Jump to content

Hilbert's Theorem 90: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Josvebot (talk | contribs)
m v1.43b - WP:WCW project (Unicode control characters)
Arkeet (talk | contribs)
m Undid revision 1215867369 by 129.219.8.64 (talk) - The last line does not follow and is false
 
(29 intermediate revisions by 20 users not shown)
Line 1: Line 1:
{{short description|Result due to Kummer on cyclic extensions of fields that leads to Kummer theory}}
In [[abstract algebra]], '''Hilbert's Theorem 90''' (or '''Satz 90''') is an important result on [[cyclic extension]]s of [[field (mathematics)|field]]s (or to one of its generalizations) that leads to [[Kummer theory]]. In its most basic form, it states that if ''L''/''K'' is a cyclic extension of fields with [[Galois group]] ''G'' = Gal(''L''/''K'')
In [[abstract algebra]], '''Hilbert's Theorem 90''' (or '''Satz 90''') is an important result on [[cyclic extension]]s of [[field (mathematics)|field]]s (or to one of its generalizations) that leads to [[Kummer theory]]. In its most basic form, it states that if ''L''/''K'' is an extension of fields with cyclic [[Galois group]] ''G''&nbsp;=&nbsp;Gal(''L''/''K'') generated by an element <math>\sigma,</math> and if <math>a</math> is an element of ''L'' of [[relative norm]] 1, that is<blockquote><math>N(a):=a\, \sigma(a)\, \sigma^2(a)\cdots \sigma^{n-1}(a)=1,</math></blockquote>then there exists <math>b</math> in ''L'' such that<blockquote><math>a=b/\sigma(b).</math></blockquote>The theorem takes its name from the fact that it is the 90th theorem in [[David Hilbert]]'s [[Zahlbericht]] {{harvs |last= Hilbert |year=1897|year2=1998}}, although it is originally due to {{harvs|txt|authorlink=Ernst Kummer| last=Kummer| year1= 1855 |loc1=p.213|year2=1861}}.
generated by an element <math>\textbf{s}</math>, and if <math>a</math> is an element of ''L'' of [[relative norm]] 1, then there exists <math>b</math> in ''L'' such that


Often a more general theorem due to {{harvs|txt|authorlink=Emmy Noether| first=Emmy| last=Noether |year= 1933}} is given the name, stating that if ''L''/''K'' is a finite [[Galois extension]] of fields with arbitrary Galois group ''G''&nbsp;=&nbsp;Gal(''L''/''K''), then the first [[ group cohomology|cohomology]] group of ''G'', with coefficients in the multiplicative group of ''L'', is trivial:
:<math>a=\textbf{s}(b)/b</math>.


:<math>H^1(G,L^\times)=\{1\}.</math>
The theorem takes its name from the fact that it is the 90th theorem in [[David Hilbert]]'s famous [[Zahlbericht]] {{harvs|last=Hilbert|year=1897|year2=1998}}, although it is originally due to {{harvs|txt|authorlink=Ernst Kummer|last=Kummer|year1=1855|loc1=p.213|year2=1861}}. Often a more general theorem due to {{harvs|txt|authorlink=Emmy Noether|first=Emmy|last=Noether|year=1933}} is given the name, stating that if ''L''/''K'' is a finite [[Galois extension]] of fields with Galois group ''G''&nbsp;=&nbsp;Gal(''L''/''K''), then the first [[ group cohomology|cohomology]] group is trivial:

:<math>H^1(G,L^\times)=\{1\}</math>.


== Examples ==
== Examples ==
Let ''L''/''K'' be the [[quadratic extension]] <math> \mathbb{Q}(i) / \mathbb{Q} </math>. The Galois group is cyclic of order 2, its generator <math>s</math> acting via conjugation:
Let <math>L/K</math> be the [[quadratic extension]] <math>\Q(i)/\Q</math>. The Galois group is cyclic of order 2, its generator <math>\sigma</math> acting via conjugation:


:<math> s:\, \, c + di\mapsto c - di\ . </math>
:<math> \sigma: c + di\mapsto c - di.</math>


An element <math> x=a+bi</math> in ''L'' has norm <math> xx^{s}=a^2 +b^2</math>. An element of norm one corresponds to a rational solution of the equation <math>a^2+b^2=1</math> or in other words, a point with rational coordinates on the [[unit circle]]. Hilbert's Theorem 90 then states that every such element ''y'' of norm one can be parametrized (with integral&nbsp;''c'',&nbsp;''d'') as
An element <math>a=x+yi</math> in <math>\Q(i)</math> has norm <math>a\sigma(a)=x^2+y^2</math>. An element of norm one thus corresponds to a rational solution of the equation <math>x^2+y^2=1</math> or in other words, a point with rational coordinates on the [[unit circle]]. Hilbert's Theorem 90 then states that every such element ''a'' of norm one can be written as

:<math> y=\frac{c+di}{c-di}=\frac{c^2-d^2}{c^2+d^2} + \frac{2cd}{c^2+d^2} i </math>
:<math> a=\frac{c-di}{c+di}=\frac{c^2-d^2}{c^2+d^2} - \frac{2cd}{c^2+d^2} i,</math>
which may be viewed as a rational parametrization of the rational points on the unit circle. Rational points <math>\, (x,y)=(a/c,b/c) </math> on the unit circle <math> x^2+y^2=1 </math> correspond to [[Pythagorean triple]]s, i.e. triples <math>\,(a,b,c)</math> of integers satisfying <math>\, a^2+b^2=c^2 </math>.

where <math>b = c+di</math> is as in the conclusion of the theorem, and ''c'' and ''d'' are both integers. This may be viewed as a rational parametrization of the rational points on the unit circle. Rational points <math>(x,y)=(p/r,q/r)</math> on the unit circle <math>x^2+y^2=1</math> correspond to [[Pythagorean triple]]s, i.e. triples <math>(p,q,r)</math> of integers satisfying <math>p^2+q^2=r^2</math>.


==Cohomology==
==Cohomology==
Line 22: Line 22:
:<math>H^1(G,L^\times)=\{1\}.</math>
:<math>H^1(G,L^\times)=\{1\}.</math>


Specifically, group cohomology is the cohomology of the [[Chain complex|complex]] whose ''i-''cochains are arbitrary functions from ''i''-tuples of group elements to the multiplicative coefficient group, <math>C^i(G,L^\times) = \{\phi:G^i\to L^\times\}</math>, with differentials <math>d^i : C^i\to C^{i+1}</math> defined in dimensions <math>i = 0,1</math> by:
A further generalization using [[Non-abelian cohomology|non-abelian group cohomology]] states that if ''H'' is either the [[general linear group|general]] or [[special linear group]] over ''L'', then
<blockquote><math>(d^0(b))(\sigma) = b / b^\sigma, \quad \text{ and }
\quad (d^1(\phi))(\sigma,\tau)
\,=\,\phi(\sigma) \phi(\tau)^\sigma / \phi(\sigma\tau) , </math></blockquote>
where <math>x^g</math> denotes the image of the <math>G</math>-module element <math>x</math> under the action of the group element <math>g \in G</math>.
Note that in the first of these we have identified a 0-[[cochain]] <math>\gamma = \gamma_b : G^0 = id_G \to L^\times</math>, with its unique image value <math>b \in L^\times</math>.
The triviality of the first cohomology group is then equivalent to the 1-cocycles <math>Z^1</math> being equal to the 1-coboundaries <math>B^1</math>, viz.:
<blockquote><math>\begin{array}{rcl}
Z^1 &=& \ker d^1 &=& \{\phi\in C^1\text{ satisfying }\,\,\forall \sigma , \tau \in G \, \colon\,\, \phi(\sigma\tau) = \phi(\sigma)\,\phi(\tau)^\sigma \} \\
\text{ is equal to }\\
B^1 &=& \text{im } d^0 &=& \{\phi\in C^1\ \, \colon \,\, \exists\, b\in L^\times \text{ such that } \phi(\sigma)=b / b^\sigma \ \ \forall \sigma \in G \}.
\end{array}</math></blockquote>
For cyclic <math>G =\{1,\sigma,\ldots,\sigma^{n-1}\}</math>, a 1-cocycle is determined by <math>\phi(\sigma)=a\in L^\times </math>, with <math>\phi(\sigma^i) = a\,\sigma(a)\cdots\sigma^{i-1}(a)</math> and:<blockquote><math>1=\phi(1)=\phi(\sigma^n)=a\,\sigma(a)\cdots\sigma^{n-1}(a)=N(a).</math></blockquote>On the other hand, a 1-coboundary is determined by <math>\phi(\sigma)=b / b^\sigma </math>. Equating these gives the original version of the Theorem.


:<math>H^1(G,H)=\{1\}.</math>


A further generalization is to cohomology with [[Non-abelian cohomology|non-abelian coefficients]]: that if ''H'' is either the [[general linear group|general]] or [[special linear group]] over ''L'', including <math>\operatorname{GL}_1(L)=L^\times</math>, then <blockquote><math>H^1(G,H)=\{1\}.</math> </blockquote>Another generalization is to a scheme ''X'':
This is a generalization since <math>L^\times=\mathbf{GL}_1(L)</math>.


Another generalization is <math>H^1_{\acute{e}t}(X,\mathbf{G}_m) = H^1(X,\mathcal{O}_X^\times) = \mathrm{Pic}(X)</math> for ''X'' a scheme, and another one to [[Milnor K-theory]] plays a role in [[Vladimir Voevodsky|Voevodsky's]] proof of the [[Milnor conjecture]].
:<math>H^1_{\text{et}}(X,\mathbb{G}_m) = H^1(X,\mathcal{O}_X^\times) = \operatorname{Pic}(X),</math>

where <math>\operatorname{Pic}(X)</math> is the group of isomorphism classes of locally free sheaves of <math>\mathcal{O}_X^\times</math>-modules of rank 1 for the Zariski topology, and <math>\mathbb{G}_m</math> is the sheaf defined by the affine line without the origin considered as a group under multiplication. <ref name=":0">{{Cite web|last=Milne|first=James S.|date=2013|title=Lectures on Etale Cohomology (v2.21)|url=https://www.jmilne.org/math/CourseNotes/LEC.pdf|page=80}}</ref>

There is yet another generalization to [[Milnor K-theory]] which plays a role in [[Vladimir Voevodsky|Voevodsky's]] proof of the [[Milnor conjecture (K-theory)|Milnor conjecture]].


==Proof==
==Proof==
Let <math>L/K</math> be cyclic of degree <math>n,</math> and <math>\sigma</math> generate <math>\operatorname{Gal}(L/K)</math>. Pick any <math>a\in L</math> of norm


:<math>N(a):=a \sigma(a) \sigma^2(a)\cdots \sigma^{n-1}(a)=1.</math>
===Elementary===
Let <math>L/K</math> be cyclic of degree <math>n</math>, and <math>\sigma</math> generate <math>Gal(L/K)</math>.


By clearing denominators, solving <math>a=x/\sigma^{-1}(x) \in L</math> is the same as showing that <math>a\sigma^{-1}(\cdot) : L \to L</math> has <math>1</math> as an eigenvalue. We extend this to a map of <math>L</math>-vector spaces via
Pick any <math>a\in L</math> of norm <math>N(a):=a\cdot\sigma(a)\cdot\sigma^2(a)\cdots \sigma^{n-1}(a)=1</math>.

* By clearing denominators, solving <math>a=x/\sigma(x)</math> in <math>L</math> is the same as showing that
:<math>\begin{cases} 1_L\otimes a\sigma^{-1}(\cdot) : L\otimes_KL \to L\otimes_K L \\ \ell \otimes\ell'\mapsto \ell\otimes a\sigma^{-1}(\ell').\end{cases}</math>
:<math>a\sigma(-) \ : L \longrightarrow L</math>

: has eigenvalue <math>1</math>.
The [[primitive element theorem]] gives <math>L=K(\alpha)</math> for some <math>\alpha</math>. Since <math>\alpha</math> has minimal polynomial
* Extend this to a map of <math>L</math>-vector spaces

:<math>a\sigma(-) \ : L\otimes_KL \longrightarrow L\otimes_KL</math>
: by sending <math>\ell \otimes\ell' \to \ell\otimes a\sigma(\ell')</math>.
:<math>f(t)=(t-\alpha)(t-\sigma(\alpha))\cdots \left (t-\sigma^{n-1}(\alpha) \right ) \in K[t],</math>

The primitive element theorem gives <math>L=K(\alpha)</math> for some <math>\alpha</math>. Since <math>\alpha</math> has minimal polynomial <math>f(t)=(t-\alpha)(t-\sigma(\alpha))\cdots (t-\sigma^{n-1}(\alpha)) \in K[t]</math>, we identify
we can identify
:<math>L\otimes_KL\stackrel{\sim}{\longrightarrow} L\otimes_K K[t] /f(t) \stackrel{\sim}{\longrightarrow} L[t]/f(t) \stackrel{\sim}{\longrightarrow} L^{n}</math>

via <math>\ell\otimes p(\alpha) \longrightarrow \ell (p(\alpha), p(\sigma \alpha ),\cdots , p(\sigma^{n-1} \alpha ))</math>. Here we wrote the second factor as a <math>K</math>-polynomial in <math>\alpha</math>.
:<math>L\otimes_KL\stackrel{\sim}{\to} L\otimes_K K[t] /f(t) \stackrel{\sim}{\to} L[t]/f(t) \stackrel{\sim}{\to} L^{n}</math>
* Under this identification, our map

:<math>a\sigma(-) \ : L^n\longrightarrow L^n</math>
via
: sends <math> \ell \left(p(\alpha) ,\cdots , p(\sigma^{n-1}\alpha)\right) \longrightarrow \ell ( a\cdot p(\sigma\alpha ), \cdots , \sigma^{n-1} a\cdot p(\sigma^n\alpha))</math>. That is to say, this map sends <math> (\ell_1,...,\ell_n)\longrightarrow (a \cdot \ell_n, \sigma a \cdot \ell_1, \cdots , \sigma^{n-1} a \cdot \ell_{n-1})</math>.

* <math> (1, \sigma a, \sigma a \ \sigma^2 a, \cdots, \sigma a \cdots \sigma^{n-1}a) </math> is an eigenvector with eigenvalue <math>1</math> iff <math>a</math> has norm <math>1</math>.
:<math>\ell\otimes p(\alpha) \mapsto \ell \left (p(\alpha), p(\sigma \alpha ),\ldots , p(\sigma^{n-1} \alpha ) \right ).</math>

Here we wrote the second factor as a <math>K</math>-polynomial in <math>\alpha</math>.

Under this identification, our map becomes

:<math>\begin{cases} a\sigma^{-1}(\cdot) : L^n\to L^n \\ \ell \left(p(\alpha),\ldots, p(\sigma^{n-1}\alpha)) \mapsto \ell(ap(\sigma^{n-1}\alpha), \sigma a p(\alpha), \ldots, \sigma^{n-1} a p(\sigma^{n-2}\alpha) \right ). \end{cases}</math>

That is to say under this map

:<math>(\ell_1, \ldots ,\ell_n)\mapsto (a \ell_n, \sigma a \ell_1, \ldots, \sigma^{n-1} a \ell_{n-1}).</math>

<math> (1, \sigma a, \sigma a \sigma^2 a, \ldots, \sigma a \cdots \sigma^{n-1}a)</math> is an eigenvector with eigenvalue <math>1</math> iff <math>a</math> has norm <math>1</math>.


==References==
==References==
{{reflist}}
{{reflist}}
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=Die Theorie der algebraischen Zahlkörper | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002115344 | language=German | year=1897 | journal=Jahresbericht der Deutschen Mathematiker-Vereinigung | issn=0012-0456 | volume=4 | pages=175–546 }}
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=Die Theorie der algebraischen Zahlkörper | url= http://resolver.sub.uni-goettingen.de/purl?GDZPPN002115344 | language=German | year=1897 | journal=Jahresbericht der Deutschen Mathematiker-Vereinigung | issn=0012-0456 | volume=4 | pages=175–546 }}
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=The theory of algebraic number fields | url=https://books.google.com/books?id=_Q2h83Bm94cC | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-62779-1 |mr=1646901 | year=1998}}
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=The theory of algebraic number fields | url= https://books.google.com/books?id=_Q2h83Bm94cC | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-62779-1 |mr=1646901 | year=1998}}
*{{Citation | last1=Kummer | first1=Ernst Eduard | title=Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002148927 | language=German | doi=10.1515/crll.1855.50.212 | year=1855 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=50 | pages=212–232}}
*{{Citation | last1=Kummer | first1=Ernst Eduard | title=Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002148927 | language=German | doi=10.1515/crll.1855.50.212 | year=1855 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=50 | pages=212–232}}
*{{Citation | last1=Kummer | first1=Ernst Eduard | title=Zwei neue Beweise der allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist | language=German | id=Reprinted in volume 1 of his collected works, pages 699–839 | year=1861 | journal=Abdruck aus den Abhandlungen der Kgl. Akademie der Wissenschaften zu Berlin|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002159929&L=1}}
*{{Citation | last1=Kummer | first1=Ernst Eduard | title=Zwei neue Beweise der allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist | language=German | id=Reprinted in volume 1 of his collected works, pages 699–839 | year=1861 | journal=Abdruck aus den Abhandlungen der Kgl. Akademie der Wissenschaften zu Berlin|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002159929&L=1}}
*Chapter II of J.S. Milne, ''Class Field Theory'', available at his website [http://www.jmilne.org/math].
*Chapter II of J.S. Milne, ''Class Field Theory'', available at his website [http://www.jmilne.org/math].
*{{Neukirch et al. CNF}}
*{{Neukirch et al. CNF}}
*{{Citation | last1=Noether | first1=Emmy | author1-link=Emmy Noether | title=Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper. | language=German | doi=10.1007/BF01452845 |zbl=0007.29501 | year=1933 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=108 | issue=1 | pages=411–419|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0108&DMDID=DMDLOG_0030&L=1}}
*{{Citation | last1=Noether | first1=Emmy | author1-link=Emmy Noether | title=Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper. | language=German | doi=10.1007/BF01452845 |zbl=0007.29501 | year=1933 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=108 | issue=1 | pages=411–419|url=http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002276399}}
* {{citation | last=Snaith | first=Victor P. | title=Galois module structure | series=Fields Institute monographs | location=Providence, RI | publisher=[[American Mathematical Society]] | year=1994 | isbn=0-8218-0264-X | zbl=0830.11042 }}
*{{citation | last=Snaith | first=Victor P. | title=Galois module structure | series=Fields Institute monographs | location= Providence, RI | publisher=[[American Mathematical Society]] | year=1994 | isbn=0-8218-0264-X | zbl=0830.11042 }}

==External links==
{{wikisource|de:Seite:David Hilbert Gesammelte Abhandlungen Bd 1.djvu/166|Hilbert's Theorem 90 in: David Hilbert, Gesammelte Abhandlungen, Erster Band}}


[[Category:Theorems in algebraic number theory]]
[[Category:Theorems in algebraic number theory]]
[[Category:Eponymous scientific concepts]]

Latest revision as of 20:59, 6 August 2024

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

then there exists in L such that

The theorem takes its name from the fact that it is the 90th theorem in David Hilbert's Zahlbericht (Hilbert 1897, 1998), although it is originally due to Kummer (1855, p.213, 1861).

Often a more general theorem due to Emmy Noether (1933) is given the name, stating that if L/K is a finite Galois extension of fields with arbitrary Galois group G = Gal(L/K), then the first cohomology group of G, with coefficients in the multiplicative group of L, is trivial:

Examples

[edit]

Let be the quadratic extension . The Galois group is cyclic of order 2, its generator acting via conjugation:

An element in has norm . An element of norm one thus corresponds to a rational solution of the equation or in other words, a point with rational coordinates on the unit circle. Hilbert's Theorem 90 then states that every such element a of norm one can be written as

where is as in the conclusion of the theorem, and c and d are both integers. This may be viewed as a rational parametrization of the rational points on the unit circle. Rational points on the unit circle correspond to Pythagorean triples, i.e. triples of integers satisfying .

Cohomology

[edit]

The theorem can be stated in terms of group cohomology: if L× is the multiplicative group of any (not necessarily finite) Galois extension L of a field K with corresponding Galois group G, then

Specifically, group cohomology is the cohomology of the complex whose i-cochains are arbitrary functions from i-tuples of group elements to the multiplicative coefficient group, , with differentials defined in dimensions by:

where denotes the image of the -module element under the action of the group element . Note that in the first of these we have identified a 0-cochain , with its unique image value . The triviality of the first cohomology group is then equivalent to the 1-cocycles being equal to the 1-coboundaries , viz.:

For cyclic , a 1-cocycle is determined by , with and:

On the other hand, a 1-coboundary is determined by . Equating these gives the original version of the Theorem.


A further generalization is to cohomology with non-abelian coefficients: that if H is either the general oder special linear group over L, including , then

Another generalization is to a scheme X:

where is the group of isomorphism classes of locally free sheaves of -modules of rank 1 for the Zariski topology, and is the sheaf defined by the affine line without the origin considered as a group under multiplication. [1]

There is yet another generalization to Milnor K-theory which plays a role in Voevodsky's proof of the Milnor conjecture.

Proof

[edit]

Let be cyclic of degree and generate . Pick any of norm

By clearing denominators, solving is the same as showing that has as an eigenvalue. We extend this to a map of -vector spaces via

The primitive element theorem gives for some . Since has minimal polynomial

we can identify

via

Here we wrote the second factor as a -polynomial in .

Under this identification, our map becomes

That is to say under this map

is an eigenvector with eigenvalue iff has norm .

References

[edit]
  1. ^ Milne, James S. (2013). "Lectures on Etale Cohomology (v2.21)" (PDF). p. 80.
[edit]