Metabolic acidosis: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid, author pars. 1-1. Removed URL that duplicated unique identifier. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by SemperIocundus | via #UCB_webform
dash style (MOS:DASH), range style, make use of abbreviations, standardize capitalization, non-breaking space use (MOS:NBSP)
(43 intermediate revisions by 24 users not shown)
Line 1:
{{Infobox medical condition (new)
| name = Metabolic acidosis
| synonyms =
| image = Bicarbonate Levels in Metabolic = Davenport Fig 12Acidosis.jpg
| caption = The calculated level of bicarbonate in the blood (HCO<sub>3</sub><sup>−</sup>) reflects the severity of acidosis.
| caption = [[Davenport diagram]]
| pronounce =
| field = [[Nephrology]]
| types = =Acute Metabolic Acidosis<br>
Chronic Metabolic Acidosis
| symptoms =
| complications = ='''Acute:''' poor morbidity and mortality outcomes;<br>
'''Chronic:''' adverse outcomes on kidney function, musculoskeletal system, possible cardiovascular effects
| onset =
| duration =
| causes = ='''Acute:''' Excessive amounts of organic acids;<br>
'''Chronic:''' Impaired kidney function
| risks =
| diagnosis = =Level of bicarbonate (HCO3-) in the blood
| differential =
| prevention =
| treatment = '''Acute:''' Mitigation of the underlying cause for the metabolic problem, such as administration of insulin in cases of diabetic ketoacidosis or restoration of effective circulating intravascular volume in cases of lactic acidosis. The administration of IV bicarbonate, although intellectually appealing, is rarely indicated or administered
| treatment ='''Acute:''' IV bicarbonate therapy;<ref>{{cite journal |last1=Jaber |first1=Samir |last2=Paugam |first2=Catherine |last3=Futier |first3=Emmanuel |last4=Lefrant |first4=Jean-Yves |last5=Lasocki |first5=Sigismond |last6=Lescot |first6=Thomas |last7=Pottecher |first7=Julien |last8=Demoule |first8=Alexandre |last9=Ferrandière |first9=Martine |last10=Asehnoune |first10=Karim |last11=Dellamonica |first11=Jean |last12=Velly |first12=Lionel |last13=Abback |first13=Paër-Sélim |last14=Jong |first14=Audrey de |last15=Brunot |first15=Vincent |last16=Belafia |first16=Fouad |last17=Roquilly |first17=Antoine |last18=Chanques |first18=Gérald |last19=Muller |first19=Laurent |last20=Constantin |first20=Jean-Michel |last21=Bertet |first21=Helena |last22=Klouche |first22=Kada |last23=Molinari |first23=Nicolas |last24=Jung |first24=Boris |last25=Jaber |first25=Samir |last26=Jong |first26=Audrey de |last27=Belafia |first27=Fouad |last28=Chanques |first28=Gérald |last29=Monnin |first29=Marion |last30=Delay |first30=Jean-Marc |last31=Cissé |first31=Moussa |last32=Geniez |first32=Marie |last33=Conseil |first33=Matthieu |last34=Souche |first34=Bruno |last35=Paugam |first35=Catherine |last36=Abback |first36=Paër-Sélim |last37=Futier |first37=Emmanuel |last38=Constantin |first38=Jean Michel |last39=Lefrant |first39=Jean-Yves |last40=Muller |first40=Laurent |last41=Lasocki |first41=Sigismond |last42=Lescot |first42=Thomas |last43=Pottecher |first43=Julien |last44=Noll |first44=Eric |last45=Demoule |first45=Alexandre |last46=Morawiec |first46=Elise |last47=Ferrandière |first47=Martine |last48=Asehnoune |first48=Karim |last49=Roquilly |first49=Antoine |last50=Dellamonica |first50=Jean |last51=Robert |first51=Alexandre |last52=Velly |first52=Lionel |last53=Triglia |first53=Thibaut |last54=Brunot |first54=Vincent |last55=Molinari |first55=Nicolas |last56=Mechati |first56=Malika |last57=Arnal |first57=Jean-Michel |last58=Durand-Gasselin |first58=Jacques |last59=Demoly |first59=Didier |last60=Hraiech |first60=Sami |last61=Papazian |first61=Laurent |last62=Gilles |first62=Vincent |last63=Rimmelé |first63=Thomas |last64=Riu |first64=Béatrice |last65=Cougot |first65=Pierre |last66=Fourcade |first66=Olivier |last67=Seguin |first67=Philippe |last68=Charbit |first68=Jonathan |last69=Capdevila |first69=Xavier |last70=Leone |first70=Marc |last71=Zieleskiewicz |first71=Laurent |last72=Ichai |first72=Carole |last73=Orban |first73=Jean Christophe |last74=Darmon |first74=Michael |last75=Azoulay |first75=Elie |last76=Lemiale |first76=Virginie |last77=Zafrani |first77=Lara |last78=Debbat |first78=Karim |last79=Mimoz |first79=Oliver |last80=Guérin |first80=Claude |last81=Kipnis |first81=Eric |title=Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial |journal=The Lancet |volume=392 |issue=10141 |pages=31–40 |language=English |doi=10.1016/S0140-6736(18)31080-8 |pmid=29910040 |date=7 July 2018|s2cid=49276138 |url=https://hal.umontpellier.fr/hal-01818634/file/2018%20Jaber%20et%20al.%20Sodium%20bicarbonate%20therapy.pdf }}</ref><br>
'''Chronic:''' Diet rich in fruits and vegetables, oral alkali therapy<ref>{{cite journal |last1=Navaneethan |first1=Sankar D. |last2=Shao |first2=Jun |last3=Buysse |first3=Jerry |last4=Bushinsky |first4=David A. |title=Effects of Treatment of Metabolic Acidosis in CKD: A Systematic Review and Meta-Analysis |journal=Clinical Journal of the American Society of Nephrology |volume=14 |issue=7 |pages=1011–1020 |language=en |doi=10.2215/CJN.13091118 |pmid=31196951 |pmc=6625635 |date=5 July 2019}}</ref>
| medication =
| prognosis =
| frequency = '''Acute:''' Most often presented during critical illnesses, and hospitalizations: incidence ranging from 14-4214–42%. <ref name="Treatment of acute metabolic acidos">{{cite journal |last1=Kraut |first1=Jeffrey A. |last2=Madias |first2=Nicolaos E. |title=Treatment of acute metabolic acidosis: a pathophysiologic approach |journal=Nature Reviews Nephrology |date=4 September 2012 |volume=8 |issue=10 |pages=589–601 |doi=10.1038/nrneph.2012.186|pmid=22945490 |s2cid=34657707 }}</ref><ref>{{cite journal |last1=Jung |first1=Boris |last2=Rimmele |first2=Thomas |last3=Le Goff |first3=Charlotte |last4=Chanques |first4=Gérald |last5=Corne |first5=Philippe |last6=Jonquet |first6=Olivier |last7=Muller |first7=Laurent |last8=Lefrant |first8=Jean-Yves |last9=Guervilly |first9=Christophe |last10=Papazian |first10=Laurent |last11=Allaouchiche |first11=Bernard |last12=Jaber |first12=Samir |title=Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study |journal=Critical Care (London, England) |volume=15 |issue=5 |pages=R238 |doi=10.1186/cc10487 |pmid=21995879 |pmc=3334789 |date=2011 |doi-access=free }}</ref><br>
'''Chronic:''' Highly prevalent in people with Chronic Kidney Disease: 9.4% CKD Stage 3a; 18.1% CKD Stage 3b; 31.5% CKD Stage 4 and 5 <ref>{{cite journal |last1=Inker |first1=Lesley A. |last2=Coresh |first2=Josef |last3=Levey |first3=Andrew S. |last4=Tonelli |first4=Marcello |last5=Muntner |first5=Paul |title=Estimated GFR, Albuminuria, and Complications of Chronic Kidney Disease |journal=Journal of the American Society of Nephrology |volume=22 |issue=12 |pages=2322–2331 |language=en |doi=10.1681/ASN.2010111181 |pmid=21965377 |pmc=3279937 |date=1 December 2011}}</ref>
| deaths =
| alt =
|alt=}}
 
'''Metabolic acidosis''' is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance. Metabolic acidosis has three main root causes: increased acid production, loss of [[bicarbonate]], and a reduced ability of the [[Kidney|kidneyskidney]]s to excrete excess acids.<ref name=":2">{{Cite web|url=https://www.uptodate.com/contents/approach-to-the-adult-with-metabolic-acidosis|title=Approach to the adult with metabolic acidosis|last1=Emmett|first1=Michael|last2=Szerlip|first2=Harold|date=|website=|url-status=live|archive-url=|archive-date=|access-date=}}</ref> Metabolic acidosis can lead to [[Acidemia|acidemia]], which is defined as arterial blood [[pH]] that is lower than 7.35.<ref name=":0">{{Cite book|title=Physiology|last=Costanzo|first=Linda|publisher=Elsevier|year=2010|isbn=978-1-4160-6216-5|location=Philadelphia, Pennsylvania|pages=}}</ref> Acidemia and acidosis are not mutually exclusive – pH and hydrogen ion concentrations also depend on the coexistence of other acid-base disorders; therefore, pH levels in people with metabolic acidosis can range from low, normal, to high.
 
Acute metabolic acidosis, lasting from minutes to several days, often occurs during serious illnesses or hospitalizations, and is generally caused when the body produces an excess amount of organic acids ([[Ketoacidosis|ketoacidsketoacid]]s orin [[Lacticketoacidosis]], acidosis|or [[lactic acid]] in [[lactic acidosis]]). A state of chronic metabolic acidosis, lasting several weeks to years, can be the result of impaired kidney function ([[Chronicchronic kidney disease|Chronic Kidney Disease]]) and/or bicarbonate wasting. The adverse effects of acute versus chronic metabolic acidosis also differ, with acute metabolic acidosis impacting the cardiovascular system in hospital settings, and chronic metabolic acidosis affecting muscles, bones, kidney and cardiovascular health.<ref name=":3">{{Cite journal|last1=Kraut|first1=Jeffrey A.|last2=Madias|first2=Nicolaos E.|date=2010-05-01|title=Metabolic acidosis: pathophysiology, diagnosis and management|journal=Nature Reviews Nephrology|language=en|volume=6|issue=5|pages=274–285|doi=10.1038/nrneph.2010.33|pmid=20308999|s2cid=205512465|issn=1759-5061}}</ref>
 
==Signs and symptoms==
 
=== Acute metabolic acidosis ===
Symptoms are not specific, and diagnosis can be difficult unless patients present with clear indications for arterial blood gas sampling. Symptoms may include [[palpitations]], [[headache]], altered mental status such as severe anxiety due to [[Hypoxia (medical)|hypoxia]], decreased visual acuity, [[nausea]], [[vomiting]], [[abdominal pain]], altered appetite and [[weight gain]], [[muscle weakness]], [[bone pain]], and [[joint pain]]. People with acute metabolic acidosis may exhibit deep, rapid breathing called [[Kussmaul respiration]]s which is classically associated with diabetic [[diabetic ketoacidosis]].<ref>{{Cite journal|last1=Gallo de Moraes|first1=Alice|last2=Surani|first2=Salim|date=2019-01-15|title=Effects of diabetic ketoacidosis in the respiratory system|journal=World Journal of Diabetes|volume=10|issue=1|pages=16–22|doi=10.4239/wjd.v10.i1.16|issn=1948-9358|pmc=6347653|pmid=30697367 |doi-access=free }}</ref> Rapid deep breaths increase the amount of [[carbon dioxide]] exhaled, thus lowering the serum carbon dioxide levels, resulting in some degree of compensation. Overcompensation via respiratory alkalosis to form an alkalemia does not occur.
 
Extreme acidemia can also lead to neurological and cardiac complications:
Line 45 ⟶ 46:
 
=== Chronic metabolic acidosis ===
Chronic metabolic acidosis has non-specific clinical symptoms but can be readily diagnosed by testing serum bicarbonate levels in patients with Chronicchronic Kidneykidney Diseasedisease (CKD) as part of a comprehensive metabolic panel. Patients with CKD Stages G3-G5G3–G5 should be routinely screened for metabolic acidosis.<ref name=":4" /><ref name=":5" />
 
==Diagnostic approach and causes==
Metabolic acidosis results in a reduced serum pH that is due to metabolic and not respiratory dysfunction. Typically the serum bicarbonate concentration will be <22&nbsp;mEq/L, below the normal range of 22 to 29 mEq/L, the standard base will be more negative than -2 (base deficit) and the pCO<sub>2</sub> will be reduced as a result of hyperventilation in an attempt to restore the pH closer to normal. Occasionally in a mixed acid-base disorder where metabolic acidosis is not the primary disorder present, the pH may be normal or high.<ref name=":2" /> In the absence of chronic respiratory alkalosis, metabolic acidosis can be clinically diagnosed by analysis of the calculated serum bicarbonate level.
[[File:Bicarbonate Levels in Metabolic Acidosis.jpg|thumb|The level of bicarbonate in the blood (HCO3-) determines the severity of acidosis. Bicarbonate measurements are part of routine metabolic panels.]]
Metabolic Acidosis is defined as a reduced serum pH, and an abnormal serum bicarbonate concentration of <22 mEq/L, below the normal range of 22 to 29 mEq/L. However, if a patient has other coexisting acid-base disorders, the pH level may be low, normal or high in the setting of metabolic acidosis.<ref name=":2" /> In the absence of chronic respiratory alkalosis, metabolic acidosis can be clinically diagnosed by measuring serum bicarbonate levels in the blood, which is generally a standard component of blood panels. Imperatively, when weighing a metabolic acidosis diagnosis, the change in serum bicarbonate levels over time should be considered; if baseline bicarbonate results are unknown, a single set of values may be misinterpreted.
 
=== Causes ===
Generally, metabolic acidosis occurs when the body produces too much acid (e.g., lactic acidosis, see below section), there is a loss of bicarbonate from the blood, or when the kidneys are not removing enough acid from the body.
 
Chronic metabolic acidosis is most often caused by a decreased capacity of the kidneys to excrete excess acids through renal ammoniagenesis. The typical Western diet generates 20-3075–100 mEq of acid daily,<ref>{{Cite journal |last=Weaver |first=Connie M. |date=2013-05-06 |title=Potassium and Health123 |journal=Advances in Nutrition |volume=4 |issue=3 |pages=368S–377S |doi=10.3945/an.112.003533 |issn=2161-8313 |pmc=3650509 |pmid=23674806}}</ref> and individuals with normal kidney function increase the production of ammonia to get rid of this dietary acid. As kidney function declines, the tubules lose the ability to excrete excess acid, and this results in buffering of acid using serum bicarbonate, as well as bone and muscle stores.<ref>{{Cite web|url=https://www.uptodate.com/contents/pathogenesis-consequences-and-treatment-of-metabolic-acidosis-in-chronic-kidney-disease|title=Pathogenesis, consequences, and treatment of metabolic acidosis in chronic kidney disease|last=Kovesdy|first=Csaba|date=|website=UpToDate|url-status=live|archive-url=|archive-date=|access-date=}}</ref>
 
There are many causes of acute metabolic acidosis, and thus it is helpful to group them by the presence or absence of a normal anion gap.<ref>{{Cite book|title=Symptom to diagnosis: an evidence-based guide|url=https://accessmedicine.mhmedical.com/book.aspx?bookID=1088|url-access=subscription|last1=Stern|first1=Scott D. C.|last2=Cifu|first2=Adam S.|last3=Altkorn|first3=Diane|isbn=9780071803441|edition= 3rd|location=New York|publisher=[[McGraw-Hill Education]]|date=2015|oclc=896866189}}</ref>
Line 61:
Causes of increased anion gap include:
* [[Lactic acidosis]]<ref>{{Cite book|title=Current medical diagnosis & treatment study guide|editor-last1=Quinn|editor-first1=Gene R.|editor-last2=Gleason|editor-first2=Nathaniel W.|editor-last3=Papadakis|editor-first3=Maxine A.|editor-last4=McPhee|editor-first4=Stephen J.|isbn=9780071848053|edition= 2nd|location=New York|publisher=[[McGraw-Hill]]|date=2016|oclc=910475681}}</ref>
* [[Ketoacidosis]] (e.g., AlcoholicDiabetic, diabeticalcoholic, or starvation)<ref name="DeGowin's diagnostic examination">{{Cite book|title=DeGowin's diagnostic examination.|others=LeBlond, Richard F.,, Brown, Donald D., 1940-, Suneja, Manish,, Szot, Joseph F.|isbn=9780071814478|edition= Tenth |location=New York|oclc=876336892|date = 2014-09-05}}</ref>
* [[Chronic kidney failure]]<ref>{{Cite book|title=Morgan & Mikhail's clinical anesthesiology|others=Butterworth, John F., IV,, Mackey, David C.,, Wasnick, John D.,, Morgan, G. Edward,, Mikhail, Maged S.,, Morgan, G. Edward.|isbn=9781259834424|edition= Sixth|location=New York|oclc=1039081701|date = 2018-08-21}}</ref>
* Transient [[Pyroglutamic acid|5-oxoprolineoxoprolinemia]]mia due to long-term ingestion of high-doses of [[acetaminophen]] (often seen with [[sepsisglutathione]], [[liver failure]], [[kidney failure]], or [[malnutrition]])depletion<ref>{{Cite book|title=Poisoning and& drugDrug overdoseOverdose|last=Smollin|first=Craig|others=OlsonThe Faculty, Staff, and Associates of the California Poison Control System|editor-last1=Olson|editor-first1=Kent R.|editor-last2=Smollin|editor-first2=Craig (Kent Russell),, G.|editor-last3=Anderson, |editor-first3=Ilene B.,, |editor-last4=Benowitz, |editor-first4=Neal L.,, |editor-last5=Blanc, |editor-first5=Paul D., 1951|editor-,last6=Kim-Katz|editor-first6=Susan Clark, Richard FY.,,|editor-last7=Lewis|editor-first7=Justin Kearney, ThomasC.|editor-last8=Wu|editor-first8=Alan EH.B.|year=2022|isbn=9780071839808978-1-264-25908-3|edition= SeventhEighth|locationpublisher=[NewMcGraw York]Hill Lange|oclcchapter=1013928560Chapter 2-1: Acetaminophen}}</ref> (often seen with [[sepsis]], [[liver failure]], [[kidney failure]], or [[malnutrition]]{{citation needed|date=February 2024}})
* Intoxication:
**Salicylates, [[methanol]], [[ethylene glycol]]<ref name="DeGowin's diagnostic examination"/>
**Organic acids, [[paraldehyde]], [[ethanol]], [[formaldehyde]]<ref>{{Cite book|title=Critical care|others=Oropello, John M.,, Pastores, Stephen M.,, Kvetan, Vladimir|isbn=9780071817264|location=[New York]|oclc=961480454|date = 2016-11-22}}</ref>
**[[Carbon monoxide]], [[cyanide]], [[ibuprofen]], [[metformin]]<ref>{{Cite book|title=Current medical diagnosis & treatment 2020|others=Papadakis, Maxine A.,, McPhee, Stephen J.,, Rabow, Michael W.|isbn=9781260455281|edition= Fifty-eighth |location=New York|oclc=1109935506|date = 2019-09-02}}</ref>
* [[Propylene glycol]] (metabolized to L and D-lactate and is often found in infusions for certain intravenous medications used in the [[intensive care unit]])<ref>{{Cite book|title=Harrison's principles of internal medicine.|others=Jameson, J. Larry,, Kasper, Dennis L.,, Longo, Dan L. (Dan Louis), 1949-, Fauci, Anthony S., 1940-, Hauser, Stephen L.,, Loscalzo, Joseph|isbn=9781259644030|edition= 20th |location=New York|oclc=1029074059|date = 2018-08-13}}</ref>
* Massive [[rhabdomyolysis]]<ref>{{Cite book|title=Morgan & Mikhail's clinical anesthesiology|others=Butterworth, John F., IV,, Mackey, David C.,, Wasnick, John D.,, Morgan, G. Edward,, Mikhail, Maged S.,, Morgan, G. Edward.|isbn=978-1259834424|edition= Sixth|location=New York|oclc=1039081701|date = 2018-08-21}}</ref>
*[[Isoniazid]], iron, [[phenelzine]], [[tranylcypromine]], [[Valproate|valproic acid]], [[verapamil]]<ref>{{Cite book|title=Katzung & Trevor's pharmacology : examination & board review|last=Katzung, Bertram G.|others=Kruidering-Hall, Marieke,, Trevor, Anthony J.|isbn=978-1259641022|edition= Twelfth |location=New York|oclc=1052466341|date = 2018-09-05}}</ref>
*[[Topiramate]]
*Sulfates<ref>{{Cite book|title=Pulmonary physiology|last=Levitzky, Michael G.|date=2007|publisher=McGraw-Hill Medical|isbn=9780071437752|edition= 7th|location=New York|oclc=75713147}}</ref>
 
'''Normal anion gap'''{{Main|Normal anion gap acidosis}}
Causes of normal anion gap include:<ref>{{Cite book|title=The renal system: basic science and clinical conditions|date=2010|publisher=Churchill Livingstone/Elsevier|last1=Field|first1=Michael J.|last2=Pollock|first2=Carol A.|last3=Harris|first3=David C.|isbn=9780702033711|edition=2nd|location=Edinburgh|oclc=319855752|url-access=registration|url=https://archive.org/details/renalsystembasic0000fiel}}</ref>
 
* Inorganic acid addition
Line 86:
** [[Proximal renal tubular acidosis]]
** [[Distal renal tubular acidosis]]
 
*[[Hyperalimentation]]
*[[Addison's disease|Addison disease]]
Line 93 ⟶ 92:
* Saline infusion
 
To distinguish between the main types of metabolic acidosis, a clinical tool called the [[anion gap]] is considered very useful. ItThe anion gap is calculated by subtracting the sum of the serum concentrations of major anions, chloride and bicarbonate levels, from the sumserum concentration of the major cation, sodium. and(The serum potassium levels.concentration may be added to the calculation, but this merely changes the normal reference range for what is considered a normal anion gap)
<!--
Anion gap = ( [Na<sup>+</sup>] + [K<sup>+</sup>] ) − ( [Cl<sup>−</sup>] + [HCO<sub>3</sub><sup>−</sup>] )
-->
As sodium is the main extracellular cation, and chloride and bicarbonate are the main anions, the result should reflect the remaining anions. Normally, this concentration is about 8–16&nbsp;mmol/L (12±4). An elevated anion gap (i.e. > 16 mmol/L) can indicate particular types of metabolic acidosis, such as types caused by certain poisons, lactate acidosis, and ketoacidosis. It is important to note that the anion gap can be spuriously normal in sampling errors of the sodium level, e.g. in extreme [[hypertriglyceridemia]]. The anion gap can also be increased due to relatively low levels of cations other than sodium and potassium (e.g. calcium or magnesium).<ref name=":2" />
 
Because the concentration of serum sodium is greater than the combined concentrations of chloride and bicarbonate an 'anion gap' is noted. In reality serum is electoneutral because of the presence of other minor cations (potassium, calcium and magnesium) and anions (albumin, sulphate and phosphate) that are not measured in the equation that calculates the anion gap.
As a [[differential diagnosis]] is made, other tests may be necessary, including toxicological screening and imaging of the kidneys, along with testing of [[Electrolyte|electrolytes]] (including [[chloride]]), [[glucose]], [[kidney function]], and a [[full blood count]]. [[Urinalysis]] can reveal acidity ([[salicylate]] poisoning) or alkalinity ([[renal tubular acidosis]] type I). In addition, it can show ketones in ketoacidosis.<ref name=":3" /> It is also important to differentiate between acidosis-induced hyperventilation and [[asthma]]; otherwise, treatment could lead to inappropriate bronchodilation.<ref>{{cite journal|last1=Meert|first1=K. L|last2=Clark|first2=J|last3=Sarnaik|first3=A. P|year=2007|title=Metabolic acidosis as an underlying mechanism of respiratory distress in children with severe acute asthma|journal=Pediatric Critical Care Medicine|volume=8|issue=6|pages=519–23|doi=10.1097/01.PCC.0000288673.82916.9D|pmid=17906597|s2cid=27488853}}</ref>
 
The normal value for the anion gap is 8–16&nbsp;mmol/L (12±4). An elevated anion gap (i.e. > 16&nbsp;mmol/L) indicates the presence of excess 'unmeasured' anions, such as lactic acid in anaerobic metabolism resulting from tissue hypoxia, glycolic and formic acid produced by the metabolism of toxic alcohols, ketoacids produced when acetyl-CoA undergoes ketogenesis rather than entering the tricarboxylic (Krebs) cycle, and failure of renal excretion of products of metabolism such as sulphates and phosphates.
 
Adjunctive tests are useful in determining the aetiology of a raised anion gap metabolic acidosis including detection of an osmolar gap indicative of the presence of a toxic alcohol, measurement of serum ketones indicative of ketoacidosis and renal function tests and urinanalysis to detect renal dysfunction.
 
Elevated protein (albumin, globulins) may theoretically increase the anion gap but high levels are not usually encountered clinically. Hypoalbuminaemia, which is frequently encountered clinically, will ''mask'' an anion gap. As a rule of thumb, a decrease in serum albumin by 1&nbsp;G/L will decrease the anion gap by 0.25&nbsp;mmol/L
 
==Pathophysiology==
Line 110 ⟶ 114:
* [[Bicarbonate buffering system]]
* [[Intracellular]] buffering by absorption of hydrogen atoms by various molecules, including proteins, phosphates and carbonate in bone.
* [[Respiratory compensation]]. Hyperventilation will cause more carbon dioxide to be removed from the body and thereby decreaseincreases pH.
* [[Renal compensation|Kidney compensation]]
 
===Buffer===
The decreased bicarbonate that distinguishes metabolic acidosis is therefore due to two separate processes: the buffer (from water and carbon dioxide) and additional renal generation. The buffer reactions are: <chem display=block>H+ + HCO3- <=> H2CO3 <=> CO2 + H2O</chem>
 
The [[Henderson–Hasselbalch equation]] mathematically describes the relationship between blood pH and the components of the bicarbonate buffering system: <math chem display=block>p\ce{H}=pK_\text{a}+\operatorname{\mathrm{Log}}\frac{\left[\ce{HCO3^-}\right]}{\left[\ce{CO2}\right]}\text{,}</math> where {{math|''pK''<sub>a</sub>&nbsp;&approx; 6.1}}. In clinical practice, the {{CO2}} concentration is usually determined via [[Henry's law]] from {{math|''P''<sub>a{{CO2}}</sub>}}, the {{CO2}} partial pressure in arterial blood: <math chem display=block>[\ce{CO2}] = (0.03\text{ L}^{-1}/\text{mmHg})\times P_{\text{a}\ce{CO2}}\text{.}</math>
:<chem>H+ + HCO3- <=> H2CO3 <=> CO2 + H2O</chem>
 
For example, blood gas machines usually determine bicarbonate concentrations from measured ''p''H and {{math|''P''<sub>a{{CO2}}</sub>}} values. Mathematically, the algorithm [[substitution (algebra)|substitutes]] the Henry's law formula into the Henderson-Hasselbach equation and then rearranges: <math chem display=block>\left[\ce{HCO3^-}\right]=(0.03\text{ L}^{-1}/\text{mmHg})P_{\text{a}\ce{CO2}}\cdot 10^{p\ce{H}-pK_\text{a}}</math> At [[sea level]], normal numbers might be {{math|''p''H&nbsp;&approx; 7.4}} and {{math|''P''<sub>a{{CO2}}</sub>&nbsp;&approx; 40&nbsp;mmHg}}; these then imply <math chem display=block>\begin{align}
The [[Henderson-Hasselbalch equation]] mathematically describes the relationship between blood pH and the components of the bicarbonate buffering system:
\left[\ce{HCO3^-}\right]&=(0.03\text{ L}^{-1}/\text{mmHg})(40\text{ mmHg})\cdot10^{7.4-6.1} \\
 
&=24\text{ L}^{-1}
<math>\text{pH}=\text{pK}_a+\mathop{\mathrm{Log}}\frac{\left[\text{HCO}_3^-\right]}{\left[\text{CO}_2\right]}</math>
\end{align}</math>
:Using [[Henry's law]], we can say that [{{CO2}}] = 0.03 × Pa{{CO2}}
: (Pa{{CO2}} is the pressure of {{CO2}} in arterial blood)
:Adding the other normal values, we get
 
<math>\text{pH}=6.1+\mathop{\mathrm{Log}}\left[\frac{24}{0.03\times 40}\right]</math>
:<math> = 6.1 + 1.3 </math>
:<math> = 7.4 </math>
 
== Consequences ==
 
=== Acute Metabolicmetabolic Acidosisacidosis ===
Acute Metabolicmetabolic Acidosisacidosis most often occurs during hospitalizations, and acute critical illnesses. It is often associated with poor prognosis, with a mortality rate as high as 57% if the pH remains untreated at 7.20.<ref name="Treatment of acute metabolic acidos">{{cite journal |last1=Kraut |first1=Jeffrey A. |last2=Madias |first2=Nicolaos E. |title=Treatment of acute metabolic acidosis: a pathophysiologic approach |journal=Nature Reviews Nephrology |date=4 September 2012 |volume=8 |issue=10 |pages=589–601 |doi=10.1038/nrneph.2012.186|pmid=22945490 |s2cid=34657707 }}</ref> At lower pH levels, acute metabolic acidosis can lead to impaired circulation and end organ function.
 
=== Chronic Metabolicmetabolic Acidosisacidosis ===
Chronic metabolic acidosis commonly occurs in people with Chronicchronic Kidneykidney Diseasedisease (CKD) with an eGFR of less than 45 ml/min/1.73m<sup>2</sup>, most often with mild to moderate severity; however, metabolic acidosis can manifest earlier on in the course of Chronic Kidney DiseaseCKD. Multiple animal and human studies have shown that metabolic acidosis in Chronic Kidney DiseaseCKD, given its chronic nature, has a profound adverse impact on cellular function, overall contributing to high morbidities in patients.
 
The most adverse consequences of chronic metabolic acidosis in people with Chronic Kidney DiseaseCKD, and in particular, for those who have [[Kidney failure|end-stage renal disease (ESRD)]], are detrimental changes to the bones and muscles.<ref name=":1">{{Cite journal|last1=Kraut|first1=Jeffrey A.|last2=Madias|first2=Nicolaos E.|title=Adverse Effects of the Metabolic Acidosis of Chronic Kidney Disease|journal=Advances in Chronic Kidney Disease|language=en|volume=24|issue=5|pages=289–297|doi=10.1053/j.ackd.2017.06.005|pmid=29031355|year=2017}}</ref> Acid buffering leads to loss of bone density, resulting in an increased risk of bone fractures,<ref>{{Cite journal|last1=Kato|first1=Akihiko|last2=Kido|first2=Ryo|last3=Onishi|first3=Yoshihiro|last4=Kurita|first4=Noriaki|last5=Fukagawa|first5=Masafumi|last6=Akizawa|first6=Tadao|last7=Fukuhara|first7=Shunichi|date=2014|title=Association of serum bicarbonate with bone fractures in hemodialysis patients: the mineral and bone disorder outcomes study for Japanese CKD stage 5D patients (MBD-5D)|journal=Nephron Clinical Practice|volume=128|issue=1–2|pages=79–87|doi=10.1159/000365089|issn=1660-2110|pmid=25378374|s2cid=20320396}}</ref> renal osteodystrophy,<ref>{{Cite journal|last1=Lefebvre|first1=A.|last2=de Vernejoul|first2=M. C.|last3=Gueris|first3=J.|last4=Goldfarb|first4=B.|last5=Graulet|first5=A. M.|last6=Morieux|first6=C.|title=Optimal correction of acidosis changes progression of dialysis osteodystrophy|journal=Kidney International|volume=36|issue=6|pages=1112–1118|doi=10.1038/ki.1989.309|issn=0085-2538|pmid=2557481|year=1989|doi-access=free}}</ref> and bone disease;<ref name=":1" /> as well, increased protein catabolism leads to muscle wasting.<ref>{{Cite journal|last1=Hanna|first1=Ramy M.|last2=Ghobry|first2=Lena|last3=Wassef|first3=Olivia|last4=Rhee|first4=Connie M.|last5=Kalantar-Zadeh|first5=Kamyar|title=A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease|journal=Blood Purification|volume=49|issue=1–2|language=englishen|pages=202–211|doi=10.1159/000504240|issn=0253-5068|pmid=31851983|year=2020|s2cid=209418220|doi-access=free}}</ref><ref>{{Cite journal|last1=Foley|first1=Robert N.|last2=Wang|first2=Changchun|last3=Ishani|first3=Areef|last4=Collins|first4=Allan J.|last5=Murray|first5=Anne M.|date=2007|title=Kidney Function and Sarcopenia in the United States General Population: NHANES III|journal=American Journal of Nephrology|language=englishen|volume=27|issue=3|pages=279–286|doi=10.1159/000101827|issn=0250-8095|pmid=17440263|s2cid=2847009}}</ref> Furthermore, metabolic acidosis in Chronic Kidney DiseaseCKD is also associated with a reduction in [[Renal function|eGFR]]; it is both a complication of Chronic Kidney DiseaseCKD, as well as an underlying cause of Chronic Kidney DiseaseCKD progression.<ref>{{Cite journal|last1=Shah|first1=Samir N.|last2=Abramowitz|first2=Matthew|last3=Hostetter|first3=Thomas H.|last4=Melamed|first4=Michal L.|date=2009-08-01|title=Serum bicarbonate levels and the progression of kidney disease: a cohort study|url=https://www.ncbi.nlm.nih.gov/pubmed/?term=shah+Serum+Bicarbonate+Levels+and+the+Progression+of+Kidney+Disease:+A+Cohort+Study.|journal=American Journal of Kidney Diseases |volume=54|issue=2|pages=270–277|doi=10.1053/j.ajkd.2009.02.014|issn=1523-6838|pmc=4354889|pmid=19394734}}</ref><ref>{{Cite journal|last1=Dobre|first1=Mirela|last2=Yang|first2=Wei|last3=Chen|first3=Jing|last4=Drawz|first4=Paul|last5=Hamm|first5=L. Lee|last6=Horwitz|first6=Edward|last7=Hostetter|first7=Thomas|last8=Jaar|first8=Bernard|last9=Lora|first9=Claudia M.|last10=Nessel|first10=Lisa|last11=Ojo|first11=Akinlolu|date=2013-10-01|title=Association of Serum Bicarbonate With Risk of Renal and Cardiovascular Outcomes in CKD: A Report From the Chronic Renal Insufficiency Cohort (CRIC) Study|journal=American Journal of Kidney Diseases|volume=62|issue=4|pages=670–678|doi=10.1053/j.ajkd.2013.01.017|pmid=23489677|pmc=3701754|issn=0272-6386}}</ref><ref>{{Cite journal|last1=Menon|first1=Vandana|last2=Tighiouart|first2=Hocine|last3=Vaughn|first3=Nubia Smith|last4=Beck|first4=Gerald J.|last5=Kusek|first5=John W.|last6=Collins|first6=Allan J.|last7=Greene|first7=Tom|last8=Sarnak|first8=Mark J.|date=2010-11-01|title=Serum Bicarbonate and Long-term Outcomes in CKD|journal=American Journal of Kidney Diseases|volume=56|issue=5|pages=907–914|doi=10.1053/j.ajkd.2010.03.023|pmid=20605301|issn=0272-6386}}</ref><ref>{{Cite journal|last1=Raphael|first1=Kalani L.|last2=Wei|first2=Guo|last3=Baird|first3=Bradley C.|last4=Greene|first4=Tom|last5=Beddhu|first5=Srinivasan|date=2011-02-01|title=Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans|journal=Kidney International|volume=79|issue=3|pages=356–362|doi=10.1038/ki.2010.388|pmid=20962743|pmc=5241271|issn=0085-2538}}</ref>
 
==Treatment==
Treatment of metabolic acidosis depends on the underlying cause, and should target reversing the main process. When considering course of treatment, it is important to distinguish between acute versus chronic forms.
 
=== Acute Metabolicmetabolic Acidosisacidosis ===
Bicarbonate therapy is generally administered In patients with severe acute acidemia (pH < 7.11), or with less severe acidemia (pH 7.1-71–7.2) who have severe acute kidney injury. Bicarbonate therapy is not recommended for people with less severe acidosis (pH ≥ 7.1), unless severe acute kidney injury is present. In the BICAR-ICU trial,<ref name="BICAR-ICU 2018">{{Citecite journal |last1=Jaber |first1=Samir |last2=Paugam |first2=Catherine |last3=Futier |first3=Emmanuel |last4=Lefrant|first4=Jean display-Yves|last5authors=Lasocki|first5=Sigismond|last6=Lescot|first6=Thomas|last7=Pottecher|first7=Julien|last8=Demoule|first8=Alexandre|last9=Ferrandière|first9=Martine|last10=Asehnoune|first10=Karim|last11=Dellamonica|first11=Jean|date=2018-07-07etal |title=Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial |journal=The Lancet |volume=392 |issue=10141 |pages=31–40 |language=en |doi=10.1016/S0140-6736(18)31080-8 |pmid=29910040 |s2ciddate=492761382018|issns2cid=0140-673649276138 |url=https://hal.umontpellier.fr/hal-01818634/file/2018%20Jaber%20et%20al.%20Sodium%20bicarbonate%20therapy.pdf }}</ref> bicarbonate therapy for maintaining a pH >7.3 had no overall effect on the composite outcome of all-cause mortality and the presence of at least one organ failure at day 7. However, amongst the sub-group of patients with severe acute kidney injury, bicarbonate therapy significantly decreased the primary composite outcome, and 28-day mortality, along with the need for [[kidney dialysis|dialysis]].
 
=== Chronic Metabolicmetabolic Acidosisacidosis ===
For people with Chronicchronic Kidneykidney Diseasedisease (CKD), treating metabolic acidosis slows the progression of chronic kidney diseaseCKD.<ref>{{Cite journal|last1=Goraya|first1=Nimrit|last2=Wesson|first2=Donald E.|title=Clinical evidence that treatment of metabolic acidosis slows the progression of chronic kidney disease|journal=Current Opinion in Nephrology and Hypertension|language=en-US|volume=28|issue=3|pages=267–277|doi=10.1097/MNH.0000000000000491|pmid=30681417|pmc=6467553|issn=1062-4821|year=2019}}</ref> Dietary interventions for treatment of chronic metabolic acidosis include base-inducing fruits and vegetables that assist with reducing the urine net acid excretion, and increase TCO2. Recent research has also suggested that dietary protein restriction, through ketoanalogue-supplemented vegetarian very low protein diets are also a nutritionally safe option for correction of metabolic acidosis in people with Chronic Kidney DiseaseCKD.<ref>{{Cite journal|last1=Garneata|first1=Liliana|last2=Stancu|first2=Alexandra|last3=Dragomir|first3=Diana|last4=Stefan|first4=Gabriel|last5=Mircescu|first5=Gabriel|date=2016-07-01|title=Ketoanalogue-Supplemented Vegetarian Very Low–Protein Diet and CKD Progression|journal=Journal of the American Society of Nephrology|language=en|volume=27|issue=7|pages=2164–2176|doi=10.1681/ASN.2015040369|issn=1046-6673|pmid=26823552|pmc=4926970}}</ref>
 
Currently, the most commonly used treatment for chronic metabolic acidosis is oral bicarbonate. The NKF/KDOQI guidelines recommend starting treatment when serum bicarbonate levels are <22 mEq/L, in order to maintain levels ≥ 22 mEq/L.<ref name=":4">{{Cite journal|last=|first=|date=|title=National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease.|url=https://www.kidney.org/sites/default/files/docs/boneguidelines.pdf|journal=Am J Kidney Dis|volume=42 (Suppl 3)|pages=S1–S201|via=}}</ref><ref name=":5">{{Cite web|url=https://kdigo.org/guidelines/ckd-evaluation-and-management/|title=CKD Evaluation and Management – KDIGO|website=kdigo.org|access-date=2019-12-31}}</ref> Studies investigating the effects of oral alkali therapy demonstrated improvements in serum bicarbonate levels, resulting in a slower decline in kidney function, and reduction in proteinuria – leading to a reduction in the risk of progressing to kidney failure. However, side effects of oral alkali therapy include gastrointestinal intolerance, worsening edema, and worsening hypertension. Furthermore, large doses of oral alkali are required to treat chronic metabolic acidosis, and the pill burden can limit adherence.<ref>{{Cite journal|last1=Chen|first1=Wei|last2=Abramowitz|first2=Matthew K.|title=Advances in management of chronic metabolic acidosis in chronic kidney disease|journal=Current Opinion in Nephrology and Hypertension|volume=28|issue=5|pages=409–416|doi=10.1097/MNH.0000000000000524|issn=1473-6543|pmc=6677263|pmid=31232712|year=2019}}</ref>
 
Veverimer (TRC 101) is a promising investigational drug designed to treat metabolic acidosis by binding with the acid in the gastrointestinal tract and removing it from the body through excretion in the feces, in turn decreasing the amount of acid in the body, and increasing the level of bicarbonate in the blood. Results from a Phase 3, double-blind placebo-controlled 12-week clinical trial in people with CKD and metabolic acidosis demonstrated that Veverimer effectively and safely corrected metabolic acidosis in the short-term,<ref>{{Cite journal|last1=Wesson|first1=Donald E.|last2=Mathur|first2=Vandana|last3=Tangri|first3=Navdeep|last4=Stasiv|first4=Yuri|last5=Parsell|first5=Dawn|last6=Li|first6=Elizabeth|last7=Klaerner|first7=Gerrit|last8=Bushinsky|first8=David A.|date=2019-04-06|title=Veverimer versus placebo in patients with metabolic acidosis associated with chronic kidney disease: a multicentre, randomised, double-blind, controlled, phase 3 trial|url=https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32562-5/abstract|journal=The Lancet|language=Englishen|volume=393|issue=10179|pages=1417–1427|doi=10.1016/S0140-6736(18)32562-5|issn=0140-6736|pmid=30857647|s2cid=72332908}}</ref> and a blinded, placebo-controlled, 40-week extension of the trial assessing long-term safety, demonstrated sustained improvements in physical function and a combined endpoint of death, dialysis, or 50% decline in eGFR.<ref>{{Cite journal|last1=Wesson|first1=Donald E.|last2=Mathur|first2=Vandana|last3=Tangri|first3=Navdeep|last4=Stasiv|first4=Yuri|last5=Parsell|first5=Dawn|last6=Li|first6=Elizabeth|last7=Klaerner|first7=Gerrit|last8=Bushinsky|first8=David A.|date=2019-08-03|title=Long-term safety and efficacy of veverimer in patients with metabolic acidosis in chronic kidney disease: a multicentre, randomised, blinded, placebo-controlled, 40-week extension|url=https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)31388-1/abstract|journal=The Lancet|language=Englishen|volume=394|issue=10196|pages=396–406|doi=10.1016/S0140-6736(19)31388-1|issn=0140-6736|pmid=31248662|s2cid=195339720}}</ref>
 
==See also==
* [[Delta ratio]]
* [[Metabolic alkalosis]]
* [[Pseudohypoxia]]
* [[Respiratory acidosis]]
* [[Respiratory alkalosis]]