Jump to content

FAM20C: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Ref punctuation fixes
Citation bot (talk | contribs)
Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
 
(10 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{PBB|geneid=56975}}
{{Infobox_gene}}


'''Family with sequence similarity 20, member C''' also known as '''FAM20C''' or '''DMP4''' is a [[protein]] which in humans is encoded by the ''FAM20C'' [[gene]].<ref name="pmid15676076">{{cite journal | author = Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, Du Y, Williams SC | title = FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells | journal = BMC Genomics | volume = 6 | pages = 11 | year = 2005 | pmid = 15676076 | pmc = 548683 | doi = 10.1186/1471-2164-6-11 | url = | issn = }}</ref><ref name="pmid17369251">{{cite journal | author = Hao J, Narayanan K, Muni T, Ramachandran A, George A | title = Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation | journal = J. Biol. Chem. | volume = 282 | issue = 21 | pages = 15357–65 | date = May 2007 | pmid = 17369251 | doi = 10.1074/jbc.M701547200 | url = | issn = }}</ref><ref name="Simpson_2007">{{cite journal | author = Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, Zackai EH, Al-Gazali LI, Hulskamp G, Kingston HM, Prescott TE, Ion A, Patton MA, Murday V, George A, Crosby AH | title = Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development | journal = Am. J. Hum. Genet. | volume = 81 | issue = 5 | pages = 906–12 | date = November 2007 | pmid = 17924334 | pmc = 2265657 | doi = 10.1086/522240 | url = | issn = }}</ref> Fam20C, a Golgi localized protein kinase, is a serine kinase that phosphorylates both casein and other highly acidic proteins and members of the small integrin-binding ligand, the N-linked glycoproteins (SIBLING) family at the target motif SerXGlu.<ref name="Tagliabracci_2012">{{cite journal | author = Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE | title = Secreted kinase phosphorylates extracellular proteins that regulate biomineralization | journal = Science | volume = 336 | issue = 6085 | pages = 1150–3 | year = 2012 | pmid = 22582013 | pmc = 3754843 | doi = 10.1126/science.1217817 }}</ref>
'''Family with sequence similarity 20, member C''' also known as '''FAM20C''' or '''DMP4''' is a [[protein]] which in humans is encoded by the ''FAM20C'' [[gene]].<ref name="pmid15676076">{{cite journal | vauthors = Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, Du Y, Williams SC | title = FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells | journal = BMC Genomics | volume = 6 | pages = 11 | year = 2005 | pmid = 15676076 | pmc = 548683 | doi = 10.1186/1471-2164-6-11 | doi-access = free }}</ref><ref name="pmid17369251">{{cite journal | vauthors = Hao J, Narayanan K, Muni T, Ramachandran A, George A | title = Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation | journal = The Journal of Biological Chemistry | volume = 282 | issue = 21 | pages = 15357–65 | date = May 2007 | pmid = 17369251 | doi = 10.1074/jbc.M701547200 | doi-access = free }}</ref><ref name="Simpson_2007">{{cite journal | vauthors = Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, Zackai EH, Al-Gazali LI, Hulskamp G, Kingston HM, Prescott TE, Ion A, Patton MA, Murday V, George A, Crosby AH | title = Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development | journal = American Journal of Human Genetics | volume = 81 | issue = 5 | pages = 906–12 | date = Nov 2007 | pmid = 17924334 | pmc = 2265657 | doi = 10.1086/522240 }}</ref> Fam20C, a Golgi localized protein kinase, is a serine kinase that phosphorylates both casein and other highly acidic proteins and members of the small integrin-binding ligand, the N-linked glycoproteins (SIBLING) family at the target motif SerXGlu.<ref name="Tagliabracci_2012">{{cite journal | vauthors = Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE | title = Secreted kinase phosphorylates extracellular proteins that regulate biomineralization | journal = Science | volume = 336 | issue = 6085 | pages = 1150–3 | date = Jun 2012 | pmid = 22582013 | pmc = 3754843 | doi = 10.1126/science.1217817 | bibcode = 2012Sci...336.1150T }}</ref>


== Function ==
== Function ==


Dmp4 causes differentiation of [[mesenchymal stem cell]]s into functional [[odontoblast]] cells and is likely to function as a regulator of [[dentin]] mineralization.<ref name="pmid17369251"/><ref name="X Wang_2010">{{cite journal | author = Wang X, Hao J, Xie Y, Sun Y, Hernandez B, Yamoah AK, Prasad M, Zhu Q, Feng JQ, Qin C.| title = Expression of FAM20C in the osteogenesis and odontogenesis of mouse.| journal = J Histochem Cytochem| volume = 58 | issue = 11 | pages = 957-67| year = 2010 | pmid = 20644212 | pmc = 2958138 | doi = 10.1369/jhc.2010.956565}}</ref> FAM20C is a secretory kinase, responsible for the phosphorylation of all secreted proteins, from milk to bone proteins.<ref name="Tagliabracci_2012"/> Phosphorylation by Fam20C in the secretory pathway is essential for proper biomineralization of bone. The substrate specificity of FAM20C indicates, however, that it is not likely to account for the tyrosine phosphorylation of the secreted protein. The characterization of FAM20C as an active serine kinase in the Golgi apparatus provides a clear precedent that ATP dependent protein phosphorylation can take place in the secretory apparatus.<ref name="Tagliabracci_2012"/><ref name="Yalak_Vogel_2012">{{cite journal | author = Yalak G, Vogel V | title = Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important | journal = Sci Signal | volume = 5 | issue = 255 | pages = re7 |date=December 2012 | pmid = 23250399 | doi = 10.1126/scisignal.2003273 | url = }}</ref><ref name="Tagliabracci_2013">{{cite journal | author = Tagliabracci VS, Pinna LA, Dixon JE | title = Secreted protein kinases | journal = Trends Biochem. Sci. | volume = 38 | issue = 3 | pages = 121–30 | year = 2013 | pmid = 23276407 | pmc = 3582740 | doi = 10.1016/j.tibs.2012.11.008 }}</ref> Fam20C knockout mice develop severe hypophosphatemic rickets due to an increased renal phosphate wasting that is likely attributed to the remarkable elevation of serum FGF23,<ref name="X Wang_2012a">{{cite journal | author = Wang X, Wang S,Li C, Gao T, Liu Y, Rangiani A, Sun Y, Hao J, George A, Lu Y, Groppe J, Yuan B, Feng J, Qin CL| title = Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice| journal = PLoS Genet | volume = 8 | issue = 5 | pages = e1002708| year = 2012 | pmid = 22615579 | pmc = 3355082 | doi =10.1371/journal.pgen.1002708}}</ref> while their dentin and enamel defects are largely independent from the hypophosphatemia and appear to be a local effects of phosphorylation failure in the SCPP proteins<ref name="X Wang_2012b">{{cite journal | author = Wang X, Wang S, Lu Y, Gibson MP, Liu Y, Yuan B, Feng JQ, Qin C. | title = FAM20C plays an essential role in the formation of murine teeth.| journal = J Biol Chem| volume = 8 | issue = 5 | pages = e1002708| year = 2012 | pmid = 22615579 | pmc = 3355082 | doi = 10.1371/journal.pgen.1002708}}</ref><ref name="X Wang_2013">{{cite journal | author = Wang X, Jung J, Liu Y, Yuan B, Lu Y, Feng JQ, Qin C. | title = The specific role of FAM20C in amelogenesis.| journal = J Dent Res| volume = 92 | issue = 11 | pages = 995-9| year = 2013 | pmid = 24026952 | pmc = 3797537 | doi = 10.1177/0022034513504588}}</ref><ref name="X Wang_2015">{{cite journal | author = Wang X, Wang J, Liu Y, Yuan B, Ruest LB, Feng JQ, Qin C.| title = The specific role of FAM20C in dentinogenesis.| journal = J Dent Res| volume = 94 | issue = 2 | pages = 330-6| year = 2015 | pmid = 25515778 | pmc = 4300304 | doi = 10.1177/0022034514563334}}</ref>
Dmp4 causes differentiation of [[mesenchymal stem cell]]s into functional [[odontoblast]] cells and is likely to function as a regulator of [[dentin]] mineralization.<ref name="pmid17369251"/><ref name="X Wang_2010">{{cite journal | vauthors = Wang X, Hao J, Xie Y, Sun Y, Hernandez B, Yamoah AK, Prasad M, Zhu Q, Feng JQ, Qin C | title = Expression of FAM20C in the osteogenesis and odontogenesis of mouse | journal = The Journal of Histochemistry and Cytochemistry | volume = 58 | issue = 11 | pages = 957–67 | date = Nov 2010 | pmid = 20644212 | pmc = 2958138 | doi = 10.1369/jhc.2010.956565 }}</ref> FAM20C is a secretory kinase, responsible for the phosphorylation of all secreted proteins, from milk to bone proteins.<ref name="Tagliabracci_2012"/> Phosphorylation by Fam20C in the secretory pathway is essential for proper biomineralization of bone. The substrate specificity of FAM20C indicates, however, that it is not likely to account for the tyrosine phosphorylation of the secreted protein. The characterization of FAM20C as an active serine kinase in the Golgi apparatus provides a clear precedent that ATP dependent protein phosphorylation can take place in the secretory apparatus.<ref name="Tagliabracci_2012"/><ref name="Yalak_Vogel_2012">{{cite journal | vauthors = Yalak G, Vogel V | title = Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important | journal = Science Signaling | volume = 5 | issue = 255 | pages = re7 | date = Dec 2012 | pmid = 23250399 | doi = 10.1126/scisignal.2003273 | s2cid = 205449 }}</ref><ref name="Tagliabracci_2013">{{cite journal | vauthors = Tagliabracci VS, Pinna LA, Dixon JE | title = Secreted protein kinases | journal = Trends in Biochemical Sciences | volume = 38 | issue = 3 | pages = 121–30 | date = Mar 2013 | pmid = 23276407 | pmc = 3582740 | doi = 10.1016/j.tibs.2012.11.008 }}</ref> Fam20C knockout mice develop severe hypophosphatemic rickets due to an increased renal phosphate wasting that is likely attributed to the remarkable elevation of serum fibroblast growth factor 23 (FGF23),<ref name="X Wang_2012b">{{cite journal | vauthors = Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, Sun Y, Hao J, George A, Lu Y, Groppe J, Yuan B, Feng JQ, Qin C | title = Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice | journal = PLOS Genetics | volume = 8 | issue = 5 | pages = e1002708 | year = 2012 | pmid = 22615579 | pmc = 3355082 | doi = 10.1371/journal.pgen.1002708 | doi-access = free }}</ref> while their dentin and enamel defects are largely independent from the hypophosphatemia and appear to be a local effects of phosphorylation failure in the secretory calcium-binding phosphoproteins (SCPPs)<ref name="X Wang_2012b"/><ref name="X Wang_2013">{{cite journal | vauthors = Wang X, Jung J, Liu Y, Yuan B, Lu Y, Feng JQ, Qin C | title = The specific role of FAM20C in amelogenesis | journal = Journal of Dental Research | volume = 92 | issue = 11 | pages = 995–9 | date = Nov 2013 | pmid = 24026952 | pmc = 3797537 | doi = 10.1177/0022034513504588 }}</ref><ref name="X Wang_2015">{{cite journal | vauthors = Wang X, Wang J, Liu Y, Yuan B, Ruest LB, Feng JQ, Qin C | title = The specific role of FAM20C in dentinogenesis | journal = Journal of Dental Research | volume = 94 | issue = 2 | pages = 330–6 | date = Feb 2015 | pmid = 25515778 | pmc = 4300304 | doi = 10.1177/0022034514563334 }}</ref>


== Clinical significance ==
== Clinical significance ==


Mutations in the FAM20C gene are associated with [[Raine syndrome]].<ref name="Simpson_2007"/>
Mutations in the FAM20C gene are associated with [[Raine syndrome]].<ref name="Simpson_2007"/>
{{-}}
{{Clear}}

== References ==
== References ==
{{Reflist|35em}}
{{Reflist|35em}}


==Further reading==
== Further reading ==
{{refbegin|35em}}
{{refbegin|35em}}
* {{cite journal | author = Hao J, Narayanan K, Muni T, Ramachandran A, George A | title = Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation. | journal = J. Biol. Chem. | volume = 282 | issue = 21 | pages = 15357–65 | year = 2007 | pmid = 17369251 | doi = 10.1074/jbc.M701547200 }}
* {{cite journal | vauthors = Hao J, Narayanan K, Muni T, Ramachandran A, George A | title = Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation | journal = The Journal of Biological Chemistry | volume = 282 | issue = 21 | pages = 15357–65 | date = May 2007 | pmid = 17369251 | doi = 10.1074/jbc.M701547200 | doi-access = free }}
* {{cite journal | author = Simpson MA, Scheuerle A, Hurst J, Patton MA, Stewart H, Crosby AH | title = Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. | journal = Clin. Genet. | volume = 75 | issue = 3 | pages = 271–6 | year = 2009 | pmid = 19250384 | doi = 10.1111/j.1399-0004.2008.01118.x }}
* {{cite journal | vauthors = Simpson MA, Scheuerle A, Hurst J, Patton MA, Stewart H, Crosby AH | title = Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia | journal = Clinical Genetics | volume = 75 | issue = 3 | pages = 271–6 | date = Mar 2009 | pmid = 19250384 | doi = 10.1111/j.1399-0004.2008.01118.x | s2cid = 22696170 }}
{{refend}}
{{refend}}


{{Fibrous proteins}}
{{Fibrous proteins}}


{{gene-7-stub}}
{{gene-7-stub}}

Latest revision as of 21:09, 2 December 2023

FAM20C
Identifiers
AliasesFAM20C, DMP-4, DMP4, GEF-CK, RNS, family with sequence similarity 20 member C, G-CK, golgi associated secretory pathway kinase, FAM20C golgi associated secretory pathway kinase
External IDsOMIM: 611061; MGI: 2136853; HomoloGene: 56879; GeneCards: FAM20C; OMA:FAM20C - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_020223

NM_030565
NM_001359593

RefSeq (protein)

NP_064608

NP_085042
NP_001346522

Location (UCSC)Chr 7: 0.19 – 0.26 MbChr 5: 138.74 – 138.8 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Family with sequence similarity 20, member C also known as FAM20C or DMP4 is a protein which in humans is encoded by the FAM20C gene.[5][6][7] Fam20C, a Golgi localized protein kinase, is a serine kinase that phosphorylates both casein and other highly acidic proteins and members of the small integrin-binding ligand, the N-linked glycoproteins (SIBLING) family at the target motif SerXGlu.[8]

Function

[edit]

Dmp4 causes differentiation of mesenchymal stem cells into functional odontoblast cells and is likely to function as a regulator of dentin mineralization.[6][9] FAM20C is a secretory kinase, responsible for the phosphorylation of all secreted proteins, from milk to bone proteins.[8] Phosphorylation by Fam20C in the secretory pathway is essential for proper biomineralization of bone. The substrate specificity of FAM20C indicates, however, that it is not likely to account for the tyrosine phosphorylation of the secreted protein. The characterization of FAM20C as an active serine kinase in the Golgi apparatus provides a clear precedent that ATP dependent protein phosphorylation can take place in the secretory apparatus.[8][10][11] Fam20C knockout mice develop severe hypophosphatemic rickets due to an increased renal phosphate wasting that is likely attributed to the remarkable elevation of serum fibroblast growth factor 23 (FGF23),[12] while their dentin and enamel defects are largely independent from the hypophosphatemia and appear to be a local effects of phosphorylation failure in the secretory calcium-binding phosphoproteins (SCPPs)[12][13][14]

Clinical significance

[edit]

Mutations in the FAM20C gene are associated with Raine syndrome.[7]

References

[edit]
  1. ^ a b c ENSG00000281429, ENSG00000282147, ENSG00000288499 GRCh38: Ensembl release 89: ENSG00000177706, ENSG00000281429, ENSG00000282147, ENSG00000288499Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025854Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, Du Y, Williams SC (2005). "FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells". BMC Genomics. 6: 11. doi:10.1186/1471-2164-6-11. PMC 548683. PMID 15676076.
  6. ^ a b Hao J, Narayanan K, Muni T, Ramachandran A, George A (May 2007). "Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation". The Journal of Biological Chemistry. 282 (21): 15357–65. doi:10.1074/jbc.M701547200. PMID 17369251.
  7. ^ a b Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, Zackai EH, Al-Gazali LI, Hulskamp G, Kingston HM, Prescott TE, Ion A, Patton MA, Murday V, George A, Crosby AH (Nov 2007). "Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development". American Journal of Human Genetics. 81 (5): 906–12. doi:10.1086/522240. PMC 2265657. PMID 17924334.
  8. ^ a b c Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE (Jun 2012). "Secreted kinase phosphorylates extracellular proteins that regulate biomineralization". Science. 336 (6085): 1150–3. Bibcode:2012Sci...336.1150T. doi:10.1126/science.1217817. PMC 3754843. PMID 22582013.
  9. ^ Wang X, Hao J, Xie Y, Sun Y, Hernandez B, Yamoah AK, Prasad M, Zhu Q, Feng JQ, Qin C (Nov 2010). "Expression of FAM20C in the osteogenesis and odontogenesis of mouse". The Journal of Histochemistry and Cytochemistry. 58 (11): 957–67. doi:10.1369/jhc.2010.956565. PMC 2958138. PMID 20644212.
  10. ^ Yalak G, Vogel V (Dec 2012). "Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important". Science Signaling. 5 (255): re7. doi:10.1126/scisignal.2003273. PMID 23250399. S2CID 205449.
  11. ^ Tagliabracci VS, Pinna LA, Dixon JE (Mar 2013). "Secreted protein kinases". Trends in Biochemical Sciences. 38 (3): 121–30. doi:10.1016/j.tibs.2012.11.008. PMC 3582740. PMID 23276407.
  12. ^ a b Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, Sun Y, Hao J, George A, Lu Y, Groppe J, Yuan B, Feng JQ, Qin C (2012). "Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice". PLOS Genetics. 8 (5): e1002708. doi:10.1371/journal.pgen.1002708. PMC 3355082. PMID 22615579.
  13. ^ Wang X, Jung J, Liu Y, Yuan B, Lu Y, Feng JQ, Qin C (Nov 2013). "The specific role of FAM20C in amelogenesis". Journal of Dental Research. 92 (11): 995–9. doi:10.1177/0022034513504588. PMC 3797537. PMID 24026952.
  14. ^ Wang X, Wang J, Liu Y, Yuan B, Ruest LB, Feng JQ, Qin C (Feb 2015). "The specific role of FAM20C in dentinogenesis". Journal of Dental Research. 94 (2): 330–6. doi:10.1177/0022034514563334. PMC 4300304. PMID 25515778.

Further reading

[edit]