Holocene: Difference between revisions

Content deleted Content added
Reverted 1 edit by 2600:4041:59D0:4000:58B4:A8BC:BE81:580B (talk): Contradicts the citation
Citation bot (talk | contribs)
Add: bibcode, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar
(33 intermediate revisions by 28 users not shown)
Line 7:
| time_start = 0.0117
| time_end = 0
| image_map = File:Earth 0.01Ma.png
| caption_map = Map of Earth as it appeared 10 thousand years ago during the beginning of the Holocene
| image_outcrop =
| caption_outcrop =
Line 58:
}}
 
The '''Holocene''' ({{IPAc-en|ˈ|h|ɒ|l|.|ə|s|iː|n|,_|-|oʊ|-|,_|ˈ|h|oʊ|.|l|ə|-|,_|-|l|oʊ|-}})<ref>{{cite Merriam-Webster|Holocene |access-date=2018-02-11}}</ref><ref>{{cite Dictionary.com |Holocene |access-date=2018-02-11}}</ref> is the current [[geologic time scale|geological epoch]]. It, beganbeginning approximately 911,700 years before the [[Common Era]] (BCE){{refn|"an age of 11 700 calendar yr b2 k (before AD 2000) for the base of the Holocene, with a maximum counting error of 99 yrago."<ref name="Walker, M. 2009. pp. 3"/>|group=lower-alpha}} (11,650 <!--The source gives "11,700 calendar yr b2k (before AD 2000)". But "BP" means "before AD 1950". Therefore 11,650 BP.--> [[radiocarbon calibration|cal]] years [[Before Present|BP]], or 300 [[Holocene calendar|HE]]). It follows the [[Last Glacial Period]], which concluded with the [[Holocene glacial retreat]].<ref name="Walker, M. 2009. pp. 3">{{cite journal |last1=Walker |first1=Mike |first2=Sigfus |last2=Johnsen |first3=Sune Olander |last3=Rasmussen |first4=Trevor |last4=Popp |first5=Jorgen-Peder |last5=Steffensen |first6=Phil |last6=Gibrard |first7=Wim |last7=Hoek |first8=John |last8=Lowe |first9=John |last9=Andrews |first10=Svante |last10=Bjo Rck |first11=Les C. |last11=Cwynar |first12=Konrad |last12=Hughen |first13=Peter |last13=Kersahw |first14=Bernd |last14=Kromer |first15=Thomas |last15=Litt |first16=David J. |last16=Lowe |first17=Takeshi |last17=Nakagawa |first18=Rewi |last18=Newnham |first19=Jakob |last19=Schwander |year=2009 |title=Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records |url=https://stratigraphy.org/GSSP/Holocene.pdf |journal=[[Journal of Quaternary Science]] |volume=24 |issue=1 |pages=3–17 |doi=10.1002/jqs.1227 |bibcode=2009JQS....24....3W |doi-access=free |access-date=2013-09-03 |archive-date=2013-11-04 |archive-url=https://web.archive.org/web/20131104131948/http://www.stratigraphy.org/GSSP/Holocene.pdf |url-status=live }}</ref> The Holocene and the preceding [[Pleistocene]]<ref>{{cite web |url=http://www.stratigraphy.org/index.php/ics-chart-timescale |title=International Chronostratigraphic Chart |last1=Fan |first1=Junxuan |last2=Hou |first2=Xudong |work=[[International Commission on Stratigraphy]] |access-date=June 18, 2016 |archive-date=January 13, 2017 |archive-url=https://web.archive.org/web/20170113013553/http://www.stratigraphy.org/index.php/ics-chart-timescale |url-status=live}}</ref> together form the [[Quaternary]] period. The Holocene has been identified with the current warm period, known as [[Marine isotope stages|MIS 1]]. It is considered by some to be an [[interglacial]] period within the Pleistocene Epoch, called theongoing [[FlandrianIce interglacialage|glacial cycles]].<ref name="geography">{{Citeof bookthe |last=BlijQuaternary, |first=Harmand deis |url=https://books.google.com/books?id=7P0_sWIcBNsCequivalent |title=Whyto Geography[[Marine Matters: More Than Everisotope stages|date=2012-08-17Marine |publisher=OxfordIsotope UniversityStage Press |isbn=978-0-19-997725-3 |language=en}}</ref>1]].
 
The Holocene correlates with the last maximum axial tilt of the Earth towards the Sun, and corresponds with the rapid proliferation, growth, and impacts of the [[human species]] worldwide, including [[Recorded history|all of its written history]], [[technological revolution]]s, development of major [[civilization]]s, and overall significant transition towards [[urban culture|urban living]] in the present. The human impact on modern-era [[Earth]] and its [[ecosystem]]s may be considered of global significance for the future evolution of living species, including approximately synchronous [[lithosphere|lithospheric]] evidence, or more recently [[Hydrosphere|hydrospheric]] and [[Atmosphere|atmospheric]] evidence of the human impact. In July 2018, the [[International Union of Geological Sciences]] split the Holocene Epoch into three distinct [[Age (geology)|ages]] based on the climate, [[Greenlandian]] (11,700 years ago to 8,200 years ago), [[Northgrippian]] (8,200 years ago to 4,200 years ago) and [[Meghalayan]] (4,200 years ago to the present), as proposed by [[International Commission on Stratigraphy]].<ref name="Amos-2018">{{cite news |url=https://www.bbc.com/news/science-environment-44868527 |title=Welcome to the Meghalayan Age a new phase in history |work=BBC News |date=2018-07-18 |last1=Amos |first1=Jonathan |access-date=2018-07-18 |archive-date=2018-07-18 |archive-url=https://web.archive.org/web/20180718211344/https://www.bbc.com/news/science-environment-44868527 |url-status=live}}</ref> The oldest age, the Greenlandian, was characterized by a warming following the preceding ice age. The Northgrippian Age is known for vast cooling due to a disruption in ocean circulations that was caused by the melting of glaciers. The most recent age of the Holocene is the present Meghalayan, which began with extreme drought that lasted around 200 years.<ref name="Amos-2018" />
 
==Etymology==
Line 66:
 
==Overview==
The [[International Commission on Stratigraphy]] has defined the Holocene as starting approximately 11,700 years before 2000 [[Common Era|CE]] (11,650 [[Radiocarbon calibration|cal]] years [[Before present|BP]], or 9,700 BCE).<ref name="Walker, M. 2009. pp. 3"/> The Subcommission on Quaternary Stratigraphy (SQS) regards the term 'recent' as an incorrect way of referring to the Holocene, preferring the term 'modern' instead to describe current processes. It also observes that the term 'Flandrian' may be used as a synonym for Holocene, although it is becoming outdated.<ref>{{Citation |last1=Gibbard |first1=P. L. |title=Chapter 30 - The Quaternary Period |date=2020-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780128243602000309 |work=Geologic Time Scale 2020 |pages=1217–1255 |editor-last=Gradstein |editor-first=Felix M. |publisher=Elsevier |language=en |isbn=978-0-12-824360-2 |access-date=2022-04-21 |last2=Head |first2=M. J. |editor2-last=Ogg |editor2-first=James G. |editor3-last=Schmitz |editor3-first=Mark D. |editor4-last=Ogg |editor4-first=Gabi M.}}</ref> The International Commission on Stratigraphy, however, considers the Holocene to be an epoch following the [[Pleistocene]] and specifically following the [[last glacial period]]. Local names for the [[Late Pleistocene|last glacial period]] include the [[Wisconsin glaciation|Wisconsinan]] in [[North America]],<ref name=Clayton1982>{{cite journal |last1=Clayton |first1=Lee |last2=Moran |first2=Stephen R. |title=Chronology of late wisconsinan glaciation in middle North America |journal=[[Quaternary Science Reviews]] |year=1982 |volume=1 |issue=1 |pages=55–82 |doi=10.1016/0277-3791(82)90019-1 |bibcode=1982QSRv....1...55C }}</ref> the [[Weichselian glaciation|Weichselian]] in Europe,<ref name=Svendsen1999>{{cite journal |last1=Svendsen |first1=John Inge |last2=Astakhov |first2=Valery I. |last3=Bolshiyanov |first3=Dimitri Yu. |last4=Demidov |first4=Igor |last5=Dowdeswell |first5=Julian A. |last6=Gataullin |first6=Valery |last7=Hjort |first7=Christian |last8=Hubberten |first8=Hans W. |last9=Larsen |first9=Eiliv |last10=Mangerud |first10=Jan |last11=Melles |first11=Martin |last12=Moller |first12=Per |last13=Saarnisto |first13=Matti |last14=Siegert |first14=Martin J. |title=Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian |url=http://www.folk.uib.no/ngljm/PDF_files/SVENDSEN99.PDF |journal=[[Boreas (journal)|Boreas]] |date=March 1999 |volume=28 |issue=1 |pages=234–242 |doi=10.1111/j.1502-3885.1999.tb00217.x |bibcode=1999Borea..28..234S |s2cid=34659675 |access-date=2018-02-11 |archive-date=2018-02-12 |archive-url=https://web.archive.org/web/20180212083433/http://www.folk.uib.no/ngljm/PDF_files/SVENDSEN99.PDF |url-status=live }}</ref> the Devensian in Britain,<ref name=Eyles1989>{{cite journal |last1=Eyles |first1=Nicholas |last2=McCabe |first2=A. Marshall |title=The Late Devensian (<22,000 BP) Irish Sea Basin: The sedimentary record of a collapsed ice sheet margin |journal=[[Quaternary Science Reviews]] |year=1989 |volume=8 |issue=4 |pages=307–351 |doi=10.1016/0277-3791(89)90034-6 |bibcode=1989QSRv....8..307E }}</ref> the [[Llanquihue glaciation|Llanquihue]] in Chile<ref name=Denton1999>{{cite journal |last1= Denton |first1= G.H. |last2= Lowell |first2= T.V. |last3= Heusser |first3= C.J. |last4= Schluchter |first4= C. |last5= Andersern |first5= B.G. |last6= Heusser |first6= Linda E. |last7= Moreno |first7= P.I. |last8= Marchant |first8= D.R. |title= Geomorphology, stratigraphy, and radiocarbon chronology of LlanquihueDrift in the area of the Southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe, Chile |url=https://pdfs.semanticscholar.org/6b41/4b24c6c33c9e713f114ae1692ada693e2517.pdf |archive-url= https://web.archive.org/web/20180212084400/https://pdfs.semanticscholar.org/6b41/4b24c6c33c9e713f114ae1692ada693e2517.pdf |url-status=dead |archive-date=2018-02-12 |journal=Geografiska Annaler: Series A, Physical Geography |year= 1999 |volume= 81A |issue= 2 |pages= 167–229 |doi= 10.1111/j.0435-3676.1999.00057.x |doi-broken-date= 31 January 2024-01-23 |bibcode= 1999GeAnA..81..167D |s2cid= 7626031 }}</ref> and the Otiran in New Zealand.<ref name=Newnham2007>{{cite journal |last1= Newnham |first1= R.M. |last2= Vandergoes |first2= M.J. |last3= Hendy |first3= C.H. |last4= Lowe |first4= D.J. |last5= Preusser |first5=F. |title= A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand |journal=[[Quaternary Science Reviews]] |date=February 2007 |volume=26 |pages=517–535 |issue=3–4 |doi= 10.1016/j.quascirev.2006.05.005 |bibcode=2007QSRv...26..517N }}</ref>
 
The Holocene can be subdivided into five time intervals, or [[chronozone]]s, based on climatic fluctuations:<ref>{{Cite journal |title=Quaternary stratigraphy of Norden: a proposal for terminology and classification |date=October 1, 1974 |url=http://folk.uib.no/ngljm/PDF_files/Mangerud%20et%20al%201974,%20Quat%20stratigraphy%20Norden.PDF |journal=[[Boreas (journal)|Boreas]] |last1= Mangerud |first1= Jan |last2= Anderson |first2= Svend T. |last3= Berglund |first3= Bjorn E. |last4=Donner |first4=Joakim J. |volume=3 |issue=3 |pages=109–128 |doi=10.1111/j.1502-3885.1974.tb00669.x |bibcode=1974Borea...3..109M |access-date=September 15, 2013 |archive-date=February 16, 2020 |archive-url= https://web.archive.org/web/20200216182249/https://folk.uib.no/ngljm/PDF_files/Mangerud%20et%20al%201974,%20Quat%20stratigraphy%20Norden.PDF |url-status=live }}</ref>{{Update inline|date=April 2023|?=yes|reason=Does this still hold after so many years? Holocene start date was redefined 35 years after these climatic chronzone dates}}
Line 96:
The climate throughout the Holocene has shown significant variability despite ice core records from Greenland suggesting a more stable climate following the preceding ice age. Marine chemical fluxes during the Holocene were lower than during the Younger Dryas, but were still considerable enough to imply notable changes in the climate.
 
The temporal and spatial extent of climate change during the Holocene is an area of considerable uncertainty, with [[radiative forcing]] recently proposed to be the origin of cycles identified in the North Atlantic region. Climate cyclicity through the Holocene ([[Bond events]]) has been observed in or near marine settings and is strongly controlled by glacial input to the North Atlantic.<ref name="Bond1997">{{cite journal |author=Bond, G. |display-authors=etal |year=1997 |title=A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates |url=http://rivernet.ncsu.edu/courselocker/PaleoClimate/Bond%20et%20al.,%201997%20Millenial%20Scale%20Holocene%20Change.pdf |url-status=dead |journal=[[Science (journal)|Science]] |volume=278 |issue=5341 |pages=1257–1266 |bibcode=1997Sci...278.1257B |doi=10.1126/science.278.5341.1257 |s2cid=28963043 |archive-url=https://web.archive.org/web/20080227192411/http://rivernet.ncsu.edu/courselocker/PaleoClimate/Bond%20et%20al.%2C%201997%20Millenial%20Scale%20Holocene%20Change.pdf |archive-date=2008-02-27}}</ref><ref>{{cite journal |last=Bond |first=G. |display-authors=etal |year=2001 |title=Persistent Solar Influence on North Atlantic Climate During the Holocene |journal=Science |volume=294 |issue=5549 |pages=2130–2136 |bibcode=2001Sci...294.2130B |doi=10.1126/science.1065680 |pmid=11739949 |s2cid=38179371 |doi-access=free }}</ref> Periodicities of ≈2500, ≈1500, and ≈1000 years are generally observed in the North Atlantic.<ref>{{cite journal |last1=Bianchi |first1=G.G. |last2=McCave |first2=I.N. |year=1999 |title=Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland |journal=[[Nature (journal)|Nature]] |volume=397 |issue=6719 |pages=515–517 |bibcode=1999Natur.397..515B |doi=10.1038/17362 |s2cid=4304638}}</ref><ref>{{cite journal |last1=Viau |first1=A.E. |last2=Gajewski |first2=K. |last3=Sawada |first3=M.C. |last4=Fines |first4=P. |year=2006 |title=Millennial-scale temperature variations in North America during the Holocene |journal=Journal of Geophysical Research |volume=111 |issue=D9 |page=D09102 |bibcode=2006JGRD..111.9102V |doi=10.1029/2005JD006031 |doi-access=free}}</ref><ref>{{cite journal |last1=Debret |first1=M. |last2=Sebag |first2=D. |last3=Crosta |first3=X. |last4=Massei |first4=N. |last5=Petit |first5=J.-R. |last6=Chapron |first6=E. |last7=Bout-Roumazeilles |first7=V. |year=2009 |title=Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing |url=https://hal-insu.archives-ouvertes.fr/insu-00442817/file/Debret-QuaternaryScienceReviews-2009.pdf |url-status=live |journal=Quaternary Science Reviews |volume=28 |issue=25 |pages=2675–2688 |bibcode=2009QSRv...28.2675D |doi=10.1016/j.quascirev.2009.06.005 |s2cid=117917422 |archive-url=https://web.archive.org/web/20181228082822/https://hal-insu.archives-ouvertes.fr/insu-00442817/file/Debret-QuaternaryScienceReviews-2009.pdf |archive-date=2018-12-28 |access-date=2018-12-16}}</ref> At the same time spectral analyses of the continental record, which is remote from oceanic influence, reveal persistent periodicities of 1,000 and 500 years that may correspond to solar activity variations during the Holocene Epoch.<ref name="Krav">{{cite journal |last1=Kravchinsky |first1=V.A. |last2=Langereis |first2=C.G. |last3=Walker |first3=S.D. |last4=Dlusskiy |first4=K.G. |last5=White |first5=D. |year=2013 |title=Discovery of Holocene millennial climate cycles in the Asian continental interior: Has the sun been governing the continental climate?. |journal=Global and Planetary Change |volume=110 |pages=386–396 |bibcode=2013GPC...110..386K |doi=10.1016/j.gloplacha.2013.02.011}}</ref> A 1,500-year cycle corresponding to the North Atlantic oceanic circulation may have had widespread global distribution in the Late Holocene.<ref name="Krav" /> From 8,500 BP to 6,700 BP, North Atlantic climate oscillations were highly irregular and erratic because of perturbations from substantial ice discharge into the ocean from the collapsing Laurentide Ice Sheet.<ref>{{Cite journal |last1=Martin-Puertas |first1=Celia |last2=Hernandez |first2=Armand |last3=Pardo-Igúzquiza |first3=Eulogio |last4=Boyall |first4=Laura |last5=Brierley |first5=Chris |last6=Jiang |first6=Zhiyi |last7=Tjallingii |first7=Rik |last8=Blockley |first8=Simon P. E. |last9=Rodríguez-Tovar |first9=Francisco Javier |date=23 March 2023 |title=Dampened predictable decadal North Atlantic climate fluctuations due to ice melting |url=https://www.nature.com/articles/s41561-023-01145-y |journal=[[Nature Geoscience]] |language=en |volume=16 |issue=4 |pages=357–362 |doi=10.1038/s41561-023-01145-y |bibcode=2023NatGe..16..357M |s2cid=257735721 |issn=1752-0908 |access-date=22 September 2023|hdl=10261/349251 |hdl-access=free }}</ref> The Greenland ice core records indicate that climate changes became more regional and had a larger effect on the mid-to-low latitudes and mid-to-high latitudes after ~5600 B.P.<ref>{{Cite journal |last1=O'Brien |first1=S. R. |last2=Mayewski |first2=P. A. |last3=Meeker |first3=L. D. |last4=Meese |first4=D. A. |last5=Twickler |first5=M. S. |last6=Whitlow |first6=S. I. |date=1995-12-22 |title=Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core |url=https://www.science.org/doi/10.1126/science.270.5244.1962 |journal=[[Science (journal)|Science]] |language=en |volume=270 |issue=5244 |pages=1962–1964 |doi=10.1126/science.270.5244.1962 |bibcode=1995Sci...270.1962O |s2cid=129199142 |issn=0036-8075}}</ref>
 
Human activity through land use changes was an important influence on Holocene climatic changes, and is believed to be why the Holocene is an atypical interglacial that has not experienced significant cooling over its course.<ref>{{Cite journal |last1=Ruddiman |first1=W. F. |last2=Fuller |first2=D. Q. |last3=Kutzbach |first3=J. E. |last4=Tzedakis |first4=P. C. |last5=Kaplan |first5=J. O. |last6=Ellis |first6=E. C. |last7=Vavrus |first7=S. J. |last8=Roberts |first8=C. N. |last9=Fyfe |first9=R. |last10=He |first10=F. |last11=Lemmen |first11=C. |last12=Woodbridge |first12=J. |date=15 February 2016 |title=Late Holocene climate: Natural or anthropogenic? |journal=[[Reviews of Geophysics]] |language=en |volume=54 |issue=1 |pages=93–118 |doi=10.1002/2015RG000503 |bibcode=2016RvGeo..54...93R |s2cid=46451944 |issn=8755-1209 |doi-access=free |hdl=10026.1/8204 |hdl-access=free }}</ref> From the start of the [[Industrial Revolution]] onwards, large-scale anthropogenic greenhouse gas emissions caused the Earth to warm.<ref name=":0">{{Cite journal |last1=Seip |first1=Knut Lehre |last2=Wang |first2=Hui |date=3 March 2023 |title=Maximum Northern Hemisphere warming rates before and after 1880 during the Common Era |journal=[[Theoretical and Applied Climatology]] |language=en |volume=152 |issue=1–2 |pages=307–319 |doi=10.1007/s00704-023-04398-0 |bibcode=2023ThApC.152..307S |s2cid=257338719 |issn=0177-798X |doi-access=free |hdl=11250/3071271 |hdl-access=free }}</ref> Likewise, climatic changes have induced substantial changes in human civilisation over the course of the Holocene.<ref>{{Cite journal |last1=Degroot |first1=Dagomar |last2=Anchukaitis |first2=Kevin J |last3=Tierney |first3=Jessica E |last4=Riede |first4=Felix |last5=Manica |first5=Andrea |last6=Moesswilde |first6=Emma |last7=Gauthier |first7=Nicolas |date=1 October 2022 |title=The history of climate and society: a review of the influence of climate change on the human past |journal=[[Environmental Research Letters]] |volume=17 |issue=10 |pages=103001 |doi=10.1088/1748-9326/ac8faa |bibcode=2022ERL....17j3001D |s2cid=252130680 |issn=1748-9326 |doi-access=free |hdl=10852/100641 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Zhang |first1=David D. |last2=Brecke |first2=Peter |last3=Lee |first3=Harry F. |last4=He |first4=Yuan-Qing |last5=Zhang |first5=Jane |date=4 December 2007 |title=Global climate change, war, and population decline in recent human history |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=104 |issue=49 |pages=19214–19219 |doi=10.1073/pnas.0703073104 |issn=0027-8424 |pmc=2148270 |pmid=18048343 |bibcode=2007PNAS..10419214Z |doi-access=free }}</ref>
 
During the transition from the last glacial to the Holocene, the [[Huelmo–Mascardi Cold Reversal]] in the [[Southern Hemisphere]] began before the Younger Dryas, and the maximum warmth flowed south to north from 11,000 to 7,000 years ago. It appears that this was influenced by the residual glacial ice remaining in the [[Northern Hemisphere]] until the later date.{{Citation needed|date=May 2012}} The first major phase of Holocene climate was the [[Preboreal]].<ref name=":1">{{Cite journal |last1=Wanner |first1=Heinz |last2=Beer |first2=Jürg |last3=Bütikofer |first3=Jonathan |last4=Crowley |first4=Thomas J. |last5=Cubasch |first5=Ulrich |last6=Flückiger |first6=Jacqueline |last7=Goosse |first7=Hugues |last8=Grosjean |first8=Martin |last9=Joos |first9=Fortunat |last10=Kaplan |first10=Jed O. |last11=Küttel |first11=Marcel |last12=Müller |first12=Simon A. |last13=Prentice |first13=I. Colin |last14=Solomina |first14=Olga |last15=Stocker |first15=Thomas F. |date=October 2008 |title=Mid- to Late Holocene climate change: an overview |url=https://www.sciencedirect.com/science/article/pii/S0277379108001479 |journal=[[Quaternary Science Reviews]] |volume=27 |issue=19 |pages=1791–1828 |doi=10.1016/j.quascirev.2008.06.013 |bibcode=2008QSRv...27.1791W |issn=0277-3791 |access-date=27 September 2023}}</ref> At the start of the Preboreal occurred the [[Preboreal oscillation|Preboreal Oscillation]] (PBO).<ref>{{Cite journal |last1=Hoek |first1=Wim Z. |last2=Bos |first2=Johanna A. A. |date=August 2007 |title=Early Holocene climate oscillations—causes and consequences |url=https://www.sciencedirect.com/science/article/pii/S0277379107001679 |journal=[[Quaternary Science Reviews]] |series=Early Holocene climate oscillations - causes and consequences |volume=26 |issue=15 |pages=1901–1906 |doi=10.1016/j.quascirev.2007.06.008 |bibcode=2007QSRv...26.1901H |issn=0277-3791 |access-date=27 September 2023}}</ref> The [[Holocene climatic optimum|Holocene Climatic Optimum]] (HCO) was a period of warming throughout the globe but was not globally synchronous and uniform.<ref>{{Cite journal |last1=Gao |first1=Fuyuan |last2=Jia |first2=Jia |last3=Xia |first3=Dunsheng |last4=Lu |first4=Caichen |last5=Lu |first5=Hao |last6=Wang |first6=Youjun |last7=Liu |first7=Hao |last8=Ma |first8=Yapeng |last9=Li |first9=Kaiming |date=15 March 2019 |title=Asynchronous Holocene Climate Optimum across mid-latitude Asia |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018218301688 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=518 |pages=206–214 |doi=10.1016/j.palaeo.2019.01.012 |bibcode=2019PPP...518..206G |s2cid=135199089 |access-date=10 September 2023}}</ref> Following the HCO, the global climate entered a broad trend of very gradual cooling known as [[Neoglaciation]], which lasted from the end of the HCO to before the [[Industrial Revolution]].<ref name=":1" /> From the 10th-14th century, the climate was similar to that of modern times during a period known as the [[Medieval Warm Period|Mediaeval Warm Period]] (MWP), also known as the Mediaeval Climatic Optimum (MCO). It was found that the warming that is taking place in current years is both more frequent and more spatially homogeneous than what was experienced during the MWP. A warming of +1 degree Celsius occurs 5–40 times more frequently in modern years than during the MWP. The major forcing during the MWP was due to greater solar activity, which led to heterogeneity compared to the greenhouse gas forcing of modern years that leads to more homogeneous warming. This was followed by the [[Little Ice Age]] (LIA) from the 13th or 14th century to the mid-19th century.<ref>{{Cite journal |last=Guiot |first=Joël |date=March 2012 |title=A robust spatial reconstruction of April to September temperature in Europe: Comparisons between the medieval period and the recent warming with a focus on extreme values |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818111001196 |journal=[[Global and Planetary Change]] |volume=84–85 |pages=14–22 |bibcode=2012GPC....84...14G |doi=10.1016/j.gloplacha.2011.07.007}}</ref> The LIA was the coldest interval of time of the past two millennia.<ref>{{Cite journal |last1=Wanner |first1=H. |last2=Mercolli |first2=L. |last3=Grosjean |first3=M. |last4=Ritz |first4=S. P. |date=17 October 2014 |title=Holocene climate variability and change; a data-based review |url=https://www.lyellcollection.org/doi/10.1144/jgs2013-101 |journal=[[Journal of the Geological Society]] |language=en |volume=172 |issue=2 |pages=254–263 |doi=10.1144/jgs2013-101 |s2cid=73548216 |issn=0016-7649 |access-date=27 September 2023}}</ref> Following the Industrial Revolution, warm decadal intervals became more common relative to before as a consequence of anthropogenic greenhouse gases, resulting in progressive global warming.<ref name=":0" /> In the late 20th century, anthropogenic forcing superseded solar activity as the dominant driver of climate change,<ref>{{Cite journal |last1=Duan |first1=Jianping |last2=Zhang |first2=Qi-Bin |date=27 October 2014 |title=A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity: Temperature reconstruction in the Tibet |journal=[[Journal of Geophysical Research: Atmospheres]] |language=en |volume=119 |issue=20 |pages=11,578–11,592 |doi=10.1002/2014JD022422 |s2cid=128906290 |doi-access=free }}</ref> though solar activity has continued to play a role.<ref>{{Cite journal |last1=Benestad |first1=R. E. |last2=Schmidt |first2=G. A. |date=27 July 2009 |title=Solar trends and global warming |journal=[[Journal of Geophysical Research: Atmospheres]] |language=en |volume=114 |issue=D14 |doi=10.1029/2008JD011639 |issn=0148-0227 |doi-access=free |bibcode=2009JGRD..11414101B }}</ref><ref>{{Cite journal |last1=Perry |first1=Charles A. |last2=Hsu |first2=Kenneth J. |date=7 November 2000 |title=Geophysical, archaeological, and historical evidence support a solar-output model for climate change |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=97 |issue=23 |pages=12433–12438 |doi=10.1073/pnas.230423297 |issn=0027-8424 |pmc=18780 |pmid=11050181 |doi-access=free |bibcode=2000PNAS...9712433P }}</ref>
 
=== Europe ===
Drangajökull, Iceland's northernmost glacier, melted shortly after 9,200 BP.<ref>{{Cite journal |last1=Harning |first1=David J. |last2=Geirsdóttir |first2=Áslaug |last3=Miller |first3=Gifford H. |last4=Zalzal |first4=Kate |date=1 December 2016 |title=Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379116303924 |journal=[[Quaternary Science Reviews]] |language=en |volume=153 |pages=192–198 |doi=10.1016/j.quascirev.2016.09.030 |bibcode=2016QSRv..153..192H |access-date=9 June 2024 |via=Elsevier Science Direct}}</ref> In [[Northern Germany]], the Middle Holocene saw a drastic increase in the amount of raised bogs, most likely related to sea level rise. Although human activity affected geomorphology and landscape evolution in Northern Germany throughout the Holocene, it only became a dominant influence in the last four centuries.<ref>{{Cite journal |last1=Gerdes |first1=G |last2=Petzelberger |first2=B. E. M |last3=Scholz-Böttcher |first3=B. M |last4=Streif |first4=H |date=1 January 2003 |title=The record of climatic change in the geological archives of shallow marine, coastal, and adjacent lowland areas of Northern Germany |url=https://www.researchgate.net/publication/223226453 |journal=[[Quaternary Science Reviews]] |series=Environmental response to climate and human impact in central Eur ope during the last 15000 years - a German contribution to PAGES-PEPIII |volume=22 |issue=1 |pages=101–124 |doi=10.1016/S0277-3791(02)00183-X |bibcode=2003QSRv...22..101G |issn=0277-3791 |access-date=27 October 2023}}</ref> In the [[French Alps]], geochemistry and lithium isotope signatures in lake sediments have suggested gradual soil formation from the [[Last Glacial Period]] to the [[Holocene climatic optimum]], and this soil development was altered by the settlement of human societies. Early anthropogenic activities such as deforestation and agriculture reinforced soil erosion, which peaked in the [[Middle Ages]] at an unprecedented level, marking human forcing as the most powerful factor affecting surface processes.<ref>{{Cite journal |last1=Zhang |first1=Xu (Yvon) |last2=Bajard |first2=Manon |last3=Bouchez |first3=Julien |last4=Sabatier |first4=Pierre |last5=Poulenard |first5=Jérôme |last6=Arnaud |first6=Fabien |last7=Crouzet |first7=Christian |last8=Kuessner |first8=Marie |last9=Dellinger |first9=Mathieu |last10=Gaillardet |first10=Jérôme |date=2023-12-15 |title=Evolution of the alpine Critical Zone since the Last Glacial Period using Li isotopes from lake sediments |url=https://www.sciencedirect.com/science/article/pii/S0012821X23004764 |journal=Earth and Planetary Science Letters |volume=624 |pages=118463 |doi=10.1016/j.epsl.2023.118463 |bibcode=2023E&PSL.62418463Z |issn=0012-821X|hdl=10852/110062 |hdl-access=free }}</ref> The sedimentary record from [[Aitoliko Lagoon]] indicates that wet winters locally predominated from 210 to 160 BP, followed by dry winter dominance from 160 to 20 BP.<ref>{{Cite journal |last1=Koutsodendris |first1=Andreas |last2=Brauer |first2=Achim |last3=Reed |first3=Jane M. |last4=Plessen |first4=Birgit |last5=Friedrich |first5=Oliver |last6=Hennrich |first6=Barbara |last7=Zacharias |first7=Ierotheos |last8=Pross |first8=Jörg |date=1 March 2017 |title=Climate variability in SE Europe since 1450 AD based on a varved sediment record from Etoliko Lagoon (Western Greece) |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379117300471 |journal=[[Quaternary Science Reviews]] |language=en |volume=159 |pages=63–76 |doi=10.1016/j.quascirev.2017.01.010 |bibcode=2017QSRv..159...63K |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref>
 
=== Africa ===
North Africa, dominated by the [[Sahara Desert]] in the present, was instead a savanna dotted with large lakes during the Early and Middle Holocene,<ref>{{Cite journal |last1=Armitage |first1=Simon J. |last2=Bristow |first2=Charlie S. |last3=Drake |first3=Nick A. |date=14 July 2015 |title=West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=112 |issue=28 |pages=8543–8548 |doi=10.1073/pnas.1417655112 |issn=0027-8424 |pmc=4507243 |pmid=26124133 |bibcode=2015PNAS..112.8543A |doi-access=free }}</ref> regionally known as the [[African humid period|African Humid Period]] (AHP).<ref>{{Cite journal |last1=Depreux |first1=Bruno |last2=Lefèvre |first2=David |last3=Berger |first3=Jean-François |last4=Segaoui |first4=Fatima |last5=Boudad |first5=Larbi |last6=El Harradji |first6=Abderrahmane |last7=Degeai |first7=Jean-Philippe |last8=Limondin-Lozouet |first8=Nicole |date=1 March 2021 |title=Alluvial records of the African Humid Period from the NW African highlands (Moulouya basin, NE Morocco) |journal=[[Quaternary Science Reviews]] |volume=255 |pages=106807 |doi=10.1016/j.quascirev.2021.106807 |bibcode=2021QSRv..25506807D |s2cid=233792780 |issn=0277-3791 |doi-access=free }}</ref> The northward migration of the [[Intertropical Convergence Zone]] (ITCZ) produced increased monsoon rainfall over North Africa.<ref>{{Cite journal |last1=Sha |first1=Lijuan |last2=Ait Brahim |first2=Yassine |last3=Wassenburg |first3=Jasper A. |last4=Yin |first4=Jianjun |last5=Peros |first5=Matthew |last6=Cruz |first6=Francisco W. |last7=Cai |first7=Yanjun |last8=Li |first8=Hanying |last9=Du |first9=Wenjing |last10=Zhang |first10=Haiwei |last11=Edwards |first11=R. Lawrence |last12=Cheng |first12=Hai |date=16 December 2019 |title=How Far North Did the African Monsoon Fringe Expand During the African Humid Period? Insights From Southwest Moroccan Speleothems |journal=[[Geophysical Research Letters]] |language=en |volume=46 |issue=23 |pages=14093–14102 |doi=10.1029/2019GL084879 |bibcode=2019GeoRL..4614093S |s2cid=213015081 |issn=0094-8276 |doi-access=free }}</ref> The lush vegetation of the Sahara brought an increase in [[pastoralism]].<ref>{{Cite journal |last1=Manning |first1=Katie |last2=Timpson |first2=Adrian |date=October 2014 |title=The demographic response to Holocene climate change in the Sahara |journal=[[Quaternary Science Reviews]] |language=en |volume=101 |pages=28–35 |doi=10.1016/j.quascirev.2014.07.003 |bibcode=2014QSRv..101...28M |s2cid=54923700 |doi-access=free }}</ref> The AHP ended around 5,500 BP, after which the Sahara began to dry and become the desert it is today.<ref>{{Cite journal |last1=Adkins |first1=Jess |last2=deMenocal |first2=Peter |last3=Eshel |first3=Gidon |date=20 October 2006 |title=The "African humid period" and the record of marine upwelling from excess 230 Th in Ocean Drilling Program Hole 658C: Th NORMALIZED FLUXES OFF NORTH AFRICA |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=21 |issue=4 |doi=10.1029/2005PA001200|doi-access=free |bibcode=2006PalOc..21.4203A }}</ref>
 
A stronger East African Monsoon during the Middle Holocene increased precipitation in East Africa and raised lake levels.<ref>{{Cite journal |last1=Forman |first1=Steven L. |last2=Wright |first2=David K. |last3=Bloszies |first3=Christopher |date=1 August 2014 |title=Variations in water level for Lake Turkana in the past 8500 years near Mt. Porr, Kenya and the transition from the African Humid Period to Holocene aridity |url=https://www.sciencedirect.com/science/article/pii/S0277379114001747 |journal=[[Quaternary Science Reviews]] |volume=97 |pages=84–101 |doi=10.1016/j.quascirev.2014.05.005 |bibcode=2014QSRv...97...84F |issn=0277-3791 |access-date=22 September 2023}}</ref> Around 800 AD, or 1,150 BP, a marine transgression occurred in southeastern Africa; in the Lake Lungué basin, this sea level highstand occurred from 740 to 910 AD, or from 1,210 to 1,040 BP, as evidenced by the lake's connection to the Indian Ocean at this time. This transgression was followed by a period of transition that lasted until 590 BP, when the region experienced significant aridification and began to be extensively used by humans for livestock herding.<ref name="LateHoloceneLakeLungué">{{Cite journal |last1=Sitoe |first1=Sandra Raúl |last2=Risberg |first2=Jan |last3=Norström |first3=Elin |last4=Westerberg |first4=Lars-Ove |date=1 November 2017 |title=Late Holocene sea-level changes and paleoclimate recorded in Lake Lungué, southern Mozambique |url=https://www.sciencedirect.com/science/article/pii/S0031018217302092 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=485 |pages=305–315 |doi=10.1016/j.palaeo.2017.06.022 |bibcode=2017PPP...485..305S |issn=0031-0182 |access-date=22 November 2023}}</ref>
 
In the [[Kalahari Desert]], Holocene climate was overall very stable and environmental change was of low amplitude. Relatively cool conditions have prevailed since 4,000 BP.<ref>{{Cite journal |last=Lancaster |first=N. |date=1 May 1989 |title=Late Quaternary paleoenvironments in the southwestern Kalahari |url=https://dx.doi.org/10.1016/0031-0182%2889%2990114-4 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=70 |issue=4 |pages=367–376 |doi=10.1016/0031-0182(89)90114-4 |bibcode=1989PPP....70..367L |issn=0031-0182 |access-date=15 September 2023}}</ref>
 
=== Middle East ===
During the Late Holocene, the coastline of the [[Levant]] receded westward, prompting a shift in human settlement patterns following this marine regression.<ref>{{Cite journal |last1=Giaime |first1=Matthieu |last2=Artzy |first2=Michal |last3=Jol |first3=Harry M. |last4=Salmon |first4=Yossi |last5=López |first5=Gloria I. |last6=Abu Hamid |first6=Amani |date=1 May 2022 |title=Refining Late-Holocene environmental changes of the Akko coastal plain and its impacts on the settlement and anchorage patterns of Tel Akko (Israel) |journal=[[Marine Geology (journal)|Marine Geology]] |volume=447 |pages=106778 |doi=10.1016/j.margeo.2022.106778 |s2cid=247636727 |issn=0025-3227|doi-access=free |bibcode=2022MGeol.44706778G }}</ref>
 
=== Central Asia ===
Central Asia experienced glacial-like temperatures until about 8,000 BP, when the Laurentide Ice Sheet collapsed.<ref>{{Cite journal |last1=Zhao |first1=Jiaju |last2=An |first2=Chen-Bang |last3=Huang |first3=Yongsong |last4=Morrill |first4=Carrie |last5=Chen |first5=Fa-Hu |date=15 December 2017 |title=Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379117300458 |journal=[[Quaternary Science Reviews]] |language=en |volume=178 |pages=14–23 |doi=10.1016/j.quascirev.2017.10.036 |bibcode=2017QSRv..178...14Z |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> In [[Xinjiang]], long-term Holocene warming increased meltwater supply during summers, creating large lakes and oases at low altitudes and inducing enhanced moisture recycling.<ref>{{Cite journal |last1=Rao |first1=Zhiguo |last2=Wu |first2=Dandan |last3=Shi |first3=Fuxi |last4=Guo |first4=Haichun |last5=Cao |first5=Jiantao |last6=Chen |first6=Fahu |date=1 April 2019 |title=Reconciling the 'westerlies' and 'monsoon' models: A new hypothesis for the Holocene moisture evolution of the Xinjiang region, NW China |url=https://www.sciencedirect.com/science/article/pii/S0012825218306780 |journal=[[Earth-Science Reviews]] |volume=191 |pages=263–272 |doi=10.1016/j.earscirev.2019.03.002 |bibcode=2019ESRv..191..263R |s2cid=134712945 |issn=0012-8252 |access-date=15 September 2023}}</ref> In the [[Tian Shan|Tien Shan]], sedimentological evidence from Swan Lake suggests the period between 8,500 and 6,900 BP was relatively warm, with steppe meadow vegetation being predominant. An increase in Cyperaceae from 6,900 to 2,600 BP indicates cooling and humidification of the Tian Shan climate that was interrupted by a warm period between 5,500 and 4,500 BP. After 2,600 BP, an alpine steppe climate prevailed across the region.<ref>{{Cite journal |last1=Huang |first1=Xiao-zhong |last2=Chen |first2=Chun-zhu |last3=Jia |first3=Wan-na |last4=An |first4=Cheng-bang |last5=Zhou |first5=Ai-feng |last6=Zhang |first6=Jia-wu |last7=Jin |first7=Ming |last8=Xia |first8=Dun-sheng |last9=Chen |first9=Fa-hu |last10=Grimm |first10=Eric C. |date=15 August 2015 |title=Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5ka BP |url=https://www.sciencedirect.com/science/article/pii/S0031018215002370 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=432 |pages=36–48 |doi=10.1016/j.palaeo.2015.04.027 |bibcode=2015PPP...432...36H |issn=0031-0182 |access-date=10 September 2023}}</ref> Sand dune evolution in the Bayanbulak Basin shows that the region was very dry from the Holocene's beginning until around 6,500 BP, when a wet interval began.<ref>{{Cite journal |last1=Long |first1=Hao |last2=Shen |first2=Ji |last3=Chen |first3=Jianhui |last4=Tsukamoto |first4=Sumiko |last5=Yang |first5=Linhai |last6=Cheng |first6=Hongyi |last7=Frechen |first7=Manfred |date=15 October 2017 |title=Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China |url=https://www.sciencedirect.com/science/article/pii/S0277379117302883 |journal=[[Quaternary Science Reviews]] |volume=174 |pages=13–32 |doi=10.1016/j.quascirev.2017.08.024 |bibcode=2017QSRv..174...13L |issn=0277-3791 |access-date=10 September 2023}}</ref> In the Tibetan Plateau, the moisture optimum spanned from around 7,500 to 5,500 BP.<ref>{{Cite journal |last1=Wünnemann |first1=Bernd |last2=Yan |first2=Dada |last3=Andersen |first3=Nils |last4=Riedel |first4=Frank |last5=Zhang |first5=Yongzhan |last6=Sun |first6=Qianli |last7=Hoelzmann |first7=Philipp |date=15 November 2018 |title=A 14 ka high-resolution δ18O lake record reveals a paradigm shift for the process-based reconstruction of hydroclimate on the northern Tibetan Plateau |url=https://www.sciencedirect.com/science/article/pii/S0277379118303548 |journal=[[Quaternary Science Reviews]] |volume=200 |pages=65–84 |doi=10.1016/j.quascirev.2018.09.040 |bibcode=2018QSRv..200...65W |s2cid=134520306 |issn=0277-3791 |access-date=10 September 2023}}</ref> The Tarim Basin records the onset of significant aridification around 3,000-2,000 BP.<ref>{{Cite journal |last1=Cai |first1=Yanjun |last2=Chiang |first2=John C.H. |last3=Breitenbach |first3=Sebastian F.M. |last4=Tan |first4=Liangcheng |last5=Cheng |first5=Hai |last6=Edwards |first6=R. Lawrence |last7=An |first7=Zhisheng |date=15 February 2017 |title=Holocene moisture changes in western China, Central Asia, inferred from stalagmites |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379116307089 |journal=[[Quaternary Science Reviews]] |language=en |volume=158 |pages=15–28 |doi=10.1016/j.quascirev.2016.12.014 |bibcode=2017QSRv..158...15C |via=Elsevier Science Direct}}</ref>
 
=== South Asia ===
Line 128:
 
=== East Asia ===
Southwestern China experienced long-term warming during the Early Holocene up until ~7,000 BP.<ref>{{Cite journal |last1=Sun |first1=Weiwei |last2=Zhang |first2=Enlou |last3=Jiang |first3=Qingfeng |last4=Ning |first4=Dongliang |last5=Luo |first5=Wenlei |date=October 2023 |title=Temperature changes during the last deglaciation and early Holocene in southwest China |url=https://linkinghub.elsevier.com/retrieve/pii/S0921818123002114 |journal=[[Global and Planetary Change]] |language=en |volume=229 |pages=104238 |doi=10.1016/j.gloplacha.2023.104238 |bibcode=2023GPC...22904238S |access-date=9 June 2024 |via=Elsevier Science Direct}}</ref> Northern China experienced an abrupt aridification event approximately 4,000 BP.<ref>{{Cite journal |last1=Guo |first1=Zhengtang |last2=Petit-Maire |first2=Nicole |last3=Kröpelin |first3=Stefan |date=November 2000 |title=Holocene non-orbital climatic events in present-day arid areas of northern Africa and China |url=https://linkinghub.elsevier.com/retrieve/pii/S0921818100000370 |journal=[[Global and Planetary Change]] |volume=26 |issue=1–3 |pages=97–103 |doi=10.1016/S0921-8181(00)00037-0 |bibcode=2000GPC....26...97G |access-date=10 September 2023}}</ref> From around 3,500 to 3,000 BP, northeastern China underwent a prolonged cooling, manifesting itself with the disruption of Bronze Age civilisations in the region.<ref>{{Cite journal |last1=Zheng |first1=Yanhong |last2=Yu |first2=Shi-Yong |last3=Fan |first3=Tongyu |last4=Oppenheimer |first4=Clive |last5=Yu |first5=Xuefeng |last6=Liu |first6=Zhao |last7=Xian |first7=Feng |last8=Liu |first8=Zhen |last9=Li |first9=Jianyong |last10=Li |first10=Jiahao |date=15 July 2021 |title=Prolonged cooling interrupted the Bronze Age cultures in northeastern China 3500 years ago |url=https://www.sciencedirect.com/science/article/pii/S0031018221002467 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=574 |pages=110461 |doi=10.1016/j.palaeo.2021.110461 |bibcode=2021PPP...57410461Z |s2cid=236229299 |issn=0031-0182 |access-date=15 October 2023}}</ref> Eastern and southern China, the monsoonal regions of China, were wetter than present in the Early and Middle Holocene.<ref name="VegetationResponseMonsoonChina">{{Cite journal |last1=Zhao |first1=Yan |last2=Yu |first2=Zicheng |last3=Chen |first3=Fahu |last4=Zhang |first4=Jiawu |last5=Yang |first5=Bao |date=1 December 2009 |title=Vegetation response to Holocene climate change in monsoon-influenced region of China |url=https://www.sciencedirect.com/science/article/pii/S0012825209001627 |journal=[[Earth-Science Reviews]] |volume=97 |issue=1 |pages=242–256 |doi=10.1016/j.earscirev.2009.10.007 |bibcode=2009ESRv...97..242Z |issn=0012-8252 |access-date=10 September 2023}}</ref> Lake Huguangyan's TOC, δ<sup>13</sup>C<sub>wax</sub>, δ<sup>13</sup>C<sub>org</sub>, δ<sup>15</sup>N values suggest the period of peak moisture lasted from 9,200 to 1,800 BP and was attributable to a strong East Asian Summer Monsoon (EASM).<ref>{{Cite journal |last1=Jia |first1=Guodong |last2=Bai |first2=Yang |last3=Yang |first3=Xiaoqiang |last4=Xie |first4=Luhua |last5=Wei |first5=Gangjian |last6=Ouyang |first6=Tingping |last7=Chu |first7=Guoqiang |last8=Liu |first8=Zhonghui |last9=Peng |first9=Ping'an |date=1 March 2015 |title=Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China |url=https://www.sciencedirect.com/science/article/pii/S0277379115000098 |journal=[[Quaternary Science Reviews]] |volume=111 |pages=51–61 |doi=10.1016/j.quascirev.2015.01.002 |issn=0277-3791 |access-date=10 September 2023}}</ref> Late Holocene cooling events in the region were dominantly influenced by solar forcing, with many individual cold snaps linked to solar minima such as the Oort, [[Wolf minimum|Wolf]], [[Spörer Minimum|Spörer]], and [[Maunder Minimum|Maunder Minima]].<ref>{{Cite journal |last=Park |first=Jungjae |date=1 March 2017 |title=Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia |url=https://www.sciencedirect.com/science/article/pii/S0031018217300044 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=469 |pages=74–83 |doi=10.1016/j.palaeo.2017.01.005 |bibcode=2017PPP...469...74P |issn=0031-0182 |access-date=15 September 2023}}</ref> A notable cooling event in southeastern China occurred 3,200 BP.<ref>{{Cite journal |last1=Wang |first1=Mengyuan |last2=Zheng |first2=Zhuo |last3=Man |first3=Meiling |last4=Hu |first4=Jianfang |last5=Gao |first5=Quanzhou |date=5 July 2017 |title=Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China |url=https://linkinghub.elsevier.com/retrieve/pii/S0009254117303017 |journal=[[Chemical Geology]] |language=en |volume=463 |pages=94–102 |doi=10.1016/j.chemgeo.2017.05.014 |bibcode=2017ChGeo.463...94W |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> Strengthening of the winter monsoon occurred around 5,500, 4,000, and 2,500 BP.<ref>{{Cite journal |last1=Li |first1=Zhen |last2=Pospelova |first2=Vera |last3=Liu |first3=Lejun |last4=Zhou |first4=Rui |last5=Song |first5=Bing |date=1 October 2017 |title=High-resolution palynological record of Holocene climatic and oceanographic changes in the northern South China Sea |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018217302626 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=483 |pages=94–124 |doi=10.1016/j.palaeo.2017.03.009 |bibcode=2017PPP...483...94L |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> Monsoonal regions of China became more arid in the Late Holocene.<ref name="VegetationResponseMonsoonChina" />
 
=== Southeast Asia ===
Line 139:
 
=== South America ===
During the Early Holocene, relative sea level rose in the [[Bahia]] region, causing a landward expansion of mangroves. During the Late Holocene, the mangroves declined as sea level dropped and freshwater supply increased.<ref>{{Cite journal |last1=Fontes |first1=Neuza Araújo |last2=Moraes |first2=Caio A. |last3=Cohen |first3=Marcelo C L |last4=Alves |first4=Igor Charles C. |last5=França |first5=Marlon Carlos |last6=Pessenda |first6=Luiz C R |last7=Francisquini |first7=Mariah Izar |last8=Bendassolli |first8=José Albertino |last9=Macario |first9=Kita |last10=Mayle |first10=Francis |date=February 2017 |title=The Impacts of the Middle Holocene High Sea-Level Stand and Climatic Changes on Mangroves of the Jucuruçu River, Southern Bahia – Northeastern Brazil |journal=[[Radiocarbon (journal)|Radiocarbon]] |language=en |volume=59 |issue=1 |pages=215–230 |doi=10.1017/RDC.2017.6 |bibcode=2017Radcb..59..215F |s2cid=133047191 |issn=0033-8222 |doi-access=free }}</ref> In the [[Santa Catarina (state)|Santa Catarina]] region, the maximum sea level highstand was around 2.1 metres above present and occurred about 5,800 to 5,000 BP.<ref>{{Cite journal |last1=Angulo |first1=Rodolfo J. |last2=Lessa |first2=Guilherme C. |last3=Souza |first3=Maria Cristina de |date=1 March 2006 |title=A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline |url=https://www.sciencedirect.com/science/article/pii/S0277379105000843 |journal=[[Quaternary Science Reviews]] |volume=25 |issue=5 |pages=486–506 |doi=10.1016/j.quascirev.2005.03.008 |bibcode=2006QSRv...25..486A |issn=0277-3791 |access-date=17 September 2023}}</ref> Sea levels at [[Rocas Atoll]] were likewise higher than present for much of the Late Holocene.<ref>{{Cite journal |last1=Angulo |first1=Rodolfo José |last2=de Souza |first2=Maria Cristina |last3=da Camara Rosa |first3=Maria Luiza Correa |last4=Caron |first4=Felipe |last5=Barboza |first5=Eduardo G. |last6=Costa |first6=Mirella Borba Santos Ferreira |last7=Macedo |first7=Eduardo |last8=Vital |first8=Helenice |last9=Gomes |first9=Moab Praxedes |last10=Garcia |first10=Khalil Bow Ltaif |date=1 May 2022 |title=Paleo-sea levels, Late-Holocene evolution, and a new interpretation of the boulders at the Rocas Atoll, southwestern Equatorial Atlantic |url=https://www.sciencedirect.com/science/article/pii/S0025322722000512 |journal=[[Marine Geology (journal)|Marine Geology]] |volume=447 |pages=106780 |doi=10.1016/j.margeo.2022.106780 |bibcode=2022MGeol.44706780A |s2cid=247822701 |issn=0025-3227 |access-date=17 September 2023}}</ref>
 
=== Australia ===
The Northwest Australian Summer Monsoon was in a strong phase from 8,500 to 6,400 BP, from 5,000 to 4,000 BP (possibly until 3,000 BP), and from 1,300 to 900 BP, with weak phases in between and the current weak phase beginning around 900 BP after the end of the last strong phase.<ref>{{Cite journal |last1=Eroglu |first1=Deniz |last2=McRobie |first2=Fiona H. |last3=Ozken |first3=Ibrahim |last4=Stemler |first4=Thomas |last5=Wyrwoll |first5=Karl-Heinz |last6=Breitenbach |first6=Sebastian F. M. |last7=Marwan |first7=Norbert |last8=Kurths |first8=Jürgen |date=26 September 2016 |title=See–saw relationship of the Holocene East Asian–Australian summer monsoon |journal=[[Nature Communications]] |language=en |volume=7 |issue=1 |pages=12929 |doi=10.1038/ncomms12929 |issn=2041-1723 |doi-access=free |pmid=27666662 |pmc=5052686 |bibcode=2016NatCo...712929E }}</ref>
 
=== New Zealand ===
Line 151:
 
==Ecological developments==
Animal and plant life have not evolved much during the relatively short Holocene, but there have been major shifts in the richness and abundance of plants and animals. A [[Pleistocene megafauna|number of large animals]] including [[mammoth]]s and [[mastodon]]s, [[saber-toothed cat]]s like ''[[Smilodon]]'' and ''[[Homotherium]]'', and [[giant sloth]]s went extinct in the late Pleistocene and early Holocene. These extinctions can be mostly attributed to people.<ref>{{Cite journal |last1=Lemoine |first1=Rhys Taylor |last2=Buitenwerf |first2=Robert |last3=Svenning |first3=Jens-Christian |date=2023-12-01 |title=Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change |journal=Anthropocene |volume=44 |pages=100403 |doi=10.1016/j.ancene.2023.100403 |issn=2213-3054|doi-access=free |bibcode=2023Anthr..4400403L }}</ref> In America, it coincided with the arrival of the Clovis people; this culture was known for "[[Clovis point]]s" which were fashioned on spears for hunting animals. Shrubs, herbs, and mosses had also changed in relative abundance from the Pleistocene to Holocene, identified by permafrost core samples.<ref>{{Cite journal |last1=Willerslev |first1=Eske |last2=Hansen |first2=Anders J. |last3=Binladen |first3=Jonas |last4=Brand |first4=Tina B. |last5=Gilbert |first5=M. Thomas P. |last6=Shapiro |first6=Beth |last7=Bunce |first7=Michael |last8=Wiuf |first8=Carsten |last9=Gilichinsky |first9=David A. |last10=Cooper |first10=Alan |date=2 May 2003 |title=Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments |journal=[[Science (journal)|Science]] |language=en |volume=300 |issue=5620 |pages=791–795 |bibcode=2003Sci...300..791W |doi=10.1126/science.1084114 |issn=0036-8075 |pmid=12702808 |s2cid=1222227 |doi-access=free }}</ref>
 
Throughout the world, ecosystems in cooler climates that were previously regional have been isolated in higher altitude ecological "islands".<ref>{{Cite book |url=https://books.google.com/books?id=TXAnHwHd0XgC&pg=PA2 |title=One Planet, Many People: Atlas of Our Changing Environment |last=Singh |first=Ashbindu |publisher=[[United Nations Environment Programme]] |year=2005 |page=4 |isbn=978-9280725711 |access-date=2017-06-28 |archive-date=2020-01-02 |archive-url=https://web.archive.org/web/20200102141345/https://books.google.com/books?id=TXAnHwHd0XgC&pg=PA2 |url-status=live }}</ref>
Line 163:
{{legend|#800080|nomadic pastoralists}}
{{legend|#00FF00|simple farming societies}}
{{legend|#FF8040|complex farming societies ([[Bronze Age]] ([[Old World]], [[Olmecs]], [[Andean civilizations|Andes]])}}
{{legend|#8080FF|state societies ([[Early Iron Age|Fertile Crescent]], [[Ancient Egypt|Egypt]], [[Zhou China|China]])}}]]
{{Human history|Holocene}}
The beginning of the Holocene corresponds with the beginning of the [[Mesolithic]] age in most of [[Europe]]. In regions such as the [[Middle East]] and [[Anatolia]], the term [[Epipaleolithic]] is preferred in place of Mesolithic, as they refer to approximately the same time period. Cultures in this period include [[Hamburg culture|Hamburgian]], [[Federmesser culture|Federmesser]], and the [[Natufian culture]], during which [[List of oldest continuously inhabited cities|the oldest inhabited places still existing on Earth]] were first settled, such as [[Tell es-Sultan]] (Jericho) in the [[Middle East]].<ref>{{Cite EB1911|wstitle=Jericho<!-- |first=Kathleen Mary|last=Kenyon -author name NOT given in EB. Kathleen Kenyon was 5 in 1911!-->}}</ref> There is also evolving archeological evidence of [[origin of religion|proto-religion]] at locations such as [[Göbekli Tepe]], as long ago as the [[9th millennium BC]].<ref>{{cite journal |url=http://www.smithsonianmag.com/history-archaeology/30706129.html |title=Göbekli Tepe: The World's First Temple? |last=Curry |first=Andrew |date=November 2008 |journal=[[Smithsonian Magazine]] |access-date=March 14, 2009 |archive-date=March 17, 2009 |archive-url=https://web.archive.org/web/20090317075937/http://www.smithsonianmag.com/history-archaeology/30706129.html |url-status=live }}</ref>
 
The preceding period of the Late Pleistocene had already brought advancements such as the [[bow and arrow]], creating more efficient forms of hunting and replacing [[Spear-thrower|spear throwers]]. In the Holocene, however, the [[domestication]] of plants and animals allowed humans to develop villages and towns in centralized locations. Archaeological data shows that between 10,000 toand 7,000 [[Before Present|BP]] rapid domestication of plants and animals took place in tropical and subtropical parts of [[Asia]], [[Africa]], and [[Central America]].<ref name="Gupta-2004">{{Cite journal |last=Gupta |first=Anil K. |date=10 July 2004 |title=Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration |url=https://www.jstor.org/stable/24107979 |journal=[[Current Science]] |volume=87 |issue=1 |pages=54–59 |issn=0011-3891 |jstor=24107979 |access-date=11 September 2023}}</ref> The development of farming allowed humans to transition away from [[hunter-gatherer]] nomadic cultures, which did not establish permanent settlements, to a more sustainable [[Sedentism|sedentary lifestyle]]. This form of lifestyle change allowed humans to develop towns and villages in centralized locations, which gave rise to the world known today. It is believed that the domestication of plants and animals began in the early part of the Holocene in the &nbsp;tropical areas of the planet.<ref name="Gupta-2004" /> Because these areas had warm, moist temperatures, the climate was perfect for effective farming. Culture development and human population change, specifically in South America, has also been linked to spikes in hydroclimate resulting in climate variability in the mid-Holocene (8.2 - 4.2 k cal BP).<ref>{{Cite journal |last1=Riris |first1=Philip |last2=Arroyo-Kalin |first2=Manuel |date=9 May 2019 |title=Widespread population decline in South America correlates with mid-Holocene climate change |url=https://www.researchgate.net/publication/332968264 |journal=[[Scientific Reports]] |language=en |volume=9 |issue=1 |pages=6850 |bibcode=2019NatSR...9.6850R |doi=10.1038/s41598-019-43086-w |issn=2045-2322 |pmc=6509208 |pmid=31073131 |access-date=15 October 2023}}</ref> Climate change on seasonality and available moisture also allowed for favorable agricultural conditions which promoted human development for Maya and Tiwanaku regions.<ref>{{Citation |last1=Brenner |first1=Mark |title=Chapter 6 - Abrupt Climate Change and Pre-Columbian Cultural Collapse |date=2001-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780124726703500094 |work=Interhemispheric Climate Linkages |pages=87–103 |editor-last=Markgraf |editor-first=Vera |place=San Diego |publisher=Academic Press |language=en |doi=10.1016/b978-012472670-3/50009-4 |isbn=978-0-12-472670-3 |access-date=2022-04-23 |last2=Hodell |first2=David A. |last3=Rosenmeier |first3=Michael F. |last4=Curtis |first4=Jason H. |last5=Binford |first5=Michael W. |last6=Abbott |first6=Mark B.}}</ref> In the [[Korea|Korean Peninsula]], climatic changes fostered a population boom during the [[Chulmun|Middle Chulmun]] period from 5,500 to 5,000 BP, but contributed to a subsequent bust during the Late and Final Chulmun periods, from 5,000 to 4,000 BP and from 4,000 to 3,500 BP respectively.<ref>{{Cite journal |last1=Kim |first1=Habeom |last2=Lee |first2=Gyoung-Ah |last3=Crema |first3=Enrico R. |date=10 December 2021 |title=Bayesian analyses question the role of climate in Chulmun demography |journal=[[Scientific Reports]] |language=en |volume=11 |issue=1 |page=23797 |doi=10.1038/s41598-021-03180-4 |issn=2045-2322 |pmc=8664936 |pmid=34893660 |bibcode=2021NatSR..1123797K }}</ref>
 
==Extinction event==
{{Main|Holocene extinction}}
The [[Holocene extinction]], otherwise referred to as the ''sixth mass extinction'' or ''Anthropocene extinction'',<ref>{{cite journal|last1=Wagler|first1=Ron|year=2011|title=The Anthropocene Mass Extinction: An Emerging Curriculum Theme for Science Educators|url=https://online.ucpress.edu/abt/article/73/2/78/18301/The-Anthropocene-Mass-Extinction-An-Emerging|journal=The American Biology Teacher|volume=73|issue=2|pages= 78–83|doi=10.1525/abt.2011.73.2.5|s2cid=86352610|access-date=}}</ref><ref>{{cite news|last=Walsh|first=Alistair|date=January 11, 2022|title=What to expect from the world's sixth mass extinction|url=https://www.dw.com/en/what-to-expect-from-the-worlds-sixth-mass-extinction/a-60360245|publisher=[[Deutsche Welle]]|access-date=February 5, 2022}}</ref> is an ongoing [[extinction event]] of [[species]] during the present Holocene [[epoch (geology)|epoch]] (with the more recent time sometimes called Anthropocene) as a result of [[Human impact on the environment|human activity]].<ref name="WorldScientists">{{cite journal|vauthors=Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF|title=World Scientists' Warning to Humanity: A Second Notice|journal=[[BioScience]]|volume=67|issue=12|pages=1026–1028|date=13 November 2017|doi=10.1093/biosci/bix125|url=http://scientistswarning.forestry.oregonstate.edu/sites/sw/files/Warning_article_with_supp_11-13-17.pdf|quote=Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms could be annihilated or at least committed to extinction by the end of this century.|access-date=4 October 2022|archive-date=15 December 2019|archive-url=https://web.archive.org/web/20191215010626/https://scientistswarning.forestry.oregonstate.edu/sites/sw/files/Warning_article_with_supp_11-13-17.pdf|url-status=dead}}</ref><ref name=Ceballos-Ehrlich-2018-06>{{cite journal|last1=Ceballos|first1=Gerardo|last2=Ehrlich|first2=Paul R.|author-link2=Paul R. Ehrlich|title=The misunderstood sixth mass extinction|journal=[[Science (journal)|Science]]|date=8 June 2018|volume=360|issue=6393|pages=1080–1081|doi=10.1126/science.aau0191|pmid=29880679|oclc=7673137938|bibcode=2018Sci...360.1080C|s2cid=46984172|url=https://www.science.org/doi/10.1126/science.aau0191}}</ref><ref name=dirzo>{{cite journal|last= Dirzo|first= Rodolfo|author-link1=Rodolfo Dirzo|author2= Young, Hillary S.|author3= Galetti, Mauro|author4= Ceballos, Gerardo|author5= Isaac, Nick J. B.|author6= Collen, Ben|title= Defaunation in the Anthropocene|journal=Science|year= 2014|doi= 10.1126/science.1251817|pmid= 25061202|volume= 345|issue=6195|pages= 401–406|url=http://www.uv.mx/personal/tcarmona/files/2010/08/Science-2014-Dirzo-401-6-2.pdf|quote=In the past 500 years, humans have triggered a wave of extinction, threat, and local population declines that may be comparable in both rate and magnitude with the five previous mass extinctions of Earth’s history.|bibcode= 2014Sci...345..401D|s2cid= 206555761}}</ref><ref name="Cowie">{{cite journal |last1= Cowie |first1=Robert H. |last2=Bouchet |first2=Philippe |last3=Fontaine |first3=Benoît |year=2022|title=The Sixth Mass Extinction: fact, fiction or speculation? |journal=Biological Reviews |volume= 97|issue= 2|pages= 640–663|doi=10.1111/brv.12816|pmid=35014169 |pmc=9786292 |s2cid=245889833 }}</ref> The included [[extinctions]] span numerous families of [[fungi]],<ref>{{cite news|last=Guy|first=Jack|date=September 30, 2020|title=Around 40% of the world's plant species are threatened with extinction|url=https://www.cnn.com/2020/09/30/world/kew-gardens-plants-report-scli-intl-gbr-scn/index.html|publisher=CNN|access-date=September 1, 2021}}</ref> [[plant]]s,<ref>{{cite news|last= Hollingsworth|first= Julia|date=June 11, 2019|title=Almost 600 plant species have become extinct in the last 250 years|url=https://www.cnn.com/2019/06/11/asia/plant-extinctions-science-intl-hnk/|publisher=CNN|access-date=January 14, 2020|quote="The research -- published Monday in Nature, Ecology & Evolution journal -- found that 571 plant species have disappeared from the wild worldwide, and that plant extinction is occurring up to 500 times faster than the rate it would without human intervention."}}</ref><ref>{{cite news|last=Watts|first=Jonathan|date=August 31, 2021|title=Up to half of world's wild tree species could be at risk of extinction|url=https://www.theguardian.com/environment/2021/sep/01/up-to-half-worlds-wild-tree-species-could-risk-extinction|work=The Guardian|access-date=September 1, 2021}}</ref> and [[animal]]s, including [[mammal]]s, [[bird]]s, [[reptile]]s, [[amphibian]]s, [[fish]] and [[invertebrates]]. With widespread degradation of [[Biodiversity hotspot|highly biodiverse]] habitats such as [[coral reef]]s and [[rainforest]]s, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, or no one has yet discovered their extinction. The current rate of extinction of species is estimated at 100 to 1,000 times higher than [[Background extinction rate|natural background extinction rates]].<ref name=Ceballos-Ehrlich-2018-06/><ref name="Li-2012"/><ref>{{Cite journal|last1=De Vos|first1=Jurriaan M.|last2=Joppa|first2=Lucas N.|last3=Gittleman|first3=John L.|last4=Stephens|first4=Patrick R.|last5=Pimm|first5=Stuart L.|date=2014-08-26|title=Estimating the normal background rate of species extinction|journal=Conservation Biology|volume=29|issue=2|pages=452–462|doi=10.1111/cobi.12380|pmid=25159086|bibcode=2015ConBi..29..452D |s2cid=19121609 |issn=0888-8892|language=es|url=https://www.zora.uzh.ch/id/eprint/98443/1/Conservation_Biology_2014_early-view.pdf}}</ref><ref name="PimmJenkins">{{cite journal |last1=Pimm |first1=S. L. |last2=Jenkins |first2=C. N. |last3=Abell |first3=R. |last4=Brooks |first4=T. M. |last5=Gittleman |first5=J. L. |last6=Joppa |first6=L. N. |last7=Raven |first7=P. H. |last8=Roberts |first8=C. M. |last9=Sexton |first9=J. O. |date=30 May 2014 |title=The biodiversity of species and their rates of extinction, distribution, and protection |url=http://static.squarespace.com/static/51b078a6e4b0e8d244dd9620/t/538797c3e4b07a163543ea0f/1401395139381/Pimm+et+al.+2014.pdf |journal=[[Science (journal)|Science]] |volume=344 |issue=6187 |pages=1246752 |doi=10.1126/science.1246752 |pmid=24876501 |s2cid=206552746 |quote=The overarching driver of species extinction is human population growth and increasing per capita consumption.}}</ref>
 
== Gallery ==
Line 196:
* [[Quaternary extinction event]]
* [[Ostrich eggshell beads]]{{div col end}}
 
== Notes ==
{{Reflist
| group = lower-alpha
}}
 
==References==