Random measure

This is an old revision of this page, as edited by Magic links bot (talk | contribs) at 22:21, 26 June 2017 (Replace magic links with templates per local RfC and MediaWiki RfC). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In probability theory, a random measure is a measure-valued random element.[1][2] Let X be a complete separable metric space and the σ-algebra of its Borel sets. A Borel measure μ on X is boundedly finite if μ(A) < ∞ for every bounded Borel set A. Let be the space of all boundedly finite measures on . Let (Ω, ℱ, P) be a probability space, then a random measure maps from this probability space to the measurable space (, ).[3]A measure generally might be decomposed as:

Here is a diffuse measure without atoms, while is a purely atomic measure.

Random counting measure

A random measure of the form:

 

where   is the Dirac measure, and   are random variables, is called a point process[1][2] oder random counting measure. This random measure describes the set of N particles, whose locations are given by the (generally vector valued) random variables  . The diffuse component   is null for a counting measure.

In the formal notation of above a random counting measure is a map from a probability space to the measurable space ( ,  ) a measurable space. Here   is the space of all boundedly finite integer-valued measures   (called counting measures).

The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters.[4]

See also

References

  1. ^ a b Kallenberg, O., Random Measures, 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN 0-12-394960-2 MR854102. An authoritative but rather difficult reference.
  2. ^ a b Jan Grandell, Point processes and random measures, Advances in Applied Probability 9 (1977) 502-526. MR0478331 JSTOR A nice and clear introduction.
  3. ^ Daley, D. J.; Vere-Jones, D. (2003). "An Introduction to the Theory of Point Processes". Probability and its Applications. doi:10.1007/b97277. ISBN 0-387-95541-0. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Crisan, D., Particle Filters: A Theoretical Perspective, in Sequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN 0-387-95146-6