Jump to content

Orbifold notation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Manually reviewed edit to replace magic words per local rfc
→‎References: corrected title of article
 
(33 intermediate revisions by 17 users not shown)
Line 1: Line 1:
{{Short description|Notation for 2-dimensional spherical, euclidean and hyperbolic symmetry groups}}
In [[geometry]], '''[[orbifold]] notation''' (or '''orbifold signature''') is a system, invented by [[William Thurston]] and popularized by the mathematician [[John Horton Conway|John Conway]], for representing types of [[symmetry groups]] in two-dimensional spaces of constant curvature.
The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it describes the [[orbifold]] obtained by taking the quotient of [[Euclidean space]] by the group under consideration.
In [[geometry]], '''[[orbifold]] notation''' (or '''orbifold signature''') is a system, invented by the mathematician [[William Thurston]] and promoted by [[John Horton Conway|John Conway]], for representing types of [[symmetry groups]] in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows [[William Thurston]] in describing the [[orbifold]] obtained by taking the quotient of [[Euclidean space]] by the group under consideration.

Groups representable in this notation include the [[point groups in three dimensions|point groups]] on the [[sphere]] (<math>S^2</math>), the [[frieze group]]s and [[wallpaper group]]s of the [[Euclidean plane]] (<math>E^2</math>), and their analogues on the [[hyperbolic geometry|hyperbolic plane]] (<math>H^2</math>).
Groups representable in this notation include the [[point groups in three dimensions|point groups]] on the [[sphere]] (<math>S^2</math>), the [[frieze group]]s and [[wallpaper group]]s of the [[Euclidean plane]] (<math>E^2</math>), and their analogues on the [[hyperbolic geometry|hyperbolic plane]] (<math>H^2</math>).


Line 28: Line 28:


* an integer ''n'' to the left of an asterisk indicates a [[rotation]] of order ''n'' around a [[gyration point]]
* an integer ''n'' to the left of an asterisk indicates a [[rotation]] of order ''n'' around a [[gyration point]]
* the ''[[asterisk]]'', * indicates a reflection
* an integer ''n'' to the right of an asterisk indicates a transformation of order 2''n'' which rotates around a kaleidoscopic point and reflects through a line (or plane)
* an integer ''n'' to the right of an asterisk indicates a transformation of order 2''n'' which rotates around a kaleidoscopic point and reflects through a line (or plane)
* an <math>\times</math> indicates a glide reflection
* an <math>\times</math> indicates a glide reflection
Line 35: Line 36:
=== Good orbifolds ===
=== Good orbifolds ===


An orbifold symbol is called ''good'' if it is not one of the following: ''p'', ''pq'', *''p'', *''pq'', for p,q>=2, and p≠q.
An orbifold symbol is called ''good'' if it is not one of the following: ''p'', ''pq'', *''p'', *''pq'', for ''p'', ''q'' ≥ 2, and ''p'' ≠ ''q''.


== Chirality and achirality ==
== Chirality and achirality ==
Line 61: Line 62:


==Two-dimensional groups==
==Two-dimensional groups==
{{multiple image
{| class=wikitable align=right width=420
| align = right
|- valign=top
| total_width = 420
|[[File:Bentley Snowflake13.jpg|120px]]<BR>A perfect [[snowflake]] would have *6&bull; symmetry,
| image1 = Bentley Snowflake13.jpg
|[[File:Pentagon symmetry as mirrors 2005-07-08.png|120px]]<BR>The [[pentagon]] has symmetry *5&bull;, the whole image with arrows 5&bull;.
| caption1 = A perfect [[snowflake]] would have *6• symmetry,
|[[File:Flag of Hong Kong.svg|180px]]<BR>The [[Flag of Hong Kong]] has 5 fold rotation symmetry, 5&bull;.
| image2 = Pentagon symmetry as mirrors 2005-07-08.png
|}
| caption2 = The [[pentagon]] has symmetry *5•, the whole image with arrows 5•.
The [[symmetry]] of a [[Two dimension|2D]] object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side; the shape of the carton should be such that it does not spoil the symmetry, or it can be imagined to be infinite. Thus we have ''n''• and *''n''•. The [[Bullet (typography)|bullet]] (•) is added on one- and two-dimensional groups to imply the existence of a fixed point. (In three dimensions these groups exist in an n-fold [[digon]]al orbifold and are represented as ''nn'' and *''nn''.)
| image3 = Flag of Hong Kong.svg
| caption3 = The [[Flag of Hong Kong]] has 5 fold rotation symmetry, 5•.
}}
The [[symmetry]] of a [[Two dimension|2D]] object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side; the shape of the carton should be such that it does not spoil the symmetry, or it can be imagined to be infinite. Thus we have ''n''• and *''n''•. The [[Bullet (typography)|bullet]] (•) is added on one- and two-dimensional groups to imply the existence of a fixed point. (In three dimensions these groups exist in an n-fold [[digon]]al orbifold and are represented as ''nn'' and *''nn''.)


Similarly, a [[One dimension|1D]] image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete [[symmetry groups in one dimension]] are *, *1•, ∞ and *∞.
Similarly, a [[One dimension|1D]] image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete [[symmetry groups in one dimension]] are *, *1•, ∞ and *∞.


Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the [[Cartesian product]] of the object and an asymmetric 2D or 1D object, respectively.
Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the [[Cartesian product]] of the object and an asymmetric 2D or 1D object, respectively.
Line 76: Line 81:


=== Spherical ===
=== Spherical ===
{| class="wikitable floatright" style="text-align:center;"

{| class="wikitable" align=right
|+ Fundamental domains of reflective 3D point groups
|+ Fundamental domains of reflective 3D point groups
|-
|- align=center
!(*11), C<sub>1v</sub>=C<sub>s</sub>
! (*11), C<sub>1v</sub> = C<sub>s</sub>
!(*22), C<sub>2v</sub>
! (*22), C<sub>2v</sub>
!(*33), C<sub>3v</sub>
! (*33), C<sub>3v</sub>
!(*44), C<sub>4v</sub>
! (*44), C<sub>4v</sub>
!(*55), C<sub>5v</sub>
! (*55), C<sub>5v</sub>
!(*66), C<sub>6v</sub>
! (*66), C<sub>6v</sub>
|-
|- align=center
|[[Image:Spherical digonal hosohedron2.png|60px]]<BR>Order 2
| [[Image:Spherical digonal hosohedron2.png|60px]]<br/>Order 2
|[[Image:Spherical square hosohedron2.png|60px]]<BR>Order 4
| [[Image:Spherical square hosohedron2.png|60px]]<br/>Order 4
|[[Image:Spherical hexagonal hosohedron2.png|60px]]<BR>Order 6
| [[Image:Spherical hexagonal hosohedron2.png|60px]]<br/>Order 6
|[[Image:Spherical octagonal hosohedron2.png|60px]]<BR>Order 8
| [[Image:Spherical octagonal hosohedron2.png|60px]]<br/>Order 8
|[[Image:Spherical decagonal hosohedron2.png|60px]]<BR>Order 10
| [[Image:Spherical decagonal hosohedron2.png|60px]]<br/>Order 10
|[[Image:Spherical dodecagonal hosohedron2.png|60px]]<BR>Order 12
| [[Image:Spherical dodecagonal hosohedron2.png|60px]]<br/>Order 12
|-
|- align=center
!(*221), D<sub>1h</sub>=C<sub>2v</sub>
! (*221), D<sub>1h</sub> = C<sub>2v</sub>
!(*222), D<sub>2h</sub>
! (*222), D<sub>2h</sub>
!(*223), D<sub>3h</sub>
! (*223), D<sub>3h</sub>
!(*224), D<sub>4h</sub>
! (*224), D<sub>4h</sub>
!(*225), D<sub>5h</sub>
! (*225), D<sub>5h</sub>
!(*226), D<sub>6h</sub>
! (*226), D<sub>6h</sub>
|-
|- align=center
|[[Image:Spherical digonal bipyramid2.png|60px]]<BR>Order 4
| [[Image:Spherical digonal bipyramid2.svg|60px]]<br/>Order 4
|[[Image:Spherical square bipyramid2.png|60px]]<BR>Order 8
| [[Image:Spherical square bipyramid2.svg|60px]]<br/>Order 8
|[[Image:Spherical hexagonal bipyramid2.png|60px]]<BR>Order 12
| [[Image:Spherical hexagonal bipyramid2.png|60px]]<br/>Order 12
|[[Image:Spherical octagonal bipyramid2.png|60px]]<BR>Order 16
| [[Image:Spherical octagonal bipyramid2.png|60px]]<br/>Order 16
|[[Image:Spherical decagonal bipyramid2.png|60px]]<BR>Order 20
| [[Image:Spherical decagonal bipyramid2.png|60px]]<br/>Order 20
|[[Image:Spherical dodecagonal bipyramid2.png|60px]]<BR>Order 24
| [[Image:Spherical dodecagonal bipyramid2.png|60px]]<br/>Order 24
|-
|-
!colspan=2|(*332), T<sub>d</sub>
! colspan=2 | (*332), T<sub>d</sub>
!colspan=2|(*432), O<sub>h</sub>
! colspan=2 | (*432), O<sub>h</sub>
!colspan=2|(*532), I<sub>h</sub>
! colspan=2 | (*532), I<sub>h</sub>
|-
|- align=center
|colspan=2|[[Image:Tetrahedral reflection domains.png|120px]]<BR>Order 24
| colspan=2 | [[Image:Tetrahedral reflection domains.png|120px]]<br/>Order 24
|colspan=2|[[Image:Octahedral reflection domains.png|120px]]<BR>Order 48
| colspan=2 | [[Image:Octahedral reflection domains.png|120px]]<br/>Order 48
|colspan=2|[[Image:Icosahedral reflection domains.png|120px]]<BR>Order 120
| colspan=2 | [[Image:Icosahedral reflection domains.png|120px]]<br/>Order 120
|}
|}


Line 120: Line 124:


{| class="wikitable"
{| class="wikitable"
|+ Spherical Symmetry Groups<ref>Symmetries of Things, Appendix A, page 416</ref>
|+ Spherical symmetry groups<ref>Symmetries of Things, Appendix A, page 416</ref>
|-
|-
!Orbifold<br>Signature
! Orbifold <br/>signature
![[Coxeter notation|Coxeter]]
! [[Coxeter notation|Coxeter]]
![[Arthur Moritz Schönflies|Schönflies]]
! [[Arthur Moritz Schönflies|Schönflies]]
![[Hermann–Mauguin notation|Hermann–Mauguin]]
! [[Hermann–Mauguin notation|Hermann–Mauguin]]
!Order
! Order
|-
|-
!colspan=5|Polyhedral groups
!colspan=5|Polyhedral groups
Line 144: Line 148:
|332||[3,3]<sup>+</sup>||T||23||12
|332||[3,3]<sup>+</sup>||T||23||12
|-
|-
!colspan=5|Dihedral and cyclic groups: n=3,4,5...
!colspan=5|Dihedral and cyclic groups: ''n'' = 3, 4, 5 ...
|-
|-
|*22n||[2,n]||D<sub>nh</sub>||n/mmm or 2{{overline|n}}m2||4n
|*22n||[2,n]||D<sub>nh</sub>||n/mmm or 2{{overline|n}}m2||4n
Line 176: Line 180:
|22||[2]<sup>+</sup>||C<sub>2</sub>||2||2
|22||[2]<sup>+</sup>||C<sub>2</sub>||2||2
|-
|-
|*22||[1,2]||D<sub>1h</sub>=C<sub>2v</sub>||1/mmm or 2{{overline|1}}m2||4
|*22||[1,2]||D<sub>1h</sub> = C<sub>2v</sub>||1/mmm or 2{{overline|1}}m2||4
|-
|-
|2*||[2<sup>+</sup>,2]||D<sub>1d</sub>=C<sub>2h</sub>||2{{overline|1}}2m or {{overline|1}}m||4
|2*||[2<sup>+</sup>,2]||D<sub>1d</sub> = C<sub>2h</sub>||2{{overline|1}}2m or {{overline|1}}m||4
|-
|-
|22||[1,2]<sup>+</sup>||D<sub>1</sub>=C<sub>2</sub>||12||2
|22||[1,2]<sup>+</sup>||D<sub>1</sub> = C<sub>2</sub>||12||2
|-
|-
|*1||[ ]||C<sub>1v</sub>=C<sub>s</sub>||1m||2
|*1||[ ]||C<sub>1v</sub> = C<sub>s</sub>||1m||2
|-
|-
|1*||[2,1<sup>+</sup>]||C<sub>1h</sub>=C<sub>s</sub>||1/m or 2{{overline|1}}||2
|1*||[2,1<sup>+</sup>]||C<sub>1h</sub> = C<sub>s</sub>||1/m or 2{{overline|1}}||2
|-
|-
|1×||[2<sup>+</sup>,2<sup>+</sup>]||S<sub>2</sub>=C<sub>i</sub>||2{{overline|1}} or {{overline|1}}||2
|1×||[2<sup>+</sup>,2<sup>+</sup>]||S<sub>2</sub> = C<sub>i</sub>||2{{overline|1}} or {{overline|1}}||2
|-
|-
|1||[ ]<sup>+</sup>||C<sub>1</sub>||1||1
|1||[ ]<sup>+</sup>||C<sub>1</sub>||1||1
Line 195: Line 199:


==== Frieze groups ====
==== Frieze groups ====
{{Frieze group notations}}
{{Frieze_group_notations}}


==== Wallpaper groups====
==== Wallpaper groups====
{| class="wikitable" align=right
{| class="wikitable floatright" style="text-align:center;"
|+ Fundamental domains of Euclidean reflective groups
|+ Fundamental domains of Euclidean reflective groups
|-
|- align=center
!(*442), p4m
!(*442), p4m
!(4*2), p4g
!(4*2), p4g
|-
|- align=center
|[[File:Uniform tiling 44-t1.png|200px]]
|[[File:Uniform tiling 44-t1.png|200px]]
|[[Image:Tile V488 bicolor.svg|200px]]
|[[Image:Tile V488 bicolor.svg|200px]]
|-
|- align=center
!(*333), p3m
!(*333), p3m
!(632), p6
!(632), p6
|-
|- align=center
|[[Image:Tile 3,6.svg|200px]]
|[[Image:Tile 3,6.svg|200px]]
|[[Image:Tile V46b.svg|200px]]
|[[Image:Tile V46b.svg|200px]]
|}
|}


{| class="wikitable"
{| class="wikitable" style="text-align:center;"
|+ 17 [[wallpaper group]]s<ref>Symmetries of Things, Appendix A, page 416</ref>
|+ 17 [[wallpaper group]]s<ref>Symmetries of Things, Appendix A, page 416</ref>
|-
|-
!Orbifold<br>Signature
! Orbifold<br/>signature
![[Coxeter notation|Coxeter]]
! [[Coxeter notation|Coxeter]]
![[Hermann–Mauguin notation|Hermann–<BR>Mauguin]]
! [[Hermann–Mauguin notation|Hermann–<br/>Mauguin]]
![[Andreas Speiser|Speiser]]<br>[[Paul Niggli|Niggli]]
! [[Andreas Speiser|Speiser]]<br/>[[Paul Niggli|Niggli]]
!Polya<br>Guggenhein
! Polya<br/>Guggenhein
!Fejes Toth<br>Cadwell
! Fejes Toth<br/>Cadwell
|-
|- align=center
|*632||[6,3]||p6m||C<sup>(I)</sup><sub>6v</sub>||D<sub>6</sub>||W<sup>1</sup><sub>6</sub>
|*632||[6,3]||p6m||C<sup>(I)</sup><sub>6v</sub>||D<sub>6</sub>||W<sup>1</sup><sub>6</sub>
|-
|- align=center
|632||[6,3]<sup>+</sup>||p6||C<sup>(I)</sup><sub>6</sub>||C<sub>6</sub>||W<sub>6</sub>
|632||[6,3]<sup>+</sup>||p6||C<sup>(I)</sup><sub>6</sub>||C<sub>6</sub>||W<sub>6</sub>
|-
|- align=center
|*442||[4,4]||p4m||C<sup>(I)</sup><sub>4</sub>||D<sup>*</sup><sub>4</sub>||W<sup>1</sup><sub>4</sub>
|*442||[4,4]||p4m||C<sup>(I)</sup><sub>4</sub>||D<sup>*</sup><sub>4</sub>||W<sup>1</sup><sub>4</sub>
|-
|- align=center
|4*2||[4<sup>+</sup>,4]||p4g||C<sup>II</sup><sub>4v</sub>||D<sup>o</sup><sub>4</sub>||W<sup>2</sup><sub>4</sub>
|4*2||[4<sup>+</sup>,4]||p4g||C<sup>II</sup><sub>4v</sub>||D<sup>o</sup><sub>4</sub>||W<sup>2</sup><sub>4</sub>
|-
|- align=center
|442||[4,4]<sup>+</sup>||p4||C<sup>(I)</sup><sub>4</sub>||C<sub>4</sub>||W<sub>4</sub>
|442||[4,4]<sup>+</sup>||p4||C<sup>(I)</sup><sub>4</sub>||C<sub>4</sub>||W<sub>4</sub>
|-
|- align=center
|*333||[3<sup>[3]</sup>]
|*333||[3<sup>[3]</sup>]
||p3m1||C<sup>II</sup><sub>3v</sub>||D<sup>*</sup><sub>3</sub>||W<sup>1</sup><sub>3</sub>
||p3m1||C<sup>II</sup><sub>3v</sub>||D<sup>*</sup><sub>3</sub>||W<sup>1</sup><sub>3</sub>
|-
|- align=center
|3*3||[3<sup>+</sup>,6]||p31m||C<sup>I</sup><sub>3v</sub>||D<sup>o</sup><sub>3</sub>||W<sup>2</sup><sub>3</sub>
|3*3||[3<sup>+</sup>,6]||p31m||C<sup>I</sup><sub>3v</sub>||D<sup>o</sup><sub>3</sub>||W<sup>2</sup><sub>3</sub>
|-
|- align=center
|333||[3<sup>[3]</sup>]<sup>+</sup>
|333||[3<sup>[3]</sup>]<sup>+</sup>
||p3||C<sup>I</sup><sub>3</sub>||C<sub>3</sub>||W<sub>3</sub>
||p3||C<sup>I</sup><sub>3</sub>||C<sub>3</sub>||W<sub>3</sub>
|-
|- align=center
|*2222||[∞,2,∞]||pmm||C<sup>I</sup><sub>2v</sub>||D<sub>2</sub>kkkk||W<sup>2</sup><sub>2</sub>
|*2222||[∞,2,∞]||pmm||C<sup>I</sup><sub>2v</sub>||D<sub>2</sub>kkkk||W<sup>2</sup><sub>2</sub>
|-
|- align=center
|2*22||[∞,2<sup>+</sup>,∞]||cmm||C<sup>IV</sup><sub>2v</sub>||D<sub>2</sub>kgkg||W<sup>1</sup><sub>2</sub>
|2*22||[∞,2<sup>+</sup>,∞]||cmm||C<sup>IV</sup><sub>2v</sub>||D<sub>2</sub>kgkg||W<sup>1</sup><sub>2</sub>
|-
|- align=center
|22*||[(∞,2)<sup>+</sup>,∞]||pmg||C<sup>III</sup><sub>2v</sub>||D<sub>2</sub>kkgg||W<sup>3</sup><sub>2</sub>
|22*||[(∞,2)<sup>+</sup>,∞]||pmg||C<sup>III</sup><sub>2v</sub>||D<sub>2</sub>kkgg||W<sup>3</sup><sub>2</sub>
|-
|- align=center
|22×||[∞<sup>+</sup>,2<sup>+</sup>,∞<sup>+</sup>]||pgg||C<sup>II</sup><sub>2v</sub>||D<sub>2</sub>gggg||W<sup>4</sup><sub>2</sub>
|22×||[∞<sup>+</sup>,2<sup>+</sup>,∞<sup>+</sup>]||pgg||C<sup>II</sup><sub>2v</sub>||D<sub>2</sub>gggg||W<sup>4</sup><sub>2</sub>
|-
|- align=center
|2222||[∞,2,∞]<sup>+</sup>||p2||C<sup>(I)</sup><sub>2</sub>||C<sub>2</sub>||W<sub>2</sub>
|2222||[∞,2,∞]<sup>+</sup>||p2||C<sup>(I)</sup><sub>2</sub>||C<sub>2</sub>||W<sub>2</sub>
|-
|- align=center
|**||[∞<sup>+</sup>,2,∞]||pm||C<sup>I</sup><sub>s</sub>||D<sub>1</sub>kk||W<sup>2</sup><sub>1</sub>
|**||[∞<sup>+</sup>,2,∞]||pm||C<sup>I</sup><sub>s</sub>||D<sub>1</sub>kk||W<sup>2</sup><sub>1</sub>
|-
|- align=center
|*×||[∞<sup>+</sup>,2<sup>+</sup>,∞]||cm||C<sup>III</sup><sub>s</sub>||D<sub>1</sub>kg||W<sup>1</sup><sub>1</sub>
|*×||[∞<sup>+</sup>,2<sup>+</sup>,∞]||cm||C<sup>III</sup><sub>s</sub>||D<sub>1</sub>kg||W<sup>1</sup><sub>1</sub>
|-
|- align=center
|××||[∞<sup>+</sup>,(2,∞)<sup>+</sup>]||pg||C<sup>II</sup><sub>2</sub>||D<sub>1</sub>gg||W<sup>3</sup><sub>1</sub>
|××||[∞<sup>+</sup>,(2,∞)<sup>+</sup>]||pg||C<sup>II</sup><sub>2</sub>||D<sub>1</sub>gg||W<sup>3</sup><sub>1</sub>
|-
|- align=center
|o||[∞<sup>+</sup>,2,∞<sup>+</sup>]||p1||C<sup>(I)</sup><sub>1</sub>||C<sub>1</sub>||W<sub>1</sub>
|o||[∞<sup>+</sup>,2,∞<sup>+</sup>]||p1||C<sup>(I)</sup><sub>1</sub>||C<sub>1</sub>||W<sub>1</sub>
|}
|}
{{clear}}


=== Hyperbolic plane ===
=== Hyperbolic plane ===
{| class="wikitable" align=right
{| class="wikitable floatright" style="text-align:center;"
|+ [[Poincaré disk model]] of fundamental domain [[Triangle group|triangles]]
|+ [[Poincaré disk model]] of fundamental domain [[triangle group|triangles]]
|-
! colspan=5 | Example right triangles (*2pq)
|-
|-
!colspan=5|Example right triangles (*2pq)
|- align=center
|[[File:H2checkers 237.png|60px]]<BR>[[732 symmetry|*237]]
|[[File:H2checkers 237.png|60px]]<BR>[[732 symmetry|*237]]
|[[File:H2checkers 238.png|60px]]<BR>[[832 symmetry|*238]]
|[[File:H2checkers 238.png|60px]]<BR>[[832 symmetry|*238]]
|[[File:Hyperbolic domains 932.png|60px]]<BR>*239
|[[File:Hyperbolic domains 932 black.png|60px]]<BR>*239
|[[File:H2checkers 23i.png|60px]]<BR>[[i32 symmetry|*23&infin;]]
|[[File:H2checkers 23i.png|60px]]<BR>[[i32 symmetry|*23&infin;]]
|-
|- align=center
|[[File:H2checkers 245.png|60px]]<BR>[[542 symmetry|*245]]
|[[File:H2checkers 245.png|60px]]<BR>[[542 symmetry|*245]]
|[[File:H2checkers 246.png|60px]]<BR>[[642 symmetry|*246]]
|[[File:H2checkers 246.png|60px]]<BR>[[642 symmetry|*246]]
Line 277: Line 282:
|[[File:H2checkers 248.png|60px]]<BR>[[842 symmetry|*248]]
|[[File:H2checkers 248.png|60px]]<BR>[[842 symmetry|*248]]
|[[File:H2checkers 24i.png|60px]]<BR>[[i42 symmetry|*&infin;42]]
|[[File:H2checkers 24i.png|60px]]<BR>[[i42 symmetry|*&infin;42]]
|-
|- align=center
|[[File:H2checkers 255.png|60px]]<BR>[[552 symmetry|*255]]
|[[File:H2checkers 255.png|60px]]<BR>[[552 symmetry|*255]]
|[[File:H2checkers 256.png|60px]]<BR>*256
|[[File:H2checkers 256.png|60px]]<BR>*256
Line 283: Line 288:
|[[File:H2checkers 266.png|60px]]<BR>[[662 symmetry|*266]]
|[[File:H2checkers 266.png|60px]]<BR>[[662 symmetry|*266]]
|[[File:H2checkers 2ii.png|60px]]<BR>*2&infin;&infin;
|[[File:H2checkers 2ii.png|60px]]<BR>*2&infin;&infin;
|-
|- align=center
!colspan=5|Example general triangles (*pqr)
! colspan=5 | Example general triangles (*pqr)
|-
|- align=center
|[[File:H2checkers 334.png|60px]]<BR>[[433 symmetry|*334]]
|[[File:H2checkers 334.png|60px]]<BR>[[433 symmetry|*334]]
|[[File:H2checkers 335.png|60px]]<BR>*335
|[[File:H2checkers 335.png|60px]]<BR>*335
Line 291: Line 296:
|[[File:H2checkers 337.png|60px]]<BR>*337
|[[File:H2checkers 337.png|60px]]<BR>*337
|[[File:H2checkers 33i.png|60px]]<BR>[[i33 symmetry|*33&infin;]]
|[[File:H2checkers 33i.png|60px]]<BR>[[i33 symmetry|*33&infin;]]
|-
|- align=center
|[[File:H2checkers 344.png|60px]]<BR>[[443 symmetry|*344]]
|[[File:H2checkers 344.png|60px]]<BR>[[443 symmetry|*344]]
|[[File:H2checkers 366.png|60px]]<BR>[[663 symmetry|*366]]
|[[File:H2checkers 366.png|60px]]<BR>[[663 symmetry|*366]]
|[[File:H2checkers 3ii.png|60px]]<BR>*3&infin;&infin;
|[[File:H2checkers 3ii.png|60px]]<BR>*3&infin;&infin;
|[[File:H2checkers 666.png|60px]]<BR>*6<sup>3</sup>
|[[File:H2checkers 666.png|60px]]<BR>*6<sup>3</sup>
|[[File:H2checkers iii.png|60px]]<BR>[[iii symmetry|*&infin;<sup>3</sup>]]
|[[File:Infinite-order triangular tiling.svg|60px]]<BR>[[iii symmetry|*&infin;<sup>3</sup>]]
|-
|- align=center
!colspan=5|Example higher polygons (*pqrs...)
! colspan=5 | Example higher polygons (*pqrs...)
|-
|- align=center
|[[File:Hyperbolic domains 3222.png|60px]]<BR>[[3222 symmetry|*2223]]
|[[File:Hyperbolic domains 3222.png|60px]]<BR>[[3222 symmetry|*2223]]
|[[File:H2chess 246a.png|60px]]<BR>[[3232 symmetry|*(23)<sup>2</sup>]]
|[[File:H2chess 246a.png|60px]]<BR>[[3232 symmetry|*(23)<sup>2</sup>]]
Line 305: Line 310:
|[[File:H2chess 246b.png|60px]]<BR>[[3333 symmetry|*3<sup>4</sup>]]
|[[File:H2chess 246b.png|60px]]<BR>[[3333 symmetry|*3<sup>4</sup>]]
|[[File:H2chess 248b.png|60px]]<BR>[[4444 symmetry|*4<sup>4</sup>]]
|[[File:H2chess 248b.png|60px]]<BR>[[4444 symmetry|*4<sup>4</sup>]]
|-
|- align=center
|[[File:Uniform tiling 552-t1.png|60px]]<BR>[[22222 symmetry|*2<sup>5</sup>]]
|[[File:Uniform tiling 552-t1.png|60px]]<BR>[[22222 symmetry|*2<sup>5</sup>]]
|[[File:Uniform tiling 66-t1.png|60px]]<BR>[[222222 symmetry|*2<sup>6</sup>]]
|[[File:Uniform tiling 66-t1.png|60px]]<BR>[[222222 symmetry|*2<sup>6</sup>]]
|[[File:Uniform tiling 77-t1.png|60px]]<BR>[[2222222 symmetry|*2<sup>7</sup>]]
|[[File:Uniform tiling 77-t1.png|60px]]<BR>[[2222222 symmetry|*2<sup>7</sup>]]
|[[File:Uniform tiling 88-t1.png|60px]]<BR>[[22222222 symmetry|*2<sup>8</sup>]]
|[[File:Uniform tiling 88-t1.png|60px]]<BR>[[22222222 symmetry|*2<sup>8</sup>]]
|-
|- align=center
|[[File:Hyperbolic domains i222.png|60px]]<BR>[[i222 symmetry|*222&infin;]]
|[[File:Hyperbolic domains i222.png|60px]]<BR>[[i222 symmetry|*222&infin;]]
|[[File:H2chess 24ia.png|60px]]<BR>[[i2i2 symmetry|*(2&infin;)<sup>2</sup>]]
|[[File:H2chess 24ia.png|60px]]<BR>*(2&infin;)<sup>2</sup>
|[[File:H2chess 24ib.png|60px]]<BR>[[iiii symmetry|*&infin;<sup>4</sup>]]
|[[File:H2chess 24ib.png|60px]]<BR>[[iiii symmetry|*&infin;<sup>4</sup>]]
|[[File:H2chess 24ic.png|60px]]<BR>[[2^i symmetry|*2<sup>&infin;</sup>]]
|[[File:H2chess 24ic.png|60px]]<BR>[[2^i symmetry|*2<sup>&infin;</sup>]]
Line 321: Line 326:


{| class=wikitable
{| class=wikitable
|+ Hyperbolic Symmetry Groups<ref>Symmetries of Things, Chapter 18, More on Hyperbolic groups, Enumerating hyperbolic groups, p239</ref>
|+ Hyperbolic symmetry groups<ref>Symmetries of Things, Chapter 18, More on Hyperbolic groups, Enumerating hyperbolic groups, p239</ref>
|-
|-
!-1
! −1
!Orbifolds
! Orbifolds
![[Coxeter notation|Coxeter]]
! [[Coxeter notation|Coxeter]]
|-
|-
|84||*237||[7,3]
|84||*237||[7,3]
Line 335: Line 340:
|40||*245||[5,4]
|40||*245||[5,4]
|-
|-
|36 - 26.4||*239, *2 3 10||[9,3], [10,3]
|36–26.4||*239, *2 3 10||[9,3], [10,3]
|-
|-
|26.4||*2 3 11||[11,3]
|26.4||*2 3 11||[11,3]
Line 341: Line 346:
|24||*2 3 12, *246, *334, 3*4, 238||[12,3], [6,4], [(4,3,3)], [3<sup>+</sup>,8], [8,3]<sup>+</sup>
|24||*2 3 12, *246, *334, 3*4, 238||[12,3], [6,4], [(4,3,3)], [3<sup>+</sup>,8], [8,3]<sup>+</sup>
|-
|-
|22.3 - 21||*2 3 13, *2 3 14||[13,3], [14,3]
|22.3–21||*2 3 13, *2 3 14||[13,3], [14,3]
|-
|-
|20||*2 3 15, *255, 5*2, 245||[15,3], [5,5], [5<sup>+</sup>,4], [5,4]<sup>+</sup>
|20||*2 3 15, *255, 5*2, 245||[15,3], [5,5], [5<sup>+</sup>,4], [5,4]<sup>+</sup>
Line 347: Line 352:
|19.2||*2 3 16||[16,3]
|19.2||*2 3 16||[16,3]
|-
|-
|18+2/3||*247||[7,4]
|{{frac|18|2|3}}||*247||[7,4]
|-
|-
|18||*2 3 18, 239||[18,3], [9,3]<sup>+</sup>
|18||*2 3 18, 239||[18,3], [9,3]<sup>+</sup>
|-
|-
|17.5 - 16.2||*2 3 19, *2 3 20, *2 3 21, *2 3 22, *2 3 23 ||[19,3], [20,3], [20,3], [21,3], [22,3], [23,3]
|17.5–16.2||*2 3 19, *2 3 20, *2 3 21, *2 3 22, *2 3 23 ||[19,3], [20,3], [20,3], [21,3], [22,3], [23,3]
|-
|-
|16||*2 3 24, *248||[24,3], [8,4]
|16||*2 3 24, *248||[24,3], [8,4]
Line 357: Line 362:
|15||*2 3 30, *256, *335, 3*5, 2 3 10||[30,3], [6,5], [(5,3,3)], [3<sup>+</sup>,10], [10,3]<sup>+</sup>
|15||*2 3 30, *256, *335, 3*5, 2 3 10||[30,3], [6,5], [(5,3,3)], [3<sup>+</sup>,10], [10,3]<sup>+</sup>
|-
|-
|14+2/5 - 13+1/3||*2 3 36 ... *2 3 70, *249, *2 4 10||[36,3] ... [60,3], [9,4], [10,4]
|{{frac|14|2|5}}–{{frac|13|1|3}}||*2 3 36 ... *2 3 70, *249, *2 4 10||[36,3] ... [60,3], [9,4], [10,4]
|-
|-
|13+1/5||*2 3 66, 2 3 11||[66,3], [11,3]<sup>+</sup>
|{{frac|13|1|5}}||*2 3 66, 2 3 11||[66,3], [11,3]<sup>+</sup>
|-
|-
|12+8/11||*2 3 105, *257||[105,3], [7,5]
|{{frac|12|8|11}}||*2 3 105, *257||[105,3], [7,5]
|-
|-
|12+4/7||*2 3 132, *2 4 11 ... ||[132,3], [11,4], ...
|{{frac|12|4|7}}||*2 3 132, *2 4 11 ... ||[132,3], [11,4], ...
|-
|-
|12||*23&infin;, *2 4 12, *266, 6*2, *336, 3*6, *344, 4*3, *2223, 2*23, 2 3 12, 246, 334||[&infin;,3] [12,4], [6,6], [6<sup>+</sup>,4], [(6,3,3)], [3<sup>+</sup>,12], [(4,4,3)], [4<sup>+</sup>,6], [&infin;,3,&infin;], [12,3]<sup>+</sup>, [6,4]<sup>+</sup> [(4,3,3)]<sup>+</sup>
|12||*23&infin;, *2 4 12, *266, 6*2, *336, 3*6, *344, 4*3, *2223, 2*23, 2 3 12, 246, 334||[&infin;,3] [12,4], [6,6], [6<sup>+</sup>,4], [(6,3,3)], [3<sup>+</sup>,12], [(4,4,3)], [4<sup>+</sup>,6], [&infin;,3,&infin;], [12,3]<sup>+</sup>, [6,4]<sup>+</sup> [(4,3,3)]<sup>+</sup>
Line 378: Line 383:
==References==
==References==
{{reflist}}
{{reflist}}
* John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, and William P. Thurston. On Three-dimensional Orbifolds and Space Groups. Contributions to Algebra and Geometry, 42(2):475-507, 2001.
* John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, and William P. Thurston. On Three-dimensional Space Groups. ''Contributions to Algebra and Geometry'', 42(2):475-507, 2001.
* J. H. Conway, D. H. Huson. The Orbifold Notation for Two-Dimensional Groups. Structural Chemistry, 13 (3-4): 247-257, August 2002.
* J. H. Conway, D. H. Huson. The Orbifold Notation for Two-Dimensional Groups. Structural Chemistry, 13 (3-4): 247–257, August 2002.
* J. H. Conway (1992). "The Orbifold Notation for Surface Groups". In: M. W. Liebeck and J. Saxl (eds.), ''Groups, Combinatorics and Geometry'', Proceedings of the L.M.S. Durham Symposium, July 5–15, Durham, UK, 1990; London Math. Soc. Lecture Notes Series '''165'''. Cambridge University Press, Cambridge. pp. 438–447
* J. H. Conway (1992). "The Orbifold Notation for Surface Groups". In: M. W. Liebeck and J. Saxl (eds.), ''Groups, Combinatorics and Geometry'', Proceedings of the L.M.S. Durham Symposium, July 5–15, Durham, UK, 1990; London Math. Soc. Lecture Notes Series '''165'''. Cambridge University Press, Cambridge. pp. 438–447
* [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, {{isbn|978-1-56881-220-5}}
* [[John Horton Conway|John H. Conway]], Heidi Burgiel, [[Chaim Goodman-Strauss]], ''The Symmetries of Things'' 2008, {{isbn|978-1-56881-220-5}}
*{{citation | last = Hughes | first = Sam | title = Cohomology of Fuchsian groups and non-Euclidean crystallographic groups | journal = Manuscripta Mathematica | year = 2022 | volume = 170 | issue = 3–4 | pages = 659–676 | doi = 10.1007/s00229-022-01369-z | arxiv = 1910.00519| bibcode = 2019arXiv191000519H | s2cid = 203610179 }}


==External links==
==External links==
* [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/node39.html#SECTION000390000000000000000 A field guide to the orbifolds] (Notes from class on [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/handouts.html "Geometry and the Imagination"] in Minneapolis, with John Conway, Peter Doyle, Jane Gilman and Bill Thurston, on June 17–28, 1991. See also [http://www.math.dartmouth.edu/~doyle/docs/gi/gi.pdf PDF, 2006])
* [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/node39.html#SECTION000390000000000000000 A field guide to the orbifolds] (Notes from class on [http://www.geom.uiuc.edu/docs/doyle/mpls/handouts/handouts.html "Geometry and the Imagination"] in Minneapolis, with John Conway, Peter Doyle, Jane Gilman and Bill Thurston, on June 17–28, 1991. See also [http://www.math.dartmouth.edu/~doyle/docs/gi/gi.pdf PDF, 2006])
* [http://www-ab.informatik.uni-tuebingen.de/software/2dtiler/welcome.html 2DTiler] Software for visualizing two-dimensional tilings of the plane and editing their symmetry groups in orbifold notation
* [https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/tegula/ Tegula] Software for visualizing two-dimensional tilings of the plane, sphere and hyperbolic plane, and editing their symmetry groups in orbifold notation


[[Category:Group theory]]
[[Category:Group theory]]
[[Category:Generalized manifolds]]
[[Category:Generalized manifolds]]
[[Category:Mathematical notation]]
[[Category:Mathematical notation]]
[[Category:John Horton Conway]]

Latest revision as of 11:34, 2 August 2024

In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.

Groups representable in this notation include the point groups on the sphere (), the frieze groups and wallpaper groups of the Euclidean plane (), and their analogues on the hyperbolic plane ().

Definition of the notation

[edit]

The following types of Euclidean transformation can occur in a group described by orbifold notation:

  • reflection through a line (or plane)
  • translation by a vector
  • rotation of finite order around a point
  • infinite rotation around a line in 3-space
  • glide-reflection, i.e. reflection followed by translation.

All translations which occur are assumed to form a discrete subgroup of the group symmetries being described.

Each group is denoted in orbifold notation by a finite string made up from the following symbols:

  • positive integers
  • the infinity symbol,
  • the asterisk, *
  • the symbol o (a solid circle in older documents), which is called a wonder and also a handle because it topologically represents a torus (1-handle) closed surface. Patterns repeat by two translation.
  • the symbol (an open circle in older documents), which is called a miracle and represents a topological crosscap where a pattern repeats as a mirror image without crossing a mirror line.

A string written in boldface represents a group of symmetries of Euclidean 3-space. A string not written in boldface represents a group of symmetries of the Euclidean plane, which is assumed to contain two independent translations.

Each symbol corresponds to a distinct transformation:

  • an integer n to the left of an asterisk indicates a rotation of order n around a gyration point
  • the asterisk, * indicates a reflection
  • an integer n to the right of an asterisk indicates a transformation of order 2n which rotates around a kaleidoscopic point and reflects through a line (or plane)
  • an indicates a glide reflection
  • the symbol indicates infinite rotational symmetry around a line; it can only occur for bold face groups. By abuse of language, we might say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way.
  • the exceptional symbol o indicates that there are precisely two linearly independent translations.

Good orbifolds

[edit]

An orbifold symbol is called good if it is not one of the following: p, pq, *p, *pq, for p, q ≥ 2, and pq.

Chirality and achirality

[edit]

An object is chiral if its symmetry group contains no reflections; otherwise it is called achiral. The corresponding orbifold is orientable in the chiral case and non-orientable otherwise.

The Euler characteristic and the order

[edit]

The Euler characteristic of an orbifold can be read from its Conway symbol, as follows. Each feature has a value:

  • n without or before an asterisk counts as
  • n after an asterisk counts as
  • asterisk and count as 1
  • o counts as 2.

Subtracting the sum of these values from 2 gives the Euler characteristic.

If the sum of the feature values is 2, the order is infinite, i.e., the notation represents a wallpaper group or a frieze group. Indeed, Conway's "Magic Theorem" indicates that the 17 wallpaper groups are exactly those with the sum of the feature values equal to 2. Otherwise, the order is 2 divided by the Euler characteristic.

Equal groups

[edit]

The following groups are isomorphic:

  • 1* and *11
  • 22 and 221
  • *22 and *221
  • 2* and 2*1.

This is because 1-fold rotation is the "empty" rotation.

Two-dimensional groups

[edit]
A perfect snowflake would have *6• symmetry,
The pentagon has symmetry *5•, the whole image with arrows 5•.
The Flag of Hong Kong has 5 fold rotation symmetry, 5•.

The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side; the shape of the carton should be such that it does not spoil the symmetry, or it can be imagined to be infinite. Thus we have n• and *n•. The bullet (•) is added on one- and two-dimensional groups to imply the existence of a fixed point. (In three dimensions these groups exist in an n-fold digonal orbifold and are represented as nn and *nn.)

Similarly, a 1D image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•.

Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object and an asymmetric 2D or 1D object, respectively.

Correspondence tables

[edit]

Spherical

[edit]
Fundamental domains of reflective 3D point groups
(*11), C1v = Cs (*22), C2v (*33), C3v (*44), C4v (*55), C5v (*66), C6v

Order 2

Order 4

Order 6

Order 8

Order 10

Order 12
(*221), D1h = C2v (*222), D2h (*223), D3h (*224), D4h (*225), D5h (*226), D6h

Order 4

Order 8

Order 12

Order 16

Order 20

Order 24
(*332), Td (*432), Oh (*532), Ih

Order 24

Order 48

Order 120
Spherical symmetry groups[1]
Orbifold
signature
Coxeter Schönflies Hermann–Mauguin Order
Polyhedral groups
*532 [3,5] Ih 53m 120
532 [3,5]+ I 532 60
*432 [3,4] Oh m3m 48
432 [3,4]+ O 432 24
*332 [3,3] Td 43m 24
3*2 [3+,4] Th m3 24
332 [3,3]+ T 23 12
Dihedral and cyclic groups: n = 3, 4, 5 ...
*22n [2,n] Dnh n/mmm or 2nm2 4n
2*n [2+,2n] Dnd 2n2m or nm 4n
22n [2,n]+ Dn n2 2n
*nn [n] Cnv nm 2n
n* [n+,2] Cnh n/m or 2n 2n
[2+,2n+] S2n 2n or n 2n
nn [n]+ Cn n n
Special cases
*222 [2,2] D2h 2/mmm or 22m2 8
2*2 [2+,4] D2d 222m or 2m 8
222 [2,2]+ D2 22 4
*22 [2] C2v 2m 4
2* [2+,2] C2h 2/m or 22 4
[2+,4+] S4 22 or 2 4
22 [2]+ C2 2 2
*22 [1,2] D1h = C2v 1/mmm or 21m2 4
2* [2+,2] D1d = C2h 212m or 1m 4
22 [1,2]+ D1 = C2 12 2
*1 [ ] C1v = Cs 1m 2
1* [2,1+] C1h = Cs 1/m or 21 2
[2+,2+] S2 = Ci 21 or 1 2
1 [ ]+ C1 1 1

Euclidean plane

[edit]

Frieze groups

[edit]
Frieze groups
IUC Cox. Schön.* Orbifold Diagram§ Examples and
Conway nickname[2]
Description
p1 [∞]+
C
Z
∞∞
hop
(T) Translations only:
This group is singly generated, by a translation by the smallest distance over which the pattern is periodic.
p11g [∞+,2+]
S
Z
∞×
step
(TG) Glide-reflections and Translations:
This group is singly generated, by a glide reflection, with translations being obtained by combining two glide reflections.
p1m1 [∞]
C∞v
Dih
*∞∞
sidle
(TV) Vertical reflection lines and Translations:
The group is the same as the non-trivial group in the one-dimensional case; it is generated by a translation and a reflection in the vertical axis.
p2 [∞,2]+
D
Dih
22∞
spinning hop
(TR) Translations and 180° Rotations:
The group is generated by a translation and a 180° rotation.
p2mg [∞,2+]
D∞d
Dih
2*∞
spinning sidle
(TRVG) Vertical reflection lines, Glide reflections, Translations and 180° Rotations:
The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection.
p11m [∞+,2]
C∞h
Z×Dih1
∞*
jump
(THG) Translations, Horizontal reflections, Glide reflections:
This group is generated by a translation and the reflection in the horizontal axis. The glide reflection here arises as the composition of translation and horizontal reflection
p2mm [∞,2]
D∞h
Dih×Dih1
*22∞
spinning jump
(TRHVG) Horizontal and Vertical reflection lines, Translations and 180° Rotations:
This group requires three generators, with one generating set consisting of a translation, the reflection in the horizontal axis and a reflection across a vertical axis.
*Schönflies's point group notation is extended here as infinite cases of the equivalent dihedral points symmetries
§The diagram shows one fundamental domain in yellow, with reflection lines in blue, glide reflection lines in dashed green, translation normals in red, and 2-fold gyration points as small green squares.

Wallpaper groups

[edit]
Fundamental domains of Euclidean reflective groups
(*442), p4m (4*2), p4g
(*333), p3m (632), p6
17 wallpaper groups[3]
Orbifold
signature
Coxeter Hermann–
Mauguin
Speiser
Niggli
Polya
Guggenhein
Fejes Toth
Cadwell
*632 [6,3] p6m C(I)6v D6 W16
632 [6,3]+ p6 C(I)6 C6 W6
*442 [4,4] p4m C(I)4 D*4 W14
4*2 [4+,4] p4g CII4v Do4 W24
442 [4,4]+ p4 C(I)4 C4 W4
*333 [3[3]] p3m1 CII3v D*3 W13
3*3 [3+,6] p31m CI3v Do3 W23
333 [3[3]]+ p3 CI3 C3 W3
*2222 [∞,2,∞] pmm CI2v D2kkkk W22
2*22 [∞,2+,∞] cmm CIV2v D2kgkg W12
22* [(∞,2)+,∞] pmg CIII2v D2kkgg W32
22× [∞+,2+,∞+] pgg CII2v D2gggg W42
2222 [∞,2,∞]+ p2 C(I)2 C2 W2
** [∞+,2,∞] pm CIs D1kk W21
[∞+,2+,∞] cm CIIIs D1kg W11
×× [∞+,(2,∞)+] pg CII2 D1gg W31
o [∞+,2,∞+] p1 C(I)1 C1 W1

Hyperbolic plane

[edit]
Poincaré disk model of fundamental domain triangles
Example right triangles (*2pq)

*237

*238

*239

*23∞

*245

*246

*247

*248

*∞42

*255

*256

*257

*266

*2∞∞
Example general triangles (*pqr)

*334

*335

*336

*337

*33∞

*344

*366

*3∞∞

*63

*∞3
Example higher polygons (*pqrs...)

*2223

*(23)2

*(24)2

*34

*44

*25

*26

*27

*28

*222∞

*(2∞)2

*∞4

*2

*∞

A first few hyperbolic groups, ordered by their Euler characteristic are:

Hyperbolic symmetry groups[4]
−1/χ Orbifolds Coxeter
84 *237 [7,3]
48 *238 [8,3]
42 237 [7,3]+
40 *245 [5,4]
36–26.4 *239, *2 3 10 [9,3], [10,3]
26.4 *2 3 11 [11,3]
24 *2 3 12, *246, *334, 3*4, 238 [12,3], [6,4], [(4,3,3)], [3+,8], [8,3]+
22.3–21 *2 3 13, *2 3 14 [13,3], [14,3]
20 *2 3 15, *255, 5*2, 245 [15,3], [5,5], [5+,4], [5,4]+
19.2 *2 3 16 [16,3]
18+23 *247 [7,4]
18 *2 3 18, 239 [18,3], [9,3]+
17.5–16.2 *2 3 19, *2 3 20, *2 3 21, *2 3 22, *2 3 23 [19,3], [20,3], [20,3], [21,3], [22,3], [23,3]
16 *2 3 24, *248 [24,3], [8,4]
15 *2 3 30, *256, *335, 3*5, 2 3 10 [30,3], [6,5], [(5,3,3)], [3+,10], [10,3]+
14+25-13+13 *2 3 36 ... *2 3 70, *249, *2 4 10 [36,3] ... [60,3], [9,4], [10,4]
13+15 *2 3 66, 2 3 11 [66,3], [11,3]+
12+811 *2 3 105, *257 [105,3], [7,5]
12+47 *2 3 132, *2 4 11 ... [132,3], [11,4], ...
12 *23∞, *2 4 12, *266, 6*2, *336, 3*6, *344, 4*3, *2223, 2*23, 2 3 12, 246, 334 [∞,3] [12,4], [6,6], [6+,4], [(6,3,3)], [3+,12], [(4,4,3)], [4+,6], [∞,3,∞], [12,3]+, [6,4]+ [(4,3,3)]+
...

See also

[edit]

References

[edit]
  1. ^ Symmetries of Things, Appendix A, page 416
  2. ^ Frieze Patterns Mathematician John Conway created names that relate to footsteps for each of the frieze groups.
  3. ^ Symmetries of Things, Appendix A, page 416
  4. ^ Symmetries of Things, Chapter 18, More on Hyperbolic groups, Enumerating hyperbolic groups, p239
  • John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, and William P. Thurston. On Three-dimensional Space Groups. Contributions to Algebra and Geometry, 42(2):475-507, 2001.
  • J. H. Conway, D. H. Huson. The Orbifold Notation for Two-Dimensional Groups. Structural Chemistry, 13 (3-4): 247–257, August 2002.
  • J. H. Conway (1992). "The Orbifold Notation for Surface Groups". In: M. W. Liebeck and J. Saxl (eds.), Groups, Combinatorics and Geometry, Proceedings of the L.M.S. Durham Symposium, July 5–15, Durham, UK, 1990; London Math. Soc. Lecture Notes Series 165. Cambridge University Press, Cambridge. pp. 438–447
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5
  • Hughes, Sam (2022), "Cohomology of Fuchsian groups and non-Euclidean crystallographic groups", Manuscripta Mathematica, 170 (3–4): 659–676, arXiv:1910.00519, Bibcode:2019arXiv191000519H, doi:10.1007/s00229-022-01369-z, S2CID 203610179
[edit]