Ramanujan prime: Difference between revisions

Content deleted Content added
Undid revision 900643993 by Reddwarf2956 (talk) The issue is that this article is not cited by others. Wikipedia is not for including every result every published. Use the talk page please.
rv addition of unreferenced and overexplained example section
Tags: Manual revert Mobile edit Mobile web edit Advanced mobile edit
 
(14 intermediate revisions by 7 users not shown)
Line 1:
{{short description|Prime fulfilling an inequality related to the prime-counting function}}
{{Distinguish|Hardy–Ramanujan number}}
 
Line 12 ⟶ 13:
The converse of this result is the definition of Ramanujan primes:
 
:The ''n''th Ramanujan prime is the least integer ''R<sub>n</sub>'' for which <math>\pi(x) - \pi(x/2) \ge n,</math> for all ''x'' ≥ ''R<sub>n</sub>''.<ref>{{MathWorld||authorlinkauthor-link=Jonathan Sondow|author=Jonathan Sondow|title=Ramanujan Prime|urlname=RamanujanPrime}}</ref> In other words: Ramanujan primes are the least integers ''R<sub>n</sub>'' for which there are at least ''n'' primes between ''x'' and ''x''/2 for all ''x'' ≥ ''R<sub>n</sub>''.
 
The first five Ramanujan primes are thus 2, 11, 17, 29, and 41.
Line 41 ⟶ 42:
 
which is the optimal form of ''R''<sub>''n''</sub> ≤ ''c·p''<sub>3''n''</sub> since it is an equality for ''n'' = 5.
 
In a different direction, Axler<ref>{{Cite journal|last=Axler|first=Christian|title=On generalized Ramanujan primes|journal=The Ramanujan Journal|volume=39|issue=2016|pages=1–30|arxiv=1401.7179|year=2014|doi=10.1007/s11139-015-9693-9}}</ref> showed that
 
:<math>R_n < p_{\lceil t\cdot n \rceil}</math>
 
is optimal for ''t'' > 48/19, where <math>\lceil\cdot \rceil</math> is the [[Floor and ceiling functions|ceiling function]].
 
A further improvement of the upper bounds was done in late 2015 by Anitha Srinivasan and John W. Nicholson.<ref>{{Cite journal|first1=Anitha |last1=Srinivasan |first2=John |last2=Nicholson |title=An Improved Upper Bound For Ramanujan Primes|journal=Integers |volume=15 |year=2015 |url=http://www.emis.de/journals/INTEGERS/papers/p52/p52.pdf}}</ref> They show that if
 
:<math>\alpha = 1+\frac{3}{\ln n + \ln \ln n -4}</math>
 
then <math>R_n < p_{\lfloor2n\alpha\rfloor}</math> for all <math> n>241</math>, where <math>\lfloor\cdot\rfloor</math> is the [[Floor and ceiling functions|floor function]]. For
large ''n'', the bound is smaller and thus better than <math>p_{\lfloor2nc\rfloor}</math> for any fixed constant <math>c >1</math>.
 
In 2016, Shichun Yang and Alain Togbé<ref>{{Cite journal|first1=Shichun |last1=Yang |first2=Alain |last2=Togbé |title=On the estimates of the upper and lower bounds of Ramanujan primes|journal=The Ramanujan Journal |volume=40 |issue=2|pages=245–255 |year=2016 |doi=10.1007/s11139-015-9706-8}}</ref> establish the estimates of the [[upper and lower bounds]] of Ramanujan primes <math>R_n</math> when ''n'' is big: if <math>n > 10^{300}</math> and <math>R_n= p_s</math>, then
 
:<math>\beta<s<\alpha, </math>
 
where
 
:<math>\alpha=2n \Big(1+\frac{\ln2}{\ln n}-\frac{\ln2 \ln \ln n-\ln ^2 2-\ln2 -0.13}{\ln ^2 n}\Big), </math>
 
:<math>\beta=2n\Big(1+\frac{\ln2}{\ln n}-\frac{\ln2 \ln \ln n-\ln ^2 2-\ln2 +0.11}{\ln ^2 n}\Big). </math>
 
In 2017 Axler<ref>{{Citation |first=Christian |last=Axler |title=On the number of primes up to the nth Ramanujan prime |year=2017 |arxiv=1711.04588|bibcode=2017arXiv171104588A }}</ref> used similar methods as Yang and Togbé, with improved bounds on the nth prime, to derive improved Ramanujan prime bounds: upper bounds for <math>n \ge 5225</math> and lower bounds for <math>n \ge 1245</math>.
 
== Generalized Ramanujan primes ==
 
Given a constant ''c'' between 0 and 1, the ''n''th ''c''-Ramanujan prime is defined as the
smallest integer ''R<sub>c,n</sub>'' with the property that for any integer ''x ≥ R<sub>c,n</sub>'' there are at least ''n'' primes between ''cx''
and ''x'', that is, <math>\pi(x) - \pi(cx) \ge n</math>. In particular, when ''c'' = 1/2, the ''n''th 1/2-Ramanujan prime is equal to the ''n''th Ramanujan prime: ''R''<sub>0.5,''n''</sub> = ''R<sub>n</sub>''.
 
For ''c'' = 1/4 and 3/4, the sequence of ''c''-Ramanujan primes begins
 
:''R''<sub>0.25,''n''</sub> = 2, 3, 5, 13, 17, ... {{OEIS2C|id=A193761}},
 
:''R''<sub>0.75,''n''</sub> = 11, 29, 59, 67, 101, ... {{OEIS2C|id=A193880}}.
 
It is known<ref>{{Citation |first1=N. |last1=Amersi |first2=O. |last2=Beckwith |first3=S.J. |last3=Miller |first4=R. |last4=Ronan |first5=J. |last5=Sondow |title=Generalized Ramanujan primes |year=2011 |arxiv=1108.0475|bibcode=2011arXiv1108.0475A }}</ref> that, for all ''n'' and ''c'', the ''n''th ''c''-Ramanujan prime ''R<sub>c,n</sub>'' exists and is indeed prime. Also, as ''n'' tends to infinity, ''R<sub>c,n</sub>'' is asymptotic to ''p''<sub>''n''/(1&nbsp;&minus;&nbsp;''c'')</sub>
 
:''R''<sub>''c'',''n''</sub> ~ ''p''<sub>''n''/(1&nbsp;&minus;&nbsp;''c'')</sub> (''n'' → ∞)
 
where ''p''<sub>''n''/(1&nbsp;&minus;&nbsp;''c'')</sub> is the <math>\lfloor</math>''n''/(1&nbsp;&minus;&nbsp;''c'')<math>\rfloor </math>th prime and <math>\lfloor \cdot\rfloor</math> is the [[Floor and ceiling functions|floor]] function.
 
==References==