Jump to content

Shielding effect: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tags: Mobile edit Mobile web edit
Restored revision 1211854176 by 18.29.47.126 (talk): Possible subtle vandalism
 
(35 intermediate revisions by 20 users not shown)
Line 1: Line 1:
{{short description|Decrease in attraction between an electron and the nucleus}}
{{In line citation|date=July 2018}}{{About|the atomic effect|shielding materials|Electromagnetic shielding}}
{{About|the atomic effect|shielding materials|Electromagnetic shielding}}


{{In line citation|date=July 2018}}
The '''shielding effect''' sometimes referred to as '''atomic shielding''' or '''electron shielding''' describes the attraction between an [[electron]] and the [[Atomic nucleus|nucleus]] in any atom with more than one [[electron]]. The shielding effect can be defined as a reduction in the [[effective nuclear charge]] on the electron cloud, due
In [[chemistry]], the '''shielding effect''' sometimes referred to as '''atomic shielding''' or '''electron shielding''' describes the attraction between an [[electron]] and the [[Atomic nucleus|nucleus]] in any atom with more than one [[electron]]. The shielding effect can be defined as a reduction in the [[effective nuclear charge]] on the electron cloud, due
to a difference in the attraction forces on the electrons in the atom. It is a special case of [[electric-field screening]].
to a difference in the attraction forces on the electrons in the atom. It is a special case of [[electric-field screening]].
This effect also has some significance in many projects in material sciences.


==Order of shielding effect==
==Strength per electron shell==


The wider the [[electron shell]]s are in space, the weaker is the electric interaction between the electrons and the nucleus due to screening. In general we can order the electron shells (s,p,d,f) as such
The order of the [[Electron shell|orbitals]] per shielding strength is:
<math display="block">S(\mathrm{s}) > S(\mathrm{p}) > S(\mathrm{d}) > S(\mathrm{f}) ,</math>
where ''S'' is the screening strength that a given orbital provides to the rest of the electrons.


==Description==
:<math>\mathrm{s} >\mathrm{p} > \mathrm{d} >\mathrm{f} </math>


In [[Hydrogen atom|hydrogen]], or any other atom in [[Alkali metal|group 1A]] of the [[periodic table]] (those with only one [[valence electron]]), the force on the electron is just as large as the [[Electromagnetism|electromagnetic attraction]] from the nucleus of the atom. However, when more electrons are involved, each electron (in the ''n''<sup>th</sup>-[[electron shell|shell]]) experiences not only the electromagnetic attraction from the positive nucleus, but also repulsion forces from other electrons in shells from 1 to ''n''. This causes the net force on electrons in outer shells to be significantly smaller in magnitude; therefore, these electrons are not as strongly bonded to the nucleus as electrons closer to the nucleus. This phenomenon is often referred to as the orbital penetration effect. The shielding theory also contributes to the explanation of why [[valence shell|valence-shell]] electrons are more easily removed from the atom.
==Reason==


Additionally, there is also a shielding effect that occurs between [[Atomic orbital|sublevel]]s within the same principal energy level. An electron in the s-sublevel is capable of shielding electrons in the p-sublevel of the same principal energy level.
In [[Hydro ato|hydrogen]], or any other atom in [[Alkali metal|group 1A]] of the [[periodic table]] (those with only one [[valence electron]]), the force on the electron is just as large as the electromagnetic attraction from the nucleus of the atom. However, when more electrons are involved, each electron (in the ''n''<sup>th</sup>-[[electron shell|shell]]) experiences not only the electromagnetic attraction from the positive nucleus, but also repulsion forces from other electrons in shells from 1 to ''n''. This causes the net force on electrons in outer shells to be significantly smaller in magnitude; therefore, these electrons are not as strongly bonded to the nucleus as electrons closer to the nucleus. This phenomenon is often referred to as the orbital penetration effect. The shielding theory also contributes to the explanation of why [[valence shell|valence-shell]] electrons are more easily removed from the atom.


The size of the shielding effect is difficult to calculate precisely due to effects from [[quantum mechanics]]. As an approximation, we can estimate the [[effective nuclear charge]] on each electron by the following:
The size of the shielding effect is difficult to calculate precisely due to effects from [[quantum mechanics]]. As an approximation, we can estimate the [[effective nuclear charge]] on each electron by the following:
Line 20: Line 25:
Where ''Z'' is the number of protons in the nucleus and <math>\sigma\,</math> is the average number of electrons between the nucleus and the electron in question. <math>\sigma\,</math>can be found by using quantum chemistry and the [[Schrödinger equation]], or by using [[Slater's rules|Slater's empirical formulas]].
Where ''Z'' is the number of protons in the nucleus and <math>\sigma\,</math> is the average number of electrons between the nucleus and the electron in question. <math>\sigma\,</math>can be found by using quantum chemistry and the [[Schrödinger equation]], or by using [[Slater's rules|Slater's empirical formulas]].


In [[Rutherford backscattering spectroscopy]] the correction due to electron screening modifies the Coulomb repulsion between the incident ion and the target nucleus at large distances. It is the repulsion effect caused by the inner electron on the outer electron.
In [[Rutherford backscattering spectroscopy]], the correction due to electron screening modifies the Coulomb repulsion between the incident ion and the target nucleus at large distances. It is the repulsion effect caused by the inner electron on the outer electron.

== See also ==


==See also==
* [[Atomic number]]
* [[Atomic number]]
* [[Core charge]]
* [[Core charge]]
Line 28: Line 34:
* [[Noble gas compound]]
* [[Noble gas compound]]
* [[Steric effects]]
* [[Steric effects]]
* [[Lanthanide contraction]]
* [[d-block contraction]] (or scandide contraction)


==References==
==References==
Line 44: Line 52:
|isbn = 0-13-061142-5
|isbn = 0-13-061142-5
|url = http://www.pearsoneducation.net/brown
|url = http://www.pearsoneducation.net/brown
|deadurl = yes
|url-status = dead
|archiveurl = https://web.archive.org/web/20110724003145/http://www.pearsoneducation.net/brown/
|archiveurl = https://web.archive.org/web/20110724003145/http://www.pearsoneducation.net/brown/
|archivedate = 2011-07-24
|archivedate = 2011-07-24
|df =
}}
}}
*{{Cite web|url=http://www.chembio.uoguelph.ca/educmat/atomdata/shield/shield.htm|title=Shielding of Electrons in Atoms from H (Z=1) to Lw (Z=103)|last=Thomas|first=Dan|date=1997-10-09|website=[[University of Guelph]]|archive-url=|archive-date=|dead-url=|access-date=2018-07-12}}
*{{Cite web|url=http://www.chembio.uoguelph.ca/educmat/atomdata/shield/shield.htm|title=Shielding of Electrons in Atoms from H (Z=1) to Lw (Z=103)|last=Thomas|first=Dan|date=1997-10-09|website=[[University of Guelph]]|access-date=2018-07-12}}
*Peter Atkins & Loretta Jones, ''Chemical principles: the quest for insight [Variation in shielding effect]''
*Peter Atkins & Loretta Jones, ''Chemical principles: the quest for insight [Variation in shielding effect]''



Latest revision as of 07:45, 8 June 2024

In chemistry, the shielding effect sometimes referred to as atomic shielding or electron shielding describes the attraction between an electron and the nucleus in any atom with more than one electron. The shielding effect can be defined as a reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces on the electrons in the atom. It is a special case of electric-field screening. This effect also has some significance in many projects in material sciences.

Strength per electron shell

[edit]

The wider the electron shells are in space, the weaker is the electric interaction between the electrons and the nucleus due to screening. In general we can order the electron shells (s,p,d,f) as such where S is the screening strength that a given orbital provides to the rest of the electrons.

Description

[edit]

In hydrogen, or any other atom in group 1A of the periodic table (those with only one valence electron), the force on the electron is just as large as the electromagnetic attraction from the nucleus of the atom. However, when more electrons are involved, each electron (in the nth-shell) experiences not only the electromagnetic attraction from the positive nucleus, but also repulsion forces from other electrons in shells from 1 to n. This causes the net force on electrons in outer shells to be significantly smaller in magnitude; therefore, these electrons are not as strongly bonded to the nucleus as electrons closer to the nucleus. This phenomenon is often referred to as the orbital penetration effect. The shielding theory also contributes to the explanation of why valence-shell electrons are more easily removed from the atom.

Additionally, there is also a shielding effect that occurs between sublevels within the same principal energy level. An electron in the s-sublevel is capable of shielding electrons in the p-sublevel of the same principal energy level.

The size of the shielding effect is difficult to calculate precisely due to effects from quantum mechanics. As an approximation, we can estimate the effective nuclear charge on each electron by the following:

Where Z is the number of protons in the nucleus and is the average number of electrons between the nucleus and the electron in question. can be found by using quantum chemistry and the Schrödinger equation, or by using Slater's empirical formulas.

In Rutherford backscattering spectroscopy, the correction due to electron screening modifies the Coulomb repulsion between the incident ion and the target nucleus at large distances. It is the repulsion effect caused by the inner electron on the outer electron.

See also

[edit]

References

[edit]
  • L. Brown, Theodore; H. Eugene LeMay Jr; Bruce E. Bursten; Julia R. Burdge (2003). Chemistry: The Central Science (8th ed.). US: Pearson Education. ISBN 0-13-061142-5. Archived from the original on 2011-07-24.
  • Thomas, Dan (1997-10-09). "Shielding of Electrons in Atoms from H (Z=1) to Lw (Z=103)". University of Guelph. Retrieved 2018-07-12.
  • Peter Atkins & Loretta Jones, Chemical principles: the quest for insight [Variation in shielding effect]