
Combine Model Checking and Runtime
Verification in Multi-Agent Systems (short

paper)?

Angelo Ferrando1 and Vadim Malvone2

1 Università degli studi di Genova, Italy
angelo.ferrando@unige.it

2 Télécom Paris, France
vadim.malvone@telecom-paris.fr

Abstract. In this paper, we briefly review the history of model check-
ing and runtime verification. We present the results obtained in the two
research areas and also in their combination. Given the growing impor-
tance of the model checking on multi-agent systems, we open a door
towards the combination of model checking with runtime verification
over multi-agent systems.

Keywords: Model checking · Multi-agent systems · Runtime Verifica-
tion.

1 Model Checking

The systems correctness is fundamental in hardware and software design, es-
pecially in the context of critical systems. With the latter, we mean systems
in which failure is not an option. The main methods for software verification
are: testing, simulation, and formal verification. Testing and simulation have
one main issue: they can detect errors but can not determine their absence.
To overcome the above problem, formal verification results to be very useful.
This approach provides a formal-based methodology to model systems, specify
properties, and verify that a system satisfies a given specification. In formal ver-
ification, the specification is usually based on temporal logics. The latter can
describe the order of events without introducing the time explicitly. In temporal
logics, we mainly distinguish between linear- and branching-time logics, which
reflect the underlying nature of the time we consider. The most popular tem-
poral logics are LTL (linear-time temporal logic) [42], CTL (computation tree
logic) [19], and their extension CTL∗ [26]. An outstanding development in the
area of temporal logics has been the discovery of algorithmic methods to verify
properties of finite-state systems represented by Kripke structures [35]. Hence,
the formal verification of a system modelled by a Kripke structure M with re-
spect a temporal logic specification ϕ can be rephrased as “Is M a model of

? Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 A. Ferrando and V. Malvone

ϕ?”, which explains the name model checking (MC), as it was coined by Clarke
and Emerson in [19]. Two main modalities are considered to perform MC in
practice. The first option is a classical use of ad-hoc algorithms. For example,
the PSpace-Complete recursive algorithms have been carried out to solve the
MC problems for LTL. Similarly, for CTL, it has been shown a linear algorithm.
The second option involves instead a systematic use of the automata-theoretic
approach on infinite objects. In particular, a translation from a temporal logic
formula ϕ to an automaton is provided. In this way, the MC question reduces to
the emptiness problem of the intersection between the automaton corresponding
to the system and the one for the complement of the property.

2 Model Checking on Multi-Agent Systems

In the Multi-Agent Systems (MAS) design and verification, temporal logics have
recently assumed a prominent role for the strategic reasoning [3, 33, 17, 40, 39, 25].
Specifically, classical temporal logics have been extended to provide properties
over MAS. One of the most important developments in this field is Alternating-
Time Temporal Logic (ATL), introduced by Alur, Henzinger, and Kupferman [3].
Such a logic allows to reason about strategies of agents having the satisfaction
of temporal goals as payoff criterion. More formally, it is obtained as a general-
ization of CTL, in which the existential E and the universal A path quantifiers
are replaced with strategic modalities of the form 〈〈Γ 〉〉 and [[Γ ]], where Γ is a
set of agents. Despite its expressiveness, ATL suffers from the strong limitation
that strategies are treated only implicitly in the semantics of such modalities.
This restriction makes the logic less suited to formalize several important so-
lution concepts, such as the Nash Equilibrium. These considerations led to the
introduction of Strategy Logic (SL) [16, 40], a more powerful formalism for strate-
gic reasoning. As a key aspect, this logic treats strategies as first-order objects
that can be determined by means of the existential ∃x and universal ∀x quanti-
fiers, which can be respectively read as “there exists a strategy x” and “for all
strategies x”. Remarkably, in SL [40], a strategy is a generic conditional plan
that at each step of the game prescribes an action. With more detail, there are
two main classes of strategies: memoryless and memoryful. In the former case,
agents choose an action by considering only the current game state while, in
the latter case, agents choose an action by considering the full history of the
game. Therefore, this plan is not intrinsically glued to a specific agent, but an
explicit binding operator (a, x) allows to link an agent a to the strategy asso-
ciated with a variable x. Unfortunately, the high expressivity of SL comes at a
price. Indeed, it has been proved that the model-checking problem for SL be-
comes non-elementary complete and the satisfiability undecidable. To gain back
elementariness, several fragments of SL have been considered. Among the others,
Strategy Logic with Simple-Goals [12] considers SL formulas in which strategic
operators, bindings operators, and temporal operators are coupled. It has been
shown that Strategy Logic with Simple-Goals strictly subsume ATL and its MC
problem is P-Complete, as it is for ATL. To conclude this section, we want to



Combine MC and RV in MAS 3

focus on a key aspect in MAS: the agents’ visibility. Specifically, we distinguish
between perfect and imperfect information games [44]. The former corresponds
to a basic setting in which every agent has full knowledge about the game. How-
ever, in real-life scenarios it is common to have situations in which agents have
to play without having all relevant information at hand. In computer science
these situations occur for example when some variables of a system are inter-
nal/private and not visible to an external environment [36, 14]. In game models,
the imperfect information is usually modelled by setting an indistinguishability
relation over the states of the game [36, 44, 43]. This feature deeply impacts on
the MC complexity. For example, ATL becomes undecidable in the context of
imperfect information and memoryful strategies [24]. To overcome this problem,
some works have either focused on an approximation to perfect information [11,
13] or developed notions of bounded memory [10].

3 Runtime verification

Runtime verification (RV) is being pursued as a lightweight verification technique
bridging static verification techniques, such as MC, and testing. One of the
main distinguishing features of RV is due to its nature of being performed at
runtime, which opens up the possibility to act whenever incorrect behavior of
a software system is detected. A fault is defined as the deviation between the
current behavior and the expected behavior of the system [37, 22]. A fault might
lead to a failure, but not necessarily. An error, on the other hand, is a mistake
made by a human that results in a fault and possibly in a failure. Runtime
verification [37] is the discipline of computer science that deals with the study,
development, and application of those verification techniques that allow checking
whether a run of a system under scrutiny satisfies or violates a given correctness
property. In RV dynamic checking of the correct behavior of a system can be
performed by a monitor which is generated from a formal specification of the
properties to be verified. As happens for formal static verification, RV relies
on a high level specification formalism to specify the expected properties of a
system. Similarly to testing, RV is an effective but non exhaustive technique to
verify complex properties of a system at runtime. In contrast to formal static
verification and testing, RV offers opportunities for error recovery which make
this approach more attractive for the development of reliable software. Not only
a system can be constantly monitored for its whole lifetime to detect possible
misbehavior, but also appropriate handlers can be executed for error recovery.
RV ensures the system may be stopped the moment issues are identified in
a tractable manner. Furthermore, the verification is not invasive, the system
running should not be affected3 by the presence of the monitor, this is because the
monitor does not need to generate the traces that have to be checked (in this way
the state explosion problem, which is typical of the static verification, does not
happen). Finally, verification can continue beyond system deployment. Similarly
to MC, temporal logics are used to describe properties. Since RV works on the

3 Adding/Removing the monitor should not influence the system.



4 A. Ferrando and V. Malvone

system computation at run-time, LTL properties has become predominant in this
field [37, 9]. However, branching logics, such as CTL, have been recently explored
as well. One can find works studying and applying µHML (a branching-time logic
with least and greatest fix points) from a runtime verification perspective [1, 31,
15]. As well as its monitorable subset MHML [6]. In the context of multiple
paths, RV works on the verification of hyperproperties [21] can be found [30].
Such properties do not only check the correctness of individual traces, but can
relate multiple computation traces to each other. A key example of a logic used
in these scenarios is HyperLTL [20], which extends LTL with trace variables and
trace quantifiers in order to refer to multiple traces at a time.

4 Runtime verification on Multi-agent Systems

In Section 2, we presented works on static verification on MAS. Here, we present
the state of the art in runtime verification on MAS. In [5], the authors presented
a framework to verify at runtime agent interaction protocols (AIP). The formal-
ism used in this work allows the introduction of variables, that are then used
to constrain the expected behavior in a more expressive way. In [27], the same
authors proposed an approach to verify at runtime AIP using multiple moni-
tors. This is obtained by decentralizing the global specification (specified as a
Trace Expression [4]), which is used to represent the global protocol, into partial
specifications denoting the single agents’ perspective. In [7, 45], other works on
runtime verification of agent interactions are proposed, and in [38] a framework
for dynamic adaptive MAS (DAMS-RV) based on an adaptive feedback loop is
presented. Other approaches to MAS RV include the proposals spin-off from the
SOCS project where the SCIFF computational logic framework [2] is used to
provide the semantics of social integrity constraints. To model MAS interaction,
expectation-based semantics specifies the links between observed and expected
events, providing a means to test runtime conformance of an actual conversa-
tion with respect to a given interaction protocol [46]. Similar work has been
performed using commitments [18]. To conclude, we want to emphasize that RV
has never been considered in logics for the strategic reasoning [3, 40].

5 Combination of MC and RV

Combining static and runtime verification methods raises many issues due to the
fact that properties are checked against a model in the first case, and against
a real running system in the second. To the best of our knowledge, very few
attempts to carry out such a combination exist. In a position paper dating
back to 2014, Hinrichs et al. suggested to “model check what you can, runtime
verify the rest” [32]. Their work presented several realistic examples where such
mixed approach would give advantages, but no technical aspects were addressed.
Desai et al. [23] presented a framework to combine MC and RV for robotic
applications. Kejstová et al.[34] extended an existing software model checker,
DIVINE [8], with a RV mode. The system under test consists of a user program



Combine MC and RV in MAS 5

in C or C++ together with the environment. The model checker operates in
two modes: in run mode, a single execution of the program is explored in the
standard execution order; in verify mode, the standard MC algorithm is applied.
This extension to DIVINE is a prototype with many limitations recognized by
the authors themselves. Other blended approaches exist, such as a verification-
centric software development process for Java making it possible to write, type
check, and consistency check behavioral specifications for Java before writing
any code [47]. Although it integrates a static checker for Java and a runtime
assertion checker, it does not properly integrate MC and RV. Both the Java
approaches and the extension to DIVINE are targeted to specific programming
languages. Finally, in [28] a recent work on using RV to validate MC assumptions
is proposed. In this work, the environment is abstracted and given in input to the
model checker; after that, a runtime monitor is generated and used to validate
the abstraction against the running system.

6 The new challenge: combine MC and RV on MAS
In the previous sections, we presented the most recent and relevant contributions
in the context of static and runtime verification. For both techniques, we also
focused on their application in the MAS scenario. Finally, we cited the existing
works on the combination of these two techniques. Nonetheless, to the best of
our knowledge, no work combining the two approaches in the MAS context has
been done, even though each one has been applied independently. Moreover, RV
has been applied to MAS specifically for monitoring interaction protocols, and
it has never been applied, nor considered, for checking logics for the strategic
reasoning. We started this line of research in [29], where we presented a tool
for combining MC and RV to find the decidability of ATL model checking in
the context of imperfect information and memoryful strategies. In this work, no
theoretical results are given. We are working on the theory behind it, such as
complexity analysis and preservation results. On the other hand, we are also re-
searching other ways to enrich RV for MAS properties. For example, by following
the idea of predictive RV [41], we may consider to capture the predictive behav-
ior of a monitor by verifying properties via MC on strategic properties and then
apply RV for temporal properties. Another interesting and innovative approach
involves the introduction of monitors to synthesize strategies. The existing logics
for the strategic reasoning try to answer the question: There exists a strategy?.
But, another important question is: Which strategy?. This would require to ac-
tually compute a strategy, and a monitor is a natural candidate to overcome
this challenge. There are two possible ways that we are considering. The first
one considers the existing relation between monitors and strategies, since they
can be modelled with the same formalism (e.g. state machines). While, the other
one involves strategic properties and monitors to capture the actions at runtime.
In the latter line, a possible first attempt is to capture memoryless strategies in
which we only need of an execution that involves all the states of the game
model. Last but not least, by considering the works on RV over branching-time
properties, we are evaluating the natural extension to logics for the strategic
reasoning. In fact, as mentioned in the previous sections, logics for the strate-



6 A. Ferrando and V. Malvone

gic reasoning, such as ATL, are generalizations of branching-time logics and by
consequence a natural extension can be applied.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for
parameterized monitorability. In: Baier, C., Lago, U.D. (eds.) Foundations
of Software Science and Computation Structures - 21st International Con-
ference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10803, pp. 203–220. Springer (2018). https://doi.org/10.1007/978-3-319-89366-
2 11, https://doi.org/10.1007/978-3-319-89366-2 11

2. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The Sciff abductive
proof-procedure. In: AI*IA. Lecture Notes in Computer Science, vol. 3673, pp.
135–147. Springer (2005)

3. Alur, R., Henzinger, T., Kupferman, O.: Alternating-Time Temporal Logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

4. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and lin-
ear temporal logic for runtime verification. In: Ábrahám, E., Bonsangue, M.M.,
Johnsen, E.B. (eds.) Theory and Practice of Formal Methods - Essays Dedicated
to Frank de Boer on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 9660, pp. 47–64. Springer (2016). https://doi.org/10.1007/978-3-319-
30734-3 6, https://doi.org/10.1007/978-3-319-30734-3 6

5. Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multi-
agent systems. In: AAMAS. vol. 17, pp. 1457–1459 (2017)

6. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic.
In: Falcone, Y., Sánchez, C. (eds.) Runtime Verification - 16th International
Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 10012, pp. 473–481. Springer (2016).
https://doi.org/10.1007/978-3-319-46982-9 31, https://doi.org/10.1007/978-3-
319-46982-9 31

7. Bakar, N.A., Selamat, A.: Runtime verification of multi-agent systems interaction
quality. In: Asian Conference on Intelligent Information and Database Systems.
pp. 435–444. Springer (2013)

8. Barnat, J., Brim, L., Havel, V., Havĺıček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill,
V., Weiser, J.: DiVinE 3.0–an explicit-state model checker for multithreaded C &
C++ programs. In: International Conference on Computer Aided Verification. pp.
863–868. Springer (2013)

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics
for runtime verification. J. Log. Comput. 20(3), 651–674 (2010).
https://doi.org/10.1093/logcom/exn075, https://doi.org/10.1093/logcom/exn075

10. Belardinelli, F., Lomuscio, A., Malvone, V.: Approximating perfect recall when
model checking strategic abilities. In: KR2018. pp. 435–444 (2018)

11. Belardinelli, F., Lomuscio, A., Malvone, V.: An abstraction-based method for ver-
ifying strategic properties in multi-agent systems with imperfect information. In:
Proceedings of AAAI (2019)

12. Belardinelli, F., Jamroga, W., Malvone, V., Murano, A.: Strategy logic with simple
goals: Tractable reasoning about strategies. In: 28th International Joint Conference
on Artificial Intelligence (IJCAI 2019). pp. 88–94 (2019)



Combine MC and RV in MAS 7

13. Belardinelli, F., Malvone, V.: A three-valued approach to strategic abilities under
imperfect information. In: Proceedings of the 17th International Conference on
Knowledge Representation and Reasoning. pp. 89–98 (2020)

14. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis
for concurrent reactive programs with partial information. In: TACAS. pp. 517–532
(2015)

15. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instru-
mentation for actor-based systems. In: Cámara, J., Proença, J. (eds.) Pro-
ceedings 13th International Workshop on Foundations of Coordination Lan-
guages and Self-Adaptive Systems, FOCLASA 2014, Rome, Italy, 6th September
2014. EPTCS, vol. 175, pp. 54–68 (2014). https://doi.org/10.4204/EPTCS.175.4,
https://doi.org/10.4204/EPTCS.175.4

16. Chatterjee, K., Henzinger, T., Piterman, N.: Strategy Logic. In: Concurrency The-
ory’07. pp. 59–73. LNCS 4703, Springer (2007)

17. Chatterjee, K., Henzinger, T., Piterman, N.: Strategy Logic. Information and Com-
putation 208(6), 677–693 (2010)

18. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: Proc. of the 21st International Joint Conference on
Artifical Intelligence. pp. 91–96. IJCAI’09 (2009)

19. Clarke, E., Emerson, E.: Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In: Logic of Programs’81. pp. 52–71. LNCS 131,
Springer (1981)

20. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) Principles
of Security and Trust - Third International Conference, POST 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings. Lecture Notes in Computer
Science, vol. 8414, pp. 265–284. Springer (2014). https://doi.org/10.1007/978-3-
642-54792-8 15, https://doi.org/10.1007/978-3-642-54792-8 15

21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Se-
cur. 18(6), 1157–1210 (2010). https://doi.org/10.3233/JCS-2009-0393,
https://doi.org/10.3233/JCS-2009-0393

22. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (Dec 2004).
https://doi.org/10.1109/TSE.2004.91, http://dx.doi.org/10.1109/TSE.2004.91

23. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verifi-
cation for safe robotics. In: Proc. of the 17th International Conference on Runtime
Verification, RV 2017. LNCS, vol. 10548, pp. 172–189. Springer (2017)

24. Dima, C., Tiplea, F.: Model-checking ATL under Imperfect Information and Per-
fect Recall Semantics is Undecidable. Tech. rep., arXiv (2011)

25. van Eijck, J.: PDL as a Multi-Agent Strategy Logic. In: Theoretical Aspects of
Rationality and Knowledge’13. pp. 206–215 (2013)

26. Emerson, E., Halpern, J.: “Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time. Journal of the ACM 33(1), 151–178 (1986)

27. Ferrando, A., Ancona, D., Mascardi, V.: Decentralizing MAS monitoring with de-
camon. In: Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017. pp. 239–248.
ACM (2017), http://dl.acm.org/citation.cfm?id=3091164

28. Ferrando, A., Dennis, L., Cardoso, R., Fisher, M., Ancona, D., Mascardi, V.: To-
wards a holistic approach to verification and validation of autonomous cognitive
systems. ACM Transactions on Software Engineering and Methodology (Jan 2021)



8 A. Ferrando and V. Malvone

29. Ferrando, A., Malvone, V.: Strategy rv: A tool to approximate atl model checking
under imperfect information and perfect recall. In: Proceedings of the 20th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems. p. 1764–1766.
AAMAS ’21, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2021)

30. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hy-
perproperties. Formal Methods Syst. Des. 54(3), 336–363 (2019).
https://doi.org/10.1007/s10703-019-00334-z, https://doi.org/10.1007/s10703-
019-00334-z

31. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: On verifying hennessy-milner
logic with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) Run-
time Verification - 6th International Conference, RV 2015 Vienna, Austria,
September 22-25, 2015. Proceedings. Lecture Notes in Computer Science,
vol. 9333, pp. 71–86. Springer (2015). https://doi.org/10.1007/978-3-319-23820-
3 5, https://doi.org/10.1007/978-3-319-23820-3 5

32. Hinrichs, T.L., Sistla, A.P., Zuck, L.D.: Model check what you can, run-
time verify the rest. In: Voronkov, A., Korovina, M.V. (eds.) HOWARD-
60: A Festschrift on the Occasion of Howard Barringer’s 60th Birth-
day, EPiC Series in Computing, vol. 42, pp. 234–244. EasyChair (2014),
https://easychair.org/publications/paper/tq7

33. Jamroga, W., van der Hoek, W.: Agents that Know How to Play. Fundamenta
Informaticae 63(2-3), 185–219 (2004)

34. Kejstová, K., Rockai, P., Barnat, J.: From model checking to runtime ver-
ification and back. In: Lahiri, S.K., Reger, G. (eds.) Runtime Verification
- 17th International Conference, RV 2017, Seattle, WA, USA, September
13-16, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10548,
pp. 225–240. Springer (2017). https://doi.org/10.1007/978-3-319-67531-2 14,
https://doi.org/10.1007/978-3-319-67531-2 14

35. Kripke, S.: Semantical Considerations on Modal Logic. Acta Philosophica Fennica
16, 83–94 (1963)

36. Kupferman, O., Vardi, M.: Module checking revisited. In: CAV ’96. LNCS,
vol. 1254, pp. 36–47. Springer-Verlag (1997)

37. Leucker, M., Schallhart, C.: A brief account of runtime verifica-
tion. The Journal of Logic and Algebraic Programming 78(5), 293 –
303 (2009). https://doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004,
http://www.sciencedirect.com/science/article/pii/S1567832608000775, the 1st
Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS’07)

38. Lim, Y.J., Hong, G., Shin, D., Jee, E., Bae, D.H.: A runtime verification framework
for dynamically adaptive multi-agent systems. In: 2016 International Conference
on Big Data and Smart Computing (BigComp). pp. 509–512. IEEE (2016)

39. Lorini, E.: A Dynamic Logic of Agency II: Deterministic DLA, Coalition Logic,
and Game Theory. Journal of Logic, Language, and Information’ 19(3), 327–351
(2010)

40. Mogavero, F., Murano, A., Vardi, M.: Reasoning About Strategies. In: Foundations
of Software Technology and Theoretical Computer Science’10. pp. 133–144. LIPIcs
8, Leibniz-Zentrum fuer Informatik (2010)

41. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H.,
Preoteasa, V.: Predictive runtime verification of timed properties. J.
Syst. Softw. 132, 353–365 (2017). https://doi.org/10.1016/j.jss.2017.06.060,
https://doi.org/10.1016/j.jss.2017.06.060



Combine MC and RV in MAS 9

42. Pnueli, A.: The Temporal Logic of Programs. In: Foundation of Computer Sci-
ence’77. pp. 46–57. IEEE Computer Society (1977)

43. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS. pp. 746–757 (1990)

44. Reif, J.H.: The complexity of two-player games of incomplete information. JCSS
29(2), 274–301 (1984)

45. Roungroongsom, C., Pradubsuwun, D.: Formal verification of multi-agent system
based on jade: A semi-runtime approach. In: Recent Advances in Information and
Communication Technology 2015, pp. 297–306. Springer (2015)

46. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M.,
Lamma, E., Mello, P.: Modelling interactions via commitments and expectations.
In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of
Organizational Models. IGI Global (2009)

47. Zimmerman, D.M., Kiniry, J.R.: A verification-centric software development pro-
cess for java. In: Choi, B. (ed.) Proceedings of the Ninth International Con-
ference on Quality Software, QSIC 2009, Jeju, Korea, August 24-25, 2009. pp.
76–85. IEEE Computer Society (2009). https://doi.org/10.1109/QSIC.2009.18,
https://doi.org/10.1109/QSIC.2009.18


