aspects for Security Engineering of Web
Service Compositions. In Proceedings of the IEEE International Conference on
Web Services (ICWS), Volume I, pages 59–66. IEEE Computer Society, July 2005.

9. Anis Charfi and Mira Mezini. AO4BPEL: An Aspect-Oriented Extension to BPEL.
World Wide Web Journal: Recent Advances on Web Services (special issue), to
appear, 2006.

10. Anis Charfi, Benjamin Schmeling, and Mira Mezini. Reliable messaging in bpel
processes. In Proceedings of the 3rd IEEE International Conference on Web Ser-
vices (ICWS), to appear, September 2006.

11. F. Curbera, Y. Goland, J. Klein, et al. Business Process Execution Language for
Web Services (BPEL4WS) Version 1.1, May 2003.

12. D. Langworthy (Eds.). Web Services Atomic Transaction (WS-
AtomicTransaction), November 2004.

13. D. Langworthy (Eds.). Web Services Business Activity (WS-BusinessActivity),
November 2004.

14. M. Gudgin and A. Nadalin (Eds.). Web Service Secure Conversation Language
(WS-SecureConversation) Version 1.0, February 2005.

15. IBM. The BPEL4WS Java Run Time, August 2002.
16. J. Schlimmer (Eds.). Web Services Policy Framework (WS-Policy)., September

2004.
17. OASIS. Web Services Reliable Messaging TC WS-Reliability 1.1, 15 November

2004.
18. OASIS. Web Services Security: SOAP Message Security Version 1.0, March 2004.
19. Stefan Tai, Rania Khalaf, and Thomas Mikalsen. Composition of coordinated web

services. In Proceeding of ACM/IFIP/USENIX International Middleware Confer-
ence (Middleware), volume 3231 of LNCS, pages 294–310. Springer, October 2004.

4646

