Jump to content

Rett syndrome: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
updated citation
consistency
(46 intermediate revisions by 32 users not shown)
Line 1: Line 1:
{{short description|Genetic brain disorder}}
{{Short description|Genetic brain disorder}}
{{distinguish|Tourette syndrome}}
{{Distinguish|Tourette syndrome}}
{{Use dmy dates|date=December 2017}}
{{Use dmy dates|date=July 2024}}
{{Use American English|date=December 2017}}
{{Use American English|date=December 2017}}
{{cs1 config |name-list-style=vanc |display-authors=6}}
{{Infobox medical condition (new)
{{Infobox medical condition (new)
| name = Rett syndrome
| name = Rett syndrome
| synonyms = Cerebroatrophic hyperammonemia (''obsolete''),<ref>{{cite book|title=Handbook of Pediatric Neuropsychology|first=Andrew S.|last= Davis|date=25 October 2010|url={{google|id=SU9-LSh4HgcC|pg=PT703|plainurl=yes}}|publisher=[[Springer Publishing Company]]|isbn=978-0826157362|quote=Rett initially called this syndrome cerebroaatrophic hyperammonemia, but the elevated ammonia levels in the bloodstream were later found to be only rarely associated with this condition (can Acker, Loncola, & Can Acker, 2005). |url-status=live|archive-url=https://web.archive.org/web/20171105195823/https://books.google.com/books?id=SU9-LSh4HgcC&pg=PT703|archive-date=5 November 2017}}</ref> dementia, ataxia, and loss of purposeful hand use syndrome<ref>{{cite web |title=MeSH Browser |url=https://meshb.nlm.nih.gov/record/ui?ui=D015518 |website=meshb.nlm.nih.gov |access-date=22 October 2019 |archive-date=4 December 2020 |archive-url=https://web.archive.org/web/20201204072904/https://meshb.nlm.nih.gov/record/ui?ui=D015518 |url-status=live }}</ref>
| synonyms = Cerebroatrophic hyperammonemia (''obsolete''),<ref>{{cite book|title=Handbook of Pediatric Neuropsychology|first=Andrew S.|last=Davis|date=25 October 2010|publisher=[[Springer Publishing Company]]|isbn=978-0826157362|quote=Rett initially called this syndrome cerebroaatrophic hyperammonemia, but the elevated ammonia levels in the bloodstream were later found to be only rarely associated with this condition (can Acker, Loncola, & Can Acker, 2005).|url-status=live|archive-url=https://web.archive.org/web/20171105195823/https://books.google.com/books?id=SU9-LSh4HgcC&pg=PT703|url=https://books.google.com/books?id=SU9-LSh4HgcC&pg=PT703|archive-date=5 November 2017|page=703}}</ref><ref>{{cite journal | doi=10.1155/2014/345270 | title=Rett Syndrome: Coming to Terms with Treatment | date=2014 | last1=Percy | first1=Alan | journal=Advances in Neuroscience | volume=2014 | pages=1–20 | doi-access=free }}</ref> dementia, ataxia, and loss of purposeful hand use syndrome<ref>{{cite web |title=MeSH Browser |url=https://meshb.nlm.nih.gov/record/ui?ui=D015518 |website=meshb.nlm.nih.gov |access-date=22 October 2019 |archive-date=4 December 2020 |archive-url=https://web.archive.org/web/20201204072904/https://meshb.nlm.nih.gov/record/ui?ui=D015518 |url-status=live}}</ref>
| image = File:Rett Girl Smiling.jpg
| image = Rett Girl Smiling.jpg
| caption = A girl with Rett Syndrome smiling at the camera.
| caption = A girl with Rett syndrome
| image_size = 225px
| image_size = 225px
| alt = A girl with short brown hair sits in a neon orange pushchair.
| alt = A girl with short brown hair sits in a neon orange pushchair.
| field = [[Psychiatry]], [[pediatrics]], [[neurology]]
| field = [[Pediatric Neurology]], [[Medical Genetics]]
| symptoms = Impairments in language and coordination, and repetitive movements, slower growth, [[microcephaly|smaller head]]<ref name=GHR2013/>
| symptoms = Impairments in language and coordination, and repetitive movements, slower growth, [[microcephaly|smaller head]]<ref name=GHR2013/>
| complications = [[Seizures]], [[scoliosis]], [[sleeping problems]]<ref name=GHR2013/>
| complications = [[Seizures]], [[scoliosis]], [[sleeping problems]]<ref name=GHR2013/>
| onset = After 6–18 months of age<ref name=GHR2013/>
| onset = After 6–18 months of age<ref name=GHR2013/>
| duration = Lifelong<ref name=NIH2017/>
| duration = Lifelong<ref name=NIH2017/>
| types =
| types =
| causes = Mutation in the [[MECP2]] gene<ref name=GHR2013/>
| causes = Mutation in the [[MECP2]] gene<ref name=GHR2013/>
| risks =
| risks =
| diagnosis = Based on symptoms, [[genetic testing]]<ref name=NIH2017/>
| diagnosis = Based on symptoms, [[genetic testing]]<ref name=NIH2017/>
| differential = [[Angelman syndrome]], [[autism]], [[cerebral palsy]], [[Childhood disintegrative disorder]], various [[Neurodegeneration|neurodegenerative disorder]]s<ref name=NORD2015>{{cite web|title=Rett Syndrome|url=https://rarediseases.org/rare-diseases/rett-syndrome/|website=NORD (National Organization for Rare Disorders)|access-date=14 October 2017|year=2015|url-status=live|archive-url=https://web.archive.org/web/20170219085529/https://rarediseases.org/rare-diseases/rett-syndrome/|archive-date=19 February 2017}}</ref>
| differential = [[Angelman syndrome]], [[autism]], [[cerebral palsy]], [[Childhood disintegrative disorder]], various [[Neurodegeneration|neurodegenerative disorder]]s<ref name=NORD2015>{{cite web|title=Rett Syndrome|url=https://rarediseases.org/rare-diseases/rett-syndrome/|website=NORD (National Organization for Rare Disorders)|access-date=14 October 2017|year=2015|url-status=live|archive-url=https://web.archive.org/web/20170219085529/https://rarediseases.org/rare-diseases/rett-syndrome/|archive-date=19 February 2017}}</ref>
| prevention =
| prevention =
| treatment = [[Special education]], physiotherapy, braces<ref name=NIH2017/>
| treatment = [[Special education]], physiotherapy, braces<ref name=NIH2017/>
| medication = [[Anticonvulsant]]s<ref name=NIH2017/>
| medication = [[Anticonvulsant]]s<ref name=NIH2017/>
| prognosis = Life expectancy for many is middle age.<ref name=NIH2017/>
| prognosis = Life expectancy for many is middle age.<ref name=NIH2017/>
| frequency = 1 in 8,500 females<ref name=GHR2013/><br/>Lethal in males, with extremely rare exceptions.
| frequency = 1 in 8,500 females<ref name=GHR2013/><br/>Lethal in males, with rare exceptions.
| deaths =
| deaths =
}}
}}
<!-- Definition and symptoms -->
<!-- Definition and symptoms -->
Line 31: Line 32:


<!-- Cause and diagnosis -->
<!-- Cause and diagnosis -->
Rett syndrome is due to a genetic mutation in the [[MECP2]] gene,<ref name=GHR2013/> on the [[X chromosome]].<ref name=NIH2017/> It almost always occurs as a new mutation, with less than one percent of cases being inherited.<ref name=GHR2013/><ref name=NIH2017/> It occurs almost exclusively in girls;<ref name=GHR2013/> boys who have a similar mutation typically die shortly after birth.<ref name=NIH2017/> Diagnosis is based on the symptoms and can be confirmed with [[genetic testing]].<ref name=NIH2017/>
Rett syndrome is due to a genetic mutation in the ''[[MECP2]]'' gene,<ref name=GHR2013/> on the [[X chromosome]].<ref name=NIH2017/> It almost always occurs as a new mutation, with less than one percent of cases being inherited.<ref name=GHR2013/><ref name=NIH2017/> It occurs almost exclusively in girls;<ref name=GHR2013/> boys who have a similar mutation typically die shortly after birth.<ref name=NIH2017/> Diagnosis is based on the symptoms and can be confirmed with [[genetic testing]].<ref name=NIH2017/>


<!-- Treatment and prognosis -->
<!-- Treatment and prognosis -->
Line 56: Line 57:
In addition to the classical form of Rett syndrome, several atypical forms have been described over the years;<ref>{{Cite journal |last1=Neul |first1=Jeffrey l. |last2=Kaufmann |first2=Walter E. |last3=Glaze |first3=Daniel G. |last4=Christodoulou |first4=John |last5=Clarke |first5=Angus J. |last6=Bahi-Buisson |first6=Nadia |last7=Leonard |first7=Helen |last8=Bailey |first8=Mark E. S. |last9=Schanen |first9=N. Carolyn |year=2010 |title=Rett syndrome: Revised diagnostic criteria and nomenclature |journal=Annals of Neurology |volume=68 |issue=6 |pages=944–50 |doi=10.1002/ana.22124 |pmc=3058521 |pmid=21154482 |last10=Zappella |first10=Michele |last11=Renieri |first11=Alessandra |last12=Huppke |first12=Peter |last13=Percy |first13=Alan K. |collaboration=Rettsearch Consortium}}</ref> the main groups are:
In addition to the classical form of Rett syndrome, several atypical forms have been described over the years;<ref>{{Cite journal |last1=Neul |first1=Jeffrey l. |last2=Kaufmann |first2=Walter E. |last3=Glaze |first3=Daniel G. |last4=Christodoulou |first4=John |last5=Clarke |first5=Angus J. |last6=Bahi-Buisson |first6=Nadia |last7=Leonard |first7=Helen |last8=Bailey |first8=Mark E. S. |last9=Schanen |first9=N. Carolyn |year=2010 |title=Rett syndrome: Revised diagnostic criteria and nomenclature |journal=Annals of Neurology |volume=68 |issue=6 |pages=944–50 |doi=10.1002/ana.22124 |pmc=3058521 |pmid=21154482 |last10=Zappella |first10=Michele |last11=Renieri |first11=Alessandra |last12=Huppke |first12=Peter |last13=Percy |first13=Alan K. |collaboration=Rettsearch Consortium}}</ref> the main groups are:
* Congenital variant (Rolando variant): in this severe subtype of Rett syndrome, the development of the patients and their head circumference are abnormal from birth.<ref>{{Cite journal |last1=Ariani |first1=Francesca |last2=Hayek |first2=Giuseppe |last3=Rondinella |first3=Dalila |last4=Artuso |first4=Rosangela |last5=Mencarelli |first5=Maria Antonietta |last6=Spanhol-Rosseto |first6=Ariele |last7=Pollazzon |first7=Marzia |last8=Buoni |first8=Sabrina |last9=Spiga |first9=Ottavia |date=11 July 2008 |title=FOXG1 is Responsible for the Congenital Variant of Rett Syndrome |journal=The American Journal of Human Genetics |volume=83 |issue=1 |pages=89–93 |doi=10.1016/j.ajhg.2008.05.015 |pmc=2443837 |pmid=18571142 |last10=Ricciardi |first10=Sara |last11=Meloni |first11=Ilaria |last12=Longo |first12=Ilaria |last13=Mari |first13=Francesca |last14=Broccoli |first14=Vania |last15=Zappella |first15=Michele |last16=Renieri |first16=Alessandra}}</ref> The typical gaze of Rett syndrome patients is usually absent;
* Congenital variant (Rolando variant): in this severe subtype of Rett syndrome, the development of the patients and their head circumference are abnormal from birth.<ref>{{Cite journal |last1=Ariani |first1=Francesca |last2=Hayek |first2=Giuseppe |last3=Rondinella |first3=Dalila |last4=Artuso |first4=Rosangela |last5=Mencarelli |first5=Maria Antonietta |last6=Spanhol-Rosseto |first6=Ariele |last7=Pollazzon |first7=Marzia |last8=Buoni |first8=Sabrina |last9=Spiga |first9=Ottavia |date=11 July 2008 |title=FOXG1 is Responsible for the Congenital Variant of Rett Syndrome |journal=The American Journal of Human Genetics |volume=83 |issue=1 |pages=89–93 |doi=10.1016/j.ajhg.2008.05.015 |pmc=2443837 |pmid=18571142 |last10=Ricciardi |first10=Sara |last11=Meloni |first11=Ilaria |last12=Longo |first12=Ilaria |last13=Mari |first13=Francesca |last14=Broccoli |first14=Vania |last15=Zappella |first15=Michele |last16=Renieri |first16=Alessandra}}</ref> The typical gaze of Rett syndrome patients is usually absent;
* [[Michele Zappella|Zappella]] variant of Rett Syndrome or preserved speech variant: in this subtype of Rett syndrome the patients acquire some manual skills and language is partially recovered around the age of 5 years (that is after the regression phase). Height, weight and head circumference are often in the normal range, and a good gross motor function can be observed.<ref>{{Cite journal |last=Zappella |first=Michele |s2cid=4782923 |year=1992 |title=The rett girls with preserved speech |journal=Brain and Development |volume=14 |issue=2 |pages=98–101 |doi=10.1016/S0387-7604(12)80094-5 |pmid=1621933}}</ref><ref>{{Cite journal |last1=Skjeldal |first1=O. H. |last2=Von Tetzchner |first2=S. |last3=Jacobsen |first3=K. |last4=Smith |first4=L. |last5=Heiberg |first5=A. |year=2007 |title=Rett Syndrome - Distribution of Phenotypes with Special Attention to the Preserved Speech Variant |journal=Neuropediatrics |volume=26 |issue=2 |pages=87 |doi=10.1055/s-2007-979732 |pmid=7566462}}</ref><ref>{{Cite journal |last1=Sørensen |first1=E. |last2=Viken |first2=B. |date=1995-02-20 |title=[Rett syndrome a developmental disorder. Presentation of a variant with preserved speech] |journal=Tidsskrift for den Norske Laegeforening |language=no |volume=115 |issue=5 |pages=588–590 |issn=0029-2001 |pmid=7900110}}</ref><ref>{{Cite journal |last=Zappella |first=M |year=1997 |title=The preserved speech variant of the Rett complex: A report of 8 cases |journal=[[European Child & Adolescent Psychiatry]] |volume=6 Suppl 1 |pages=23–5 |pmid=9452915}}</ref><ref>{{Cite journal |last1=Renieri |first1=A. |last2=Mari |first2=F. |last3=Mencarelli |first3=M.A. |last4=Scala |first4=E. |last5=Ariani |first5=F. |last6=Longo |first6=I. |last7=Meloni |first7=I. |last8=Cevenini |first8=G. |last9=Pini |first9=G. |date=March 2009 |title=Diagnostic criteria for the Zappella variant of Rett syndrome (the preserved speech variant) |journal=Brain and Development |volume=31 |issue=3 |pages=208–16 |doi=10.1016/j.braindev.2008.04.007 |pmid=18562141 |last10=Hayek |first10=G. |last11=Zappella |first11=M.|s2cid=6223422 }}</ref><ref>{{Cite journal |last1=Buoni |first1=Sabrina |last2=Zannolli |first2=Raffaella |last3=De Felice |first3=Claudio |last4=De Nicola |first4=Anna |last5=Guerri |first5=Vanessa |last6=Guerra |first6=Beatrice |last7=Casali |first7=Stefania |last8=Pucci |first8=Barbara |last9=Corbini |first9=Letizia |date=May 2010 |title=EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome |journal=[[Clinical Neurophysiology (journal)|Clinical Neurophysiology]] |volume=121 |issue=5 |pages=652–7 |doi=10.1016/j.clinph.2010.01.003 |pmid=20153689 |last10=Mari |first10=Francesca |last11=Renieri |first11=Alessandra |last12=Zappella |first12=Michele |last13=Hayek |first13=Joseph|s2cid=12976926 }}</ref> The Zappella variant is a milder form of Rett syndrome;
* [[Michele Zappella|Zappella]] variant of Rett Syndrome or preserved speech variant: in this subtype of Rett syndrome the patients acquire some manual skills and language is partially recovered around the age of 5 years (that is after the regression phase). Height, weight and head circumference are often in the normal range, and a good gross motor function can be observed.<ref>{{Cite journal |last=Zappella |first=Michele |s2cid=4782923 |year=1992 |title=The rett girls with preserved speech |journal=Brain and Development |volume=14 |issue=2 |pages=98–101 |doi=10.1016/S0387-7604(12)80094-5 |pmid=1621933}}</ref><ref>{{Cite journal |last1=Skjeldal |first1=O. H. |last2=Von Tetzchner |first2=S. |last3=Jacobsen |first3=K. |last4=Smith |first4=L. |last5=Heiberg |first5=A. |year=2007 |title=Rett Syndrome - Distribution of Phenotypes with Special Attention to the Preserved Speech Variant |journal=Neuropediatrics |volume=26 |issue=2 |pages=87 |doi=10.1055/s-2007-979732 |pmid=7566462|s2cid=260243402 }}</ref><ref>{{Cite journal |last1=Sørensen |first1=E. |last2=Viken |first2=B. |date=20 February 1995 |title=[Rett syndrome a developmental disorder. Presentation of a variant with preserved speech] |journal=Tidsskrift for den Norske Laegeforening |language=no |volume=115 |issue=5 |pages=588–590 |issn=0029-2001 |pmid=7900110}}</ref><ref>{{Cite journal |last=Zappella |first=M |year=1997 |title=The preserved speech variant of the Rett complex: A report of 8 cases |journal=[[European Child & Adolescent Psychiatry]] |volume=6 |issue=Suppl 1 |pages=23–5 |pmid=9452915}}</ref><ref>{{Cite journal |last1=Renieri |first1=A. |last2=Mari |first2=F. |last3=Mencarelli |first3=M.A. |last4=Scala |first4=E. |last5=Ariani |first5=F. |last6=Longo |first6=I. |last7=Meloni |first7=I. |last8=Cevenini |first8=G. |last9=Pini |first9=G. |date=March 2009 |title=Diagnostic criteria for the Zappella variant of Rett syndrome (the preserved speech variant) |journal=Brain and Development |volume=31 |issue=3 |pages=208–16 |doi=10.1016/j.braindev.2008.04.007 |pmid=18562141 |last10=Hayek |first10=G. |last11=Zappella |first11=M.|s2cid=6223422 }}</ref><ref>{{Cite journal |last1=Buoni |first1=Sabrina |last2=Zannolli |first2=Raffaella |last3=De Felice |first3=Claudio |last4=De Nicola |first4=Anna |last5=Guerri |first5=Vanessa |last6=Guerra |first6=Beatrice |last7=Casali |first7=Stefania |last8=Pucci |first8=Barbara |last9=Corbini |first9=Letizia |date=May 2010 |title=EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome |journal=[[Clinical Neurophysiology (journal)|Clinical Neurophysiology]] |volume=121 |issue=5 |pages=652–7 |doi=10.1016/j.clinph.2010.01.003 |pmid=20153689 |last10=Mari |first10=Francesca |last11=Renieri |first11=Alessandra |last12=Zappella |first12=Michele |last13=Hayek |first13=Joseph|s2cid=12976926 }}</ref> The Zappella variant is a milder form of Rett syndrome;
* Hanefeld variant or early epilepsy variant. In this form of Rett syndrome, the patients have epilepsy before 5 months of age.<ref>{{cite journal |doi=10.1016/S0387-7604(03)00018-4 |title=The spectrum of phenotypes in females with Rett Syndrome |year=2003 |last1=Huppke |first1=Peter |last2=Held |first2=Melanie |last3=Laccone |first3=Franco |last4=Hanefeld |first4=Folker |s2cid=9566219 |journal=Brain and Development |volume=25 |issue=5 |pages=346–51 |pmid=12850514}}</ref>
* Hanefeld variant or early epilepsy variant. In this form of Rett syndrome, the patients have epilepsy before 5 months of age.<ref>{{cite journal |doi=10.1016/S0387-7604(03)00018-4 |title=The spectrum of phenotypes in females with Rett Syndrome |year=2003 |last1=Huppke |first1=Peter |last2=Held |first2=Melanie |last3=Laccone |first3=Franco |last4=Hanefeld |first4=Folker |s2cid=9566219 |journal=Brain and Development |volume=25 |issue=5 |pages=346–51 |pmid=12850514}}</ref>
The definition itself of the Rett syndrome has been refined over the years: as the atypical forms subsist near to the classical form (Hagberg & Gillberg, 1993), the "Rett Complex" terminology has been introduced.<ref>{{Cite journal |last=Gillberg |first=d. |year=1997 |title=Communication in Rett syndrome complex |journal=[[European Child & Adolescent Psychiatry]] |volume=6 Suppl 1 |pages=21–2 |pmid=9452914}}</ref><ref>{{Cite journal |last1=Zappella |first1=Michele |last2=Gillberg |first2=Christopher |last3=Ehlers |first3=Stephan |s2cid=22152062 |year=1998 |title=The preserved speech variant: A subgroup of the Rett complex: A clinical report of 30 cases |journal=Journal of Autism and Developmental Disorders |volume=28 |issue=6 |pages=519–26 |doi=10.1023/A:1026052128305 |pmid=9932238}}</ref>
The definition itself of the Rett syndrome has been refined over the years: as the atypical forms subsist near to the classical form (Hagberg & Gillberg, 1993), the "Rett Complex" terminology has been introduced.<ref>{{Cite journal |last=Gillberg |first=d. |year=1997 |title=Communication in Rett syndrome complex |journal=[[European Child & Adolescent Psychiatry]] |volume=6 |issue=Suppl 1 |pages=21–2 |pmid=9452914}}</ref><ref>{{Cite journal |last1=Zappella |first1=Michele |last2=Gillberg |first2=Christopher |last3=Ehlers |first3=Stephan |s2cid=22152062 |year=1998 |title=The preserved speech variant: A subgroup of the Rett complex: A clinical report of 30 cases |journal=Journal of Autism and Developmental Disorders |volume=28 |issue=6 |pages=519–26 |doi=10.1023/A:1026052128305 |pmid=9932238}}</ref>


==Cause==
==Cause==
Genetically, Rett syndrome (RTT) is caused by mutations in the gene [[MECP2]] located on the X chromosome (which is involved in transcriptional silencing and epigenetic regulation of methylated DNA), and can arise sporadically or from germline mutations. In less than 10% of RTT cases, mutations in the genes [[CDKL5]] or [[FOXG1]] have also been found to resemble it.{{medcn|date=January 2020}} Rett syndrome is initially diagnosed by clinical observation, but the diagnosis is definitive when there is a genetic defect in the MECP2 gene.
Genetically, Rett syndrome (RTT) is often caused by mutations in the gene [[MECP2]]<ref name=":4">{{Cite journal |last1=Neul |first1=Jeffrey L. |last2=Kaufmann |first2=Walter E. |last3=Glaze |first3=Daniel G. |last4=Christodoulou |first4=John |last5=Clarke |first5=Angus J. |last6=Bahi-Buisson |first6=Nadia |last7=Leonard |first7=Helen |last8=Bailey |first8=Mark E. S. |last9=Schanen |first9=N. Carolyn |last10=Zappella |first10=Michele |last11=Renieri |first11=Alessandra |last12=Huppke |first12=Peter |last13=Percy |first13=Alan K. |date=2010 |title=Rett Syndrome: Revised Diagnostic Criteria and Nomenclature |journal=Annals of Neurology |volume=68 |issue=6 |pages=944–950 |doi=10.1002/ana.22124 |issn=0364-5134 |pmc=3058521 |pmid=21154482}}</ref> located on the X chromosome (which is involved in transcriptional silencing and epigenetic regulation of methylated DNA), and can arise sporadically or from germline mutations. In less than 10% of RTT cases, mutations in the genes [[CDKL5]] or [[FOXG1]] have also been found to resemble it.<ref>{{Cite journal |last1=Fahmi |first1=Muhamad |last2=Yasui |first2=Gen |last3=Seki |first3=Kaito |last4=Katayama |first4=Syouichi |last5=Kaneko-Kawano |first5=Takako |last6=Inazu |first6=Tetsuya |last7=Kubota |first7=Yukihiko |last8=Ito |first8=Masahiro |date=2019 |title=In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment |journal=International Journal of Molecular Sciences |language=en |volume=20 |issue=22 |pages=5593 |doi=10.3390/ijms20225593 |doi-access=free |issn=1422-0067 |pmc=6888432 |pmid=31717404}}</ref><ref>{{Cite journal |last1=Cutri-French |first1=Clare |last2=Armstrong |first2=Dallas |last3=Saby |first3=Joni |last4=Gorman |first4=Casey |last5=Lane |first5=Jane |last6=Fu |first6=Cary |last7=Peters |first7=Sarika U |last8=Percy |first8=Alan |last9=Neul |first9=Jeffrey L |last10=Marsh |first10=Eric D |date=2020 |title=Comparison of core features in four Developmental Encephalopathies in the Rett Natural History Study |journal=Annals of Neurology |volume=88 |issue=2 |pages=396–406 |doi=10.1002/ana.25797 |issn=0364-5134 |pmc=8882337 |pmid=32472944}}</ref> Rett syndrome is initially diagnosed by clinical observation, and is commonly associated with a genetic defect in the MECP2 gene.<ref name=":4" />


It has been argued that Rett syndrome is in fact a neurodevelopmental condition as opposed to a neurodegenerative condition. One piece of evidence for this is that mice with induced Rett Syndrome show no neuronal death, and some studies have suggested that their phenotypes can be partially rescued by adding functional MECP2 gene back when they are adults. This information has also helped lead to further studies aiming to treat the disorder.<ref>{{Cite journal |last1=Guy |first1=J. |last2=Gan |first2=J. |last3=Selfridge |first3=J. |last4=Cobb |first4=S. |last5=Bird |first5=A. |year=2007 |title=Reversal of Neurological Defects in a Mouse Model of Rett Syndrome |journal=[[Science (journal)|Science]] |volume=315 |issue=5815 |pages=1143–7 |doi=10.1126/science.1138389 |pmid=17289941|bibcode=2007Sci...315.1143G |s2cid=25172134 |pmc=7610836 }}</ref>
It has been argued that Rett syndrome is in fact a neurodevelopmental condition as opposed to a neurodegenerative condition. One piece of evidence for this is that mice with induced Rett Syndrome show no neuronal death, and some studies have suggested that their phenotypes can be partially rescued by adding functional MECP2 gene back when they are adults. This information has also helped lead to further studies aiming to treat the disorder.<ref>{{Cite journal |last1=Guy |first1=J. |last2=Gan |first2=J. |last3=Selfridge |first3=J. |last4=Cobb |first4=S. |last5=Bird |first5=A. |year=2007 |title=Reversal of Neurological Defects in a Mouse Model of Rett Syndrome |journal=[[Science (journal)|Science]] |volume=315 |issue=5815 |pages=1143–7 |doi=10.1126/science.1138389 |pmid=17289941|bibcode=2007Sci...315.1143G |s2cid=25172134 |pmc=7610836 }}</ref>
Line 67: Line 68:
===Sporadic mutations===
===Sporadic mutations===


In at least 95% of Rett syndrome cases, the cause is a [[De_novo_mutation|''de novo'' mutation]] in the child, almost exclusively from a de novo mutation on the male copy of the X chromosome.<ref>{{Cite journal |last1=Trappe |first1=R. |last2=Laccone |first2=F. |last3=Cobilanschi |first3=J. |last4=Meins |first4=M. |last5=Huppke |first5=P. |last6=Hanefeld |first6=F. |last7=Engel |first7=W. |year=2001 |title=MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin |journal=[[The American Journal of Human Genetics]] |volume=68 |issue=5 |pages=1093–101 |doi=10.1086/320109 |pmc=1226090 |pmid=11309679}}</ref><ref>{{Cite web |title=Rett Syndrome - Symptoms, Causes, Treatment {{!}} NORD |url=https://rarediseases.org/rare-diseases/rett-syndrome/ |access-date=5 February 2024 |website=rarediseases.org |language=en-US}}</ref> It is not yet known what causes the sperm to mutate, and such mutations are rare.
In at least 95% of Rett syndrome cases, the cause is a [[Mutation|''de novo'' mutation]] in the child. That is, it is not inherited from either parent. Parents are generally genotypically normal, without a MECP2 mutation.{{citation needed|date=August 2021}}

In cases of the sporadic form of RTT, the mutated MECP2 is thought to derive almost exclusively from a de novo mutation on the male copy of the X chromosome.<ref>{{Cite journal |last1=Trappe |first1=R. |last2=Laccone |first2=F. |last3=Cobilanschi |first3=J. |last4=Meins |first4=M. |last5=Huppke |first5=P. |last6=Hanefeld |first6=F. |last7=Engel |first7=W. |year=2001 |title=MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin |journal=[[The American Journal of Human Genetics]] |volume=68 |issue=5 |pages=1093–101 |doi=10.1086/320109 |pmc=1226090 |pmid=11309679}}</ref> It is not yet known what causes the sperm to mutate, and such mutations are rare.


===Germline mutations===
===Germline mutations===
It can also be inherited from phenotypically normal mothers who have a [[germline]] mutation in the gene encoding ''methyl-CpG-binding protein-2'', [[MeCP2]].<ref>{{Cite journal |last1=Zoghbi |first1=Huda Y. |last2=Van Den Veyver |first2=Ruthie E. |last3=Wan |first3=Ignatia B. |last4=Tran |first4=Mimi |last5=Francke |first5=Charles Q. |last6=Zoghbi |first6=Uta |s2cid=3350350 |year=1999 |title=Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 |journal=[[Nature Genetics]] |volume=23 |issue=2 |pages=185–8 |doi=10.1038/13810 |pmid=10508514}}</ref> In these cases, inheritance follows an [[X-linked dominant inheritance|X-linked dominant]] pattern and is seen almost exclusively in females, as most males die ''[[Uterus|in utero]]'' or shortly after birth.<ref>{{Cite web |url=https://ghr.nlm.nih.gov/condition/rett-syndrome#inheritance |title=Rett syndrome |website=Genetics Home Reference |archive-url=https://web.archive.org/web/20160727231653/https://ghr.nlm.nih.gov/condition/rett-syndrome#inheritance |archive-date=2016-07-27 |url-status=live |access-date=2016-05-29}}</ref> MECP2 is found near the end of the long arm of the X chromosome at Xq28. An atypical form of RTT, characterized by infantile spasms or early onset epilepsy, can also be caused by a mutation to the gene encoding ''cyclin-dependent kinase-like 5'' ([[CDKL5]]). As stated by Aine Merwick, Margaret O'Brien, and Norman Delanty in an article on gene disorders titled ''Complex single gene disorders and epilepsy'', "Rett syndrome affects one in every 12,500 female live births by age 12 years."<ref>{{Cite journal|last1=Merwick|first1=Aine|last2=O'Brien|first2=Margaret|last3=Delanty|first3=Norman|year=2012|title=Complex single gene disorders and epilepsy|journal=Epilepsia|language=en|volume=53|issue=s4|pages=81–91|doi=10.1111/j.1528-1167.2012.03617.x|pmid=22946725|s2cid=37226510|issn=1528-1167|doi-access=free}}</ref>
It can also be inherited from phenotypically normal mothers who have a [[germline]] mutation in the gene encoding ''methyl-CpG-binding protein-2'', [[MeCP2]].<ref>{{Cite journal |last1=Zoghbi |first1=Huda Y. |last2=Van Den Veyver |first2=Ruthie E. |last3=Wan |first3=Ignatia B. |last4=Tran |first4=Mimi |last5=Francke |first5=Charles Q. |last6=Zoghbi |first6=Uta |s2cid=3350350 |year=1999 |title=Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 |journal=[[Nature Genetics]] |volume=23 |issue=2 |pages=185–8 |doi=10.1038/13810 |pmid=10508514}}</ref> In these cases, inheritance follows an [[X-linked dominant inheritance|X-linked dominant]] pattern and is seen almost exclusively in females, as most males die ''[[Uterus|in utero]]'' or shortly after birth.<ref>{{Cite web |url=https://ghr.nlm.nih.gov/condition/rett-syndrome#inheritance |title=Rett syndrome |website=Genetics Home Reference |archive-url=https://web.archive.org/web/20160727231653/https://ghr.nlm.nih.gov/condition/rett-syndrome#inheritance |archive-date=27 July 2016 |url-status=live |access-date=29 May 2016}}</ref> MECP2 is found near the end of the long arm of the X chromosome at Xq28. An atypical form of RTT, characterized by infantile spasms or early onset epilepsy, can also be caused by a mutation to the gene encoding ''cyclin-dependent kinase-like 5'' ([[CDKL5]]). As stated by Aine Merwick, Margaret O'Brien, and Norman Delanty in an article on gene disorders titled ''Complex single gene disorders and epilepsy'', "Rett syndrome affects one in every 12,500 female live births by age 12 years."<ref>{{Cite journal|last1=Merwick|first1=Aine|last2=O'Brien|first2=Margaret|last3=Delanty|first3=Norman|year=2012|title=Complex single gene disorders and epilepsy|journal=Epilepsia|language=en|volume=53|issue=s4|pages=81–91|doi=10.1111/j.1528-1167.2012.03617.x|pmid=22946725|s2cid=37226510|issn=1528-1167|doi-access=free}}</ref>


==Mechanism==
==Mechanism==
[[File:X Rett.PNG|thumb|The location of the gene responsible for Rett syndrome]]
[[File:X Rett.PNG|thumb|The location of the gene responsible for Rett syndrome]]

===Pontine noradrenergic deficits===
===Pontine noradrenergic deficits===
Brain levels of [[norepinephrine]] are lower in people with Rett syndrome<ref>{{cite journal |doi=10.1002/ana.410250109 |title=Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome |year=1989 |last1=Zoghbi |first1=Huda Y. |last2=Milstien |first2=Sheldon |last3=Butler |first3=Ian J. |last4=Smith |first4=E. O'Brian |last5=Kaufman |first5=Seymour |last6=Glaze |first6=Daniel G. |last7=Percy |first7=Alan K. |journal=Annals of Neurology |volume=25 |pages=56–60 |pmid=2913929 |issue=1|s2cid=351243 }}</ref> (reviewed in<ref name="Roux JC">{{cite journal |doi=10.1007/s10519-009-9303-y |title=Biogenic Amines in Rett Syndrome: The Usual Suspects |year=2009 |last1=Roux |first1=Jean-Christophe |last2=Villard |first2=Laurent |s2cid=20352177 |journal=Behavior Genetics |volume=40 |pages=59–75 |pmid=19851857 |issue=1}}</ref>). The genetic loss of ''MECP2'' changes the properties of cells in the [[locus coeruleus]], the exclusive source of noradrenergic innervation to the [[cerebral cortex]] and [[hippocampus]].<ref name="Hokfelt">{{Cite book |title=Handbook of Chemical Neuroanatomy |last1=Hokfelt |first1=T. |last2=Martensson |first2=R. |last3=Bjorklund |first3=A. |last4=Kleinau |first4=S. |last5=Goldstein |first5=M |publisher=Elsevier |year=1984 |editor-last=Bjorklund |editor-first=A. |series=Classical Transmitters in the CNS, Part I |volume=2 |location=New York |pages=277–379 |chapter=Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain |editor-last2=Hokfelt |editor-first2=T.}}</ref><ref name="Berridge">{{cite journal |doi=10.1016/S0165-0173(03)00143-7 |title=The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes |year=2003 |last1=Berridge |first1=Craig W |last2=Waterhouse |first2=Barry D |s2cid=477754 |journal=Brain Research Reviews |volume=42 |pages=33–84 |pmid=12668290 |issue=1}}</ref> These changes include hyperexcitability and decreased functioning of its noradrenergic innervation.<ref name="Taneja">{{cite journal |doi=10.1523/JNEUROSCI.3156-09.2009 |title=Pathophysiology of Locus Ceruleus Neurons in a Mouse Model of Rett Syndrome |year=2009 |last1=Taneja |first1=P. |last2=Ogier |first2=M. |last3=Brooks-Harris |first3=G. |last4=Schmid |first4=D. A. |last5=Katz |first5=D. M. |last6=Nelson |first6=S. B. |journal=Journal of Neuroscience |volume=29 |issue=39 |pages=12187–95 |pmid=19793977 |pmc=2846656}}</ref> Moreover, a reduction of the [[tyrosine hydroxylase]] (Th) mRNA level, the rate-limiting enzyme in catecholamine synthesis, was detected in the whole [[pons]] of ''MECP2''-null male as well as in adult heterozygous (''MECP2''+/-) female mice.<ref name="Roux">{{cite journal |doi=10.1002/jnr.22312 |title=Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice |year=2009 |last1=Roux |first1=Jean-Christophe |last2=Panayotis |first2=Nicolas |last3=Dura |first3=Emmanuelle |last4=Villard |first4=Laurent |journal=Journal of Neuroscience Research |pmid=19998492 |pages=1500–9 |volume=88 |issue=7|s2cid=3404695 }}</ref> Using immunoquantitative techniques, a decrease of Th protein staining level, number of locus coeruleus Th-expressing neurons and density of [[dendritic arborization]] surrounding the structure was shown in symptomatic ''MeCP2''-deficient mice.<ref name="Roux" /> However, locus coeruleus cells are not dying, but are more likely losing their fully mature phenotype, since no apoptotic neurons in the pons were detected.<ref name="Roux" />
Brain levels of [[norepinephrine]] are lower in people with Rett syndrome<ref>{{cite journal |doi=10.1002/ana.410250109 |title=Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome |year=1989 |last1=Zoghbi |first1=Huda Y. |last2=Milstien |first2=Sheldon |last3=Butler |first3=Ian J. |last4=Smith |first4=E. O'Brian |last5=Kaufman |first5=Seymour |last6=Glaze |first6=Daniel G. |last7=Percy |first7=Alan K. |journal=Annals of Neurology |volume=25 |pages=56–60 |pmid=2913929 |issue=1|s2cid=351243 }}</ref> (reviewed in<ref name="Roux JC">{{cite journal |doi=10.1007/s10519-009-9303-y |title=Biogenic Amines in Rett Syndrome: The Usual Suspects |year=2009 |last1=Roux |first1=Jean-Christophe |last2=Villard |first2=Laurent |s2cid=20352177 |journal=Behavior Genetics |volume=40 |pages=59–75 |pmid=19851857 |issue=1}}</ref>). The genetic loss of ''MECP2'' changes the properties of cells in the [[locus coeruleus]], the exclusive source of noradrenergic innervation to the [[cerebral cortex]] and [[hippocampus]].<ref name="Hokfelt">{{Cite book |title=Handbook of Chemical Neuroanatomy |last1=Hokfelt |first1=T. |last2=Martensson |first2=R. |last3=Bjorklund |first3=A. |last4=Kleinau |first4=S. |last5=Goldstein |first5=M |publisher=Elsevier |year=1984 |editor-last=Bjorklund |editor-first=A. |series=Classical Transmitters in the CNS, Part I |volume=2 |location=New York |pages=277–379 |chapter=Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain |editor-last2=Hokfelt |editor-first2=T.}}</ref><ref name="Berridge">{{cite journal |doi=10.1016/S0165-0173(03)00143-7 |title=The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes |year=2003 |last1=Berridge |first1=Craig W |last2=Waterhouse |first2=Barry D |s2cid=477754 |journal=Brain Research Reviews |volume=42 |pages=33–84 |pmid=12668290 |issue=1}}</ref> These changes include hyperexcitability and decreased functioning of its noradrenergic innervation.<ref name="Taneja">{{cite journal |doi=10.1523/JNEUROSCI.3156-09.2009 |title=Pathophysiology of Locus Ceruleus Neurons in a Mouse Model of Rett Syndrome |year=2009 |last1=Taneja |first1=P. |last2=Ogier |first2=M. |last3=Brooks-Harris |first3=G. |last4=Schmid |first4=D. A. |last5=Katz |first5=D. M. |last6=Nelson |first6=S. B. |journal=Journal of Neuroscience |volume=29 |issue=39 |pages=12187–95 |pmid=19793977 |pmc=2846656}}</ref> Moreover, a reduction of the [[tyrosine hydroxylase]] (Th) mRNA level, the rate-limiting enzyme in catecholamine synthesis, was detected in the whole [[pons]] of ''MECP2''-null male as well as in adult heterozygous (''MECP2''+/-) female mice.<ref name="Roux">{{cite journal |doi=10.1002/jnr.22312 |title=Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice |year=2009 |last1=Roux |first1=Jean-Christophe |last2=Panayotis |first2=Nicolas |last3=Dura |first3=Emmanuelle |last4=Villard |first4=Laurent |journal=Journal of Neuroscience Research |pmid=19998492 |pages=1500–9 |volume=88 |issue=7|s2cid=3404695 }}</ref> Using immunoquantitative techniques, a decrease of Th protein staining level, number of locus coeruleus Th-expressing neurons and density of [[dendritic arborization]] surrounding the structure was shown in symptomatic ''MeCP2''-deficient mice.<ref name="Roux" /> However, locus coeruleus cells are not dying, but are more likely losing their fully mature phenotype, since no apoptotic neurons in the pons were detected.<ref name="Roux" />
Line 82: Line 82:


===Midbrain dopaminergic disturbances===
===Midbrain dopaminergic disturbances===
The majority of dopamine in the mammalian brain is synthesized by nuclei located in the [[mesencephalon]]. The [[substantia nigra]] pars compacta (SNpc), the [[ventral tegmental area]] (VTA) and the [[retrorubral field]] (RRF) contains dopaminergic neurons expressing tyrosine hydroxylase (Th, i.e. the rate-limiting enzyme in catecholamine synthesis).<ref>{{Cite book |title=Handbook of Chemical Neuroanatomy |last1=Björklund |first1=A. |last2=Lindvall |first2=O |publisher=Elsevier |year=1984 |editor-last=Björklund |editor-first=A. |series=Classical Transmitters in the CNS, Part l |volume=2 |location=New York |pages=55–122 |chapter=Dopamine-containing systems in the CNS |editor-last2=Hökfelt |editor-first2=T.}}</ref><ref>{{Cite book |title=Handbook of Chemical Neuroanatomy |last1=Hokfelt |first1=T. |last2=Martensson |first2=R. |last3=Björklund |first3=A. |last4=Kleinau |first4=S. |last5=Goldstein |first5=M. |publisher=Elsevier |year=1984 |editor-last=Björklund |editor-first=A. |series=Classical Transmitters in the CNS, Part I |volume=2 |location=New York |pages=277–379 |chapter=Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain |editor-last2=Hökfelt |editor-first2=T.}}</ref><ref>{{Cite journal |last1=Björklund |first1=Anders |last2=Dunnett |first2=Stephen B. |s2cid=14239716 |year=2007 |title=Dopamine neuron systems in the brain: An update |journal=Trends in Neurosciences |volume=30 |issue=5 |pages=194–202 |doi=10.1016/j.tins.2007.03.006 |pmid=17408759}}</ref>
The majority of [[dopamine]] in the mammalian brain is synthesized by nuclei located in the [[mesencephalon]]. The [[substantia nigra]] pars compacta (SNpc), the [[ventral tegmental area]] (VTA) and the [[retrorubral field]] (RRF) contain dopaminergic neurons expressing tyrosine hydroxylase (Th, i.e. the rate-limiting enzyme in catecholamine synthesis).<ref>{{Cite book |title=Handbook of Chemical Neuroanatomy |last1=Björklund |first1=A. |last2=Lindvall |first2=O |publisher=Elsevier |year=1984 |editor-last=Björklund |editor-first=A. |series=Classical Transmitters in the CNS, Part l |volume=2 |location=New York |pages=55–122 |chapter=Dopamine-containing systems in the CNS |editor-last2=Hökfelt |editor-first2=T.}}</ref><ref>{{Cite book |title=Handbook of Chemical Neuroanatomy |last1=Hokfelt |first1=T. |last2=Martensson |first2=R. |last3=Björklund |first3=A. |last4=Kleinau |first4=S. |last5=Goldstein |first5=M. |publisher=Elsevier |year=1984 |editor-last=Björklund |editor-first=A. |series=Classical Transmitters in the CNS, Part I |volume=2 |location=New York |pages=277–379 |chapter=Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain |editor-last2=Hökfelt |editor-first2=T.}}</ref><ref>{{Cite journal |last1=Björklund |first1=Anders |last2=Dunnett |first2=Stephen B. |s2cid=14239716 |year=2007 |title=Dopamine neuron systems in the brain: An update |journal=Trends in Neurosciences |volume=30 |issue=5 |pages=194–202 |doi=10.1016/j.tins.2007.03.006 |pmid=17408759}}</ref>


The nigro-striatal pathway originates from SNpc and irradiate its principal rostral target, the Caudate-Putamen (CPu) through the median forebrain bundle (MFB). This connection is involved in the tight modulation of motor strategies computed by a cortico-basal ganglia- thalamo-cortical loop.<ref>{{cite journal |doi=10.1016/0165-0173(94)00007-C |title=Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop |year=1995 |last1=Parent |first1=André |last2=Hazrati |first2=Lili-Naz |s2cid=28252990 |journal=Brain Research Reviews |volume=20 |pages=91–127 |pmid=7711769 |issue=1}}</ref>
The nigro-striatal pathway originates from the SNpc; its principal rostral target is the caudate-putamen (CPu), which it irradiates through the median forebrain bundle (MFB). This connection is involved in the tight modulation of motor strategies computed by a cortico-basal ganglia-thalamo-cortical loop.<ref>{{cite journal |doi=10.1016/0165-0173(94)00007-C |title=Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop |year=1995 |last1=Parent |first1=André |last2=Hazrati |first2=Lili-Naz |s2cid=28252990 |journal=Brain Research Reviews |volume=20 |pages=91–127 |pmid=7711769 |issue=1}}</ref>


Indeed, based on the canonical anatomofunctional model of basal ganglia, nigrostriatal dopamine is able to modulate the motor loop by acting on dopaminergic receptors located on striatal GABAergic medium spiny neurons.<ref>{{Cite journal |last=Gerfen |first=Charles R. |s2cid=3965480 |year=2000 |title=Molecular effects of dopamine on striatal-projection pathways |journal=Trends in Neurosciences |volume=23 |issue=10 Suppl |pages=S64–70 |doi=10.1016/S1471-1931(00)00019-7 |pmid=11052222}}</ref>
Indeed, based on the canonical anatomofunctional model of basal ganglia, nigrostriatal dopamine is able to modulate the motor loop by acting on dopaminergic receptors located on striatal GABAergic medium spiny neurons.<ref>{{Cite journal |last=Gerfen |first=Charles R. |s2cid=3965480 |year=2000 |title=Molecular effects of dopamine on striatal-projection pathways |journal=Trends in Neurosciences |volume=23 |issue=10 Suppl |pages=S64–70 |doi=10.1016/S1471-1931(00)00019-7 |pmid=11052222}}</ref>
Line 90: Line 90:
Dysregulation of the nigrostriatal pathway is causative from Parkinson disease (PD) in humans.<ref>{{cite journal |doi=10.1016/S0140-6736(09)60492-X |title=Parkinson's disease |year=2009 |last1=Lees |first1=Andrew J |last2=Hardy |first2=John |last3=Revesz |first3=Tamas |s2cid=42608600 |journal=The Lancet |volume=373 |issue=9680 |pages=2055–66 |pmid=19524782}}</ref> Toxic and/or genetic ablation of SNpc neurons produces experimental parkinsonism in mice and primates.<ref>{{cite journal |doi=10.1016/S0896-6273(03)00568-3 |title=Parkinson's Disease |year=2003 |last1=Dauer |first1=William |last2=Przedborski |first2=Serge |s2cid=10400095 |journal=Neuron |volume=39 |issue=6 |pages=889–909 |pmid=12971891|doi-access=free }}</ref> The common features of PD and PD animal models are motor impairments<ref>{{cite journal |doi=10.1002/ana.21489 |title=Functional models of Parkinson's disease: A valuable tool in the development of novel therapies |year=2009 |last1=Jenner |first1=Peter |journal=Annals of Neurology |volume=64 |pages=S16–29 |pmid=19127585|s2cid=26065287 }}</ref> (hypotonia, bradykinesia, hypokinesia).
Dysregulation of the nigrostriatal pathway is causative from Parkinson disease (PD) in humans.<ref>{{cite journal |doi=10.1016/S0140-6736(09)60492-X |title=Parkinson's disease |year=2009 |last1=Lees |first1=Andrew J |last2=Hardy |first2=John |last3=Revesz |first3=Tamas |s2cid=42608600 |journal=The Lancet |volume=373 |issue=9680 |pages=2055–66 |pmid=19524782}}</ref> Toxic and/or genetic ablation of SNpc neurons produces experimental parkinsonism in mice and primates.<ref>{{cite journal |doi=10.1016/S0896-6273(03)00568-3 |title=Parkinson's Disease |year=2003 |last1=Dauer |first1=William |last2=Przedborski |first2=Serge |s2cid=10400095 |journal=Neuron |volume=39 |issue=6 |pages=889–909 |pmid=12971891|doi-access=free }}</ref> The common features of PD and PD animal models are motor impairments<ref>{{cite journal |doi=10.1002/ana.21489 |title=Functional models of Parkinson's disease: A valuable tool in the development of novel therapies |year=2009 |last1=Jenner |first1=Peter |journal=Annals of Neurology |volume=64 |pages=S16–29 |pmid=19127585|s2cid=26065287 }}</ref> (hypotonia, bradykinesia, hypokinesia).


RTT pathology, in some aspects, overlaps the motor phenotype observed in PD patients.<ref>{{cite journal |doi=10.1002/mds.870050303 |title=Rett syndrome and associated movement disorders |year=1990 |last1=Fitzgerald |first1=Patricia M. |last2=Jankovic |first2=Joseph |last3=Percy |first3=Alan K. |journal=Movement Disorders |volume=5 |issue=3 |pages=195–202 |pmid=2388636|s2cid=43376602 }}</ref><ref>{{cite journal |doi=10.1177/1073858403260995 |title=Rett Syndrome: A Prototypical Neurodevelopmental Disorder |year=2004 |last1=Neul |first1=Jeffrey L. |last2=Zoghbi |first2=Huda Y. |s2cid=9617631 |journal=The Neuroscientist |volume=10 |issue=2 |pages=118–28 |pmid=15070486}}</ref><ref>{{cite journal |doi=10.1016/j.braindev.2004.11.010 |title=Early motor disturbances in Rett syndrome and its pathophysiological importance |year=2005 |last1=Segawa |first1=Masaya |s2cid=30218744 |journal=Brain and Development |volume=27 |pages=S54–S58 |pmid=16182486}}</ref> Several neuropathological studies on postmortem brain samples argued for an SNpc alteration evidenced by neuromelanin hypopigmentation, reduction in the structure area, and even controversial, signs of apoptosis. In parallel, an hypometabolism was underlined by a reduction of several catecholamines (dopamine, noradrenaline, adrenaline) and their principal metabolic by-products.<ref name="Roux JC" /> Mouse models of RTT are available and the most studied are constitutively deleted ''Mecp2'' mice developed by [[Adrian Bird]] or [[Katelyn McCormick]] laboratories.<ref>{{cite journal |doi=10.1038/85899 |year=2001 |last1=Guy |first1=Jacky |last2=Hendrich |first2=Brian |last3=Holmes |first3=Megan |last4=Martin |first4=Joanne E. |last5=Bird |first5=Adrian |s2cid=8698208 |journal=Nature Genetics |volume=27 |issue=3 |pages=322–6 |pmid=11242117 |title=A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome|hdl=1842/727 |hdl-access=free }}</ref><ref>{{cite journal |doi=10.1038/85906 |year=2001 |last1=Chen |first1=Richard Z. |last2=Akbarian |first2=Schahram |last3=Tudor |first3=Matthew |last4=Jaenisch |first4=Rudolf |s2cid=24979562 |journal=Nature Genetics |volume=27 |issue=3 |pages=327–31 |pmid=11242118 |title=Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice}}</ref><ref>{{Cite journal | pmid = 9620804| year = 1998| last1 = Nan| first1 = X| title = Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex| journal = Nature| volume = 393| issue = 6683| pages = 386–9| last2 = Ng| first2 = H. H.| last3 = Johnson| first3 = C. A.| last4 = Laherty| first4 = C. D.| last5 = Turner| first5 = B. M.| last6 = Eisenman| first6 = R. N.| last7 = Bird| first7 = A| s2cid = 4427745| doi = 10.1038/30764| bibcode = 1998Natur.393..386N}}</ref><ref>{{Cite journal | pmid = 22653753| pmc = 3412380| year = 2012| last1 = Cheval| first1 = H| title = Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows| journal = [[Human Molecular Genetics]]| volume = 21| issue = 17| pages = 3806–14| last2 = Guy| first2 = J| last3 = Merusi| first3 = C| last4 = De Sousa| first4 = D| last5 = Selfridge| first5 = J| last6 = Bird| first6 = A | author-link6 = Adrian Bird| doi = 10.1093/hmg/dds208}} {{open access}}</ref>
RTT pathology, in some aspects, overlaps the motor phenotype observed in PD patients.<ref>{{cite journal |doi=10.1002/mds.870050303 |title=Rett syndrome and associated movement disorders |year=1990 |last1=Fitzgerald |first1=Patricia M. |last2=Jankovic |first2=Joseph |last3=Percy |first3=Alan K. |journal=Movement Disorders |volume=5 |issue=3 |pages=195–202 |pmid=2388636|s2cid=43376602 }}</ref><ref>{{cite journal |doi=10.1177/1073858403260995 |title=Rett Syndrome: A Prototypical Neurodevelopmental Disorder |year=2004 |last1=Neul |first1=Jeffrey L. |last2=Zoghbi |first2=Huda Y. |s2cid=9617631 |journal=The Neuroscientist |volume=10 |issue=2 |pages=118–28 |pmid=15070486}}</ref><ref>{{cite journal |doi=10.1016/j.braindev.2004.11.010 |title=Early motor disturbances in Rett syndrome and its pathophysiological importance |year=2005 |last1=Segawa |first1=Masaya |s2cid=30218744 |journal=Brain and Development |volume=27 |pages=S54–S58 |pmid=16182486}}</ref> Several neuropathological studies on postmortem brain samples argued for an SNpc alteration, evidenced by neuromelanin hypopigmentation, reduction in the structure area, and even, controversially, signs of apoptosis. In parallel, a hypometabolism was underlined by a reduction of several catecholamines (dopamine, noradrenaline, adrenaline) and their principal metabolic by-products.<ref name="Roux JC" /> Mouse models of RTT are available; the most studied are constitutively deleted ''Mecp2'' mice developed by [[Adrian Bird]] or [[Katelyn McCormick]] laboratories.<ref>{{cite journal |doi=10.1038/85899 |year=2001 |last1=Guy |first1=Jacky |last2=Hendrich |first2=Brian |last3=Holmes |first3=Megan |last4=Martin |first4=Joanne E. |last5=Bird |first5=Adrian |s2cid=8698208 |journal=Nature Genetics |volume=27 |issue=3 |pages=322–6 |pmid=11242117 |title=A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome|hdl=1842/727 |hdl-access=free }}</ref><ref>{{cite journal |doi=10.1038/85906 |year=2001 |last1=Chen |first1=Richard Z. |last2=Akbarian |first2=Schahram |last3=Tudor |first3=Matthew |last4=Jaenisch |first4=Rudolf |s2cid=24979562 |journal=Nature Genetics |volume=27 |issue=3 |pages=327–31 |pmid=11242118 |title=Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice}}</ref><ref>{{Cite journal | pmid = 9620804| year = 1998| last1 = Nan| first1 = X| title = Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex| journal = Nature| volume = 393| issue = 6683| pages = 386–9| last2 = Ng| first2 = H. H.| last3 = Johnson| first3 = C. A.| last4 = Laherty| first4 = C. D.| last5 = Turner| first5 = B. M.| last6 = Eisenman| first6 = R. N.| last7 = Bird| first7 = A| s2cid = 4427745| doi = 10.1038/30764| bibcode = 1998Natur.393..386N}}</ref><ref>{{Cite journal | pmid = 22653753| pmc = 3412380| year = 2012| last1 = Cheval| first1 = H| title = Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows| journal = [[Human Molecular Genetics]]| volume = 21| issue = 17| pages = 3806–14| last2 = Guy| first2 = J| last3 = Merusi| first3 = C| last4 = De Sousa| first4 = D| last5 = Selfridge| first5 = J| last6 = Bird| first6 = A | author-link6 = Adrian Bird| doi = 10.1093/hmg/dds208}} {{open access}}</ref>


In accordance with the motor spectrum of the RTT phenotype, ''Mecp2''-null mice show motor abnormalities from postnatal day 30 that worsen until death. These models offer a crucial substrate to elucidate the molecular and neuroanatomical correlates of an ''MeCP2''-deficiency.<ref>{{cite journal |doi=10.1097/FBP.0b013e32830c3645 |title=Mouse models of Rett syndrome: From behavioural phenotyping to preclinical evaluation of new therapeutic approaches |year=2008 |last1=Ricceri |first1=Laura |last2=De Filippis |first2=Bianca |last3=Laviola |first3=Giovanni |s2cid=33364486 |journal=Behavioural Pharmacology |volume=19 |issue=5–6 |pages=501–17 |pmid=18690105}}</ref> Recently (2008), it was shown that the conditional deletion of ''Mecp2'' in catecholaminergic neurons (by crossing of Th-Cre mice with loxP-flanked ''Mecp2'' ones) recapitulates a motor symptomatology, it was further documented that brain levels of Th in mice lacking ''MeCP2'' in catecholaminergic neurons only are reduced, participating to the motor phenotype.<ref>{{cite journal |doi=10.1073/pnas.0912257106 |title=Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities |year=2009 |last1=Samaco |first1=R. C. |last2=Mandel-Brehm |first2=C. |last3=Chao |first3=H.-T. |last4=Ward |first4=C. S. |last5=Fyffe-Maricich |first5=S. L. |last6=Ren |first6=J. |last7=Hyland |first7=K. |last8=Thaller |first8=C. |last9=Maricich |first9=S. M. |last10=Humphreys |first10=P. |last11=Greer |first11=J. J. |last12=Percy |first12=A. |last13=Glaze |first13=D. G. |last14=Zoghbi |first14=H. Y. |last15=Neul |first15=J. L. |journal=Proceedings of the National Academy of Sciences |volume=106 |issue=51 |pages=21966–71 |bibcode=2009PNAS..10621966S |jstor=40536204 |pmid=20007372 |pmc=2799790|doi-access=free }}</ref>
In accordance with the motor spectrum of the RTT phenotype, ''Mecp2''-null mice show motor abnormalities from postnatal day 30 that worsen until death. These models offer a crucial substrate to elucidate the molecular and neuroanatomical correlates of ''MeCP2''-deficiency.<ref>{{cite journal |doi=10.1097/FBP.0b013e32830c3645 |title=Mouse models of Rett syndrome: From behavioural phenotyping to preclinical evaluation of new therapeutic approaches |year=2008 |last1=Ricceri |first1=Laura |last2=De Filippis |first2=Bianca |last3=Laviola |first3=Giovanni |s2cid=33364486 |journal=Behavioural Pharmacology |volume=19 |issue=5–6 |pages=501–17 |pmid=18690105}}</ref> Recently (2008), it was shown that the conditional deletion of ''Mecp2'' in catecholaminergic neurons (by crossing of Th-Cre mice with loxP-flanked ''Mecp2'' ones) recapitulates a motor symptomatology; it was further documented that brain levels of Th in mice lacking ''MeCP2'' in catecholaminergic neurons only are reduced, participating to the motor phenotype.<ref>{{cite journal |doi=10.1073/pnas.0912257106 |title=Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities |year=2009 |last1=Samaco |first1=R. C. |last2=Mandel-Brehm |first2=C. |last3=Chao |first3=H.-T. |last4=Ward |first4=C. S. |last5=Fyffe-Maricich |first5=S. L. |last6=Ren |first6=J. |last7=Hyland |first7=K. |last8=Thaller |first8=C. |last9=Maricich |first9=S. M. |last10=Humphreys |first10=P. |last11=Greer |first11=J. J. |last12=Percy |first12=A. |last13=Glaze |first13=D. G. |last14=Zoghbi |first14=H. Y. |last15=Neul |first15=J. L. |journal=Proceedings of the National Academy of Sciences |volume=106 |issue=51 |pages=21966–71 |bibcode=2009PNAS..10621966S |jstor=40536204 |pmid=20007372 |pmc=2799790|doi-access=free }}</ref>


However, the most studied model for the evaluation of therapeutics is the ''Mecp2''-null mouse (totally devoid of ''MeCP2''). In this context, a reduction in the number and soma size of Th-expressing neurons is present from 5 weeks of age and is accompanied by a decrease of Th immunoreactivity in the caudate-putamen, the principal target of dopaminergic neurons arising from the SNpc.<ref name="Panayotis">{{cite journal |doi=10.1016/j.nbd.2010.10.006 |title=Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse |year=2011 |last1=Panayotis |first1=Nicolas |last2=Pratte |first2=Michel |last3=Borges-Correia |first3=Ana |last4=Ghata |first4=Adeline |last5=Villard |first5=Laurent |last6=Roux |first6=Jean-Christophe |s2cid=25414717 |journal=Neurobiology of Disease |volume=41 |issue=2 |pages=385–97 |pmid=20951208}}</ref> Moreover, a neurochemical analysis of dopaminergic contents in microdissected midbrain and striatal areas revealed a reduction of dopamine at five and nine weeks of age. It is noteworthy that later on (at nine weeks), the morphological parameters remain altered but not worsen, whereas the phenotype progresses and behavioral deficits are more severe. The amount of fully activated Th (Serine40-phosphorylated isoform) in neurons that remain in the SNpc is mildly affected at 5 weeks but severely impaired by 9 weeks.<ref name="Panayotis" /> Finally, using a chronic and oral L-Dopa treatment on ''MeCP2''-deficient mice authors reported an amelioration of some of the motor deficits previously identified.<ref name="Panayotis" /> Altogether, these results argue for an alteration of the nigrostriatal dopaminergic pathway in ''MeCP2''-deficient animals as a contributor of the neuromotor deficits.{{citation needed|date=September 2021}}
However, the most studied model for the evaluation of therapeutics is the ''Mecp2''-[[null mouse]] (totally devoid of ''MeCP2''). In this context, a reduction in the number and soma size of Th-expressing neurons is present from 5 weeks of age and is accompanied by a decrease of Th immunoreactivity in the caudate-putamen, the principal target of dopaminergic neurons arising from the SNpc.<ref name="Panayotis">{{cite journal |doi=10.1016/j.nbd.2010.10.006 |title=Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse |year=2011 |last1=Panayotis |first1=Nicolas |last2=Pratte |first2=Michel |last3=Borges-Correia |first3=Ana |last4=Ghata |first4=Adeline |last5=Villard |first5=Laurent |last6=Roux |first6=Jean-Christophe |s2cid=25414717 |journal=Neurobiology of Disease |volume=41 |issue=2 |pages=385–97 |pmid=20951208}}</ref> Moreover, a neurochemical analysis of dopaminergic contents in microdissected midbrain and striatal areas revealed a reduction of dopamine at five and nine weeks of age. It is noteworthy that later on (at nine weeks), the morphological parameters remain altered but not worsened, whereas the phenotype progresses and behavioral deficits are more severe. The amount of fully activated Th (Serine40-phosphorylated isoform) in neurons that remain in the SNpc is mildly affected at 5 weeks but severely impaired by 9 weeks.<ref name="Panayotis" /> Finally, using a chronic and oral L-Dopa treatment on ''MeCP2''-deficient mice, authors reported an amelioration of some of the motor deficits previously identified.<ref name="Panayotis" /> Altogether, these results argue for an alteration of the nigrostriatal dopaminergic pathway in ''MeCP2''-deficient animals as a contributor of the neuromotor deficits.<ref name="Panayotis" />


There is an association of the disease{{which|date=August 2014}} with [[brain-derived neurotrophic factor]] (BDNF).<ref>{{cite journal |doi=10.1016/j.neuron.2006.01.014 |title=The Ups and Downs of BDNF in Rett Syndrome |year=2006 |last1=Sun |first1=Yi E. |last2=Wu |first2=Hao |journal=Neuron |volume=49 |issue=3 |pages=321–3 |pmid=16446133|doi-access=free }}</ref>
There is an association of Rett syndrome with [[brain-derived neurotrophic factor]] (BDNF).<ref>{{cite journal |doi=10.1016/j.neuron.2006.01.014 |title=The Ups and Downs of BDNF in Rett Syndrome |year=2006 |last1=Sun |first1=Yi E. |last2=Wu |first2=Hao |journal=Neuron |volume=49 |issue=3 |pages=321–3 |pmid=16446133|doi-access=free }}</ref>


===Molecular functions of MECP2 in Rett syndrome pathology===
===Molecular functions of MECP2 in Rett syndrome pathology===
As reviewed by Sharifi and Yasui,<ref name="Sharifi2021">{{Cite journal |doi=10.3389/fgene.2021.624290 |pmc=8102816 |pmid=33968128|doi-access=free |title=The Molecular Functions of MeCP2 in Rett Syndrome Pathology |year=2021 |last1=Sharifi |first1=Osman |last2=Yasui |first2=Dag H. |journal=Frontiers in Genetics |volume=12 |page=624290 }}</ref> [[MECP2]] protein, encoded by the ''MECP2'' gene binds to DNA with a high affinity for [[CpG site|CpG methylated DNA sites]] and affects [[transcription (biology)|transcription]]. MECP2 can bind to 5mc (5-methylcytosine) and 5hmc (5-hydroxymethylcytosine) with similar affinity, and these dinucleotides account for the majority of MECP2 binding sites in the mammalian [[genome]]. MECP2 is involved in higher order [[chromatin]] organization and appears necessary for compacting chromosomes. MECP2 binding to DNA influences [[RNA splicing|mRNA splicing]] events. MECP2 also appears to function in [[DNA repair]] processes. ''MECP2-/+'' deficient female mice have elevated rates of cell death when exposed to DNA damaging agents and are prone to early [[senescence]].<ref name="Sharifi2021" />
As reviewed by Sharifi and Yasui,<ref name="Sharifi2021">{{Cite journal |doi=10.3389/fgene.2021.624290 |pmc=8102816 |pmid=33968128|doi-access=free |title=The Molecular Functions of MeCP2 in Rett Syndrome Pathology |year=2021 |last1=Sharifi |first1=Osman |last2=Yasui |first2=Dag H. |journal=Frontiers in Genetics |volume=12 |page=624290 }}</ref> [[MECP2]] protein, encoded by the ''MECP2'' gene binds to DNA with a high affinity for [[CpG site|CpG methylated DNA sites]] and affects [[transcription (biology)|transcription]]. MECP2 can bind to 5mc ([[5-methylcytosine]]) and 5hmc ([[5-hydroxymethylcytosine]]) with similar affinity, and these dinucleotides account for the majority of MECP2 binding sites in the mammalian [[genome]]. MECP2 is involved in higher order [[chromatin]] organization and appears necessary for compacting chromosomes. MECP2 binding to DNA influences [[RNA splicing|mRNA splicing]] events. MECP2 also appears to function in [[DNA repair]] processes. ''MECP2-/+'' deficient female mice have elevated rates of cell death when exposed to DNA damaging agents and are prone to early [[senescence]].<ref name="Sharifi2021" />


===Interactive pathway map===
===Interactive pathway map===
An [[Template:MECP2andAssociatedRettSyndrome WP3584|interactive pathway map of Rett syndrome]] has been published.<ref>{{cite journal|last1=Ehrhart|first1=Friederike|last2=Coort|first2=Susan L. M.|last3=Cirillo|first3=Elisa|last4=Smeets|first4=Eric|last5=Evelo|first5=Chris T.|last6=Curfs|first6=Leopold M. G.|title=Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes|journal=Orphanet Journal of Rare Diseases|date=25 November 2016|volume=11|issue=1|pages=158|doi=10.1186/s13023-016-0545-5|pmid=27884167|pmc=5123333}}</ref>
An [[Template:MECP2andAssociatedRettSyndrome WP3584|interactive pathway map of Rett syndrome]] has been published.<ref>{{cite journal|last1=Ehrhart|first1=Friederike|last2=Coort|first2=Susan L. M.|last3=Cirillo|first3=Elisa|last4=Smeets|first4=Eric|last5=Evelo|first5=Chris T.|last6=Curfs|first6=Leopold M. G.|title=Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes|journal=Orphanet Journal of Rare Diseases|date=25 November 2016|volume=11|issue=1|pages=158|doi=10.1186/s13023-016-0545-5|pmid=27884167|pmc=5123333 |doi-access=free }}</ref>


==Diagnosis==
==Diagnosis==
[[File:Rett Girl Mouthing.jpg|thumb|alt=A girl with short brown hair sits in a neon orange push chair. She is on a concrete pathway in front of a building.|A girl with Rett Syndrome mouthing her hands, a common behavior with Rett Syndrome.]]
[[File:Rett Girl Mouthing.jpg|thumb|alt=A girl with short brown hair sits in a neon orange push chair. She is on a concrete pathway in front of a building.|A girl with Rett Syndrome mouthing her hands, a common behavior with Rett Syndrome]]
Prior to the discovery of a genetic cause, Rett syndrome had been designated as a [[pervasive developmental disorder]] by the ''[[Diagnostic and Statistical Manual of Mental Disorders]]'' (DSM), together with the [[autism spectrum disorders]]. Some argued against this conclusive assignment because RTT resembles non-autistic disorders such as [[fragile X syndrome]], [[tuberous sclerosis]], or [[Down syndrome]] that also exhibit autistic features.<ref name="pmid1483976">{{cite journal |doi=10.1007/BF01046327 |title=Is Rett syndrome a subtype of pervasive developmental disorders? |year=1992 |last1=Tsai |first1=Luke Y. |s2cid=17817425 |journal=Journal of Autism and Developmental Disorders |volume=22 |issue=4 |pages=551–61 |pmid=1483976 |url=https://deepblue.lib.umich.edu/bitstream/2027.42/44607/1/10803_2005_Article_BF01046327.pdf |hdl=2027.42/44607 |hdl-access=free |access-date=20 April 2018 |archive-date=29 August 2021 |archive-url=https://web.archive.org/web/20210829034035/https://deepblue.lib.umich.edu/bitstream/handle/2027.42/44607/10803_2005_Article_BF01046327.pdf;jsessionid=5AF727165DD202B572C6B1787C0B6246?sequence=1 |url-status=live }}</ref>
Prior to the discovery of a genetic cause, Rett syndrome had been designated as a [[pervasive developmental disorder]] by the ''[[Diagnostic and Statistical Manual of Mental Disorders]]'' (DSM), together with the [[autism spectrum disorders]]. Some argued against this conclusive assignment because RTT resembles non-autistic disorders such as [[fragile X syndrome]], [[tuberous sclerosis]], or [[Down syndrome]] that also exhibit autistic features.<ref name="pmid1483976">{{cite journal |doi=10.1007/BF01046327 |title=Is Rett syndrome a subtype of pervasive developmental disorders? |year=1992 |last1=Tsai |first1=Luke Y. |s2cid=17817425 |journal=Journal of Autism and Developmental Disorders |volume=22 |issue=4 |pages=551–61 |pmid=1483976 |url=https://deepblue.lib.umich.edu/bitstream/2027.42/44607/1/10803_2005_Article_BF01046327.pdf |hdl=2027.42/44607 |hdl-access=free |access-date=20 April 2018 |archive-date=29 August 2021 |archive-url=https://web.archive.org/web/20210829034035/https://deepblue.lib.umich.edu/bitstream/handle/2027.42/44607/10803_2005_Article_BF01046327.pdf;jsessionid=5AF727165DD202B572C6B1787C0B6246?sequence=1 |url-status=live }}</ref>
After research proved the molecular mechanism, in 2013 the [[DSM-5]] removed the syndrome altogether from classification as a mental disorder.<ref>{{cite book|last1=Abbeduto|first1=Leonard|last2=Ozonoff|first2=Susan|last3=Thurman|first3=Angela John|last4=McDuffie|first4=Angela|last5=Schweitzer|first5=Julie|editor1-last=Hales|editor1-first=Robert|editor2-last=Yudofsky|editor2-first=Stuart|editor3-last=Robert|editor3-first=Laura Weiss|title=Chapter 8. Neurodevelopmental Disorders, The American Psychiatric Publishing Textbook of Psychiatry|publisher=American Psychiatric Publishing|location=Arlington, VA|isbn=978-1-58562-444-7|edition=6|doi=10.1176/appi.books.9781585625031.rh08|date=18 March 2014|s2cid=241966275 }}</ref>
After research proved the molecular mechanism, in 2013 the [[DSM-5]] removed the syndrome altogether from classification as a mental disorder.<ref>{{cite book|last1=Abbeduto|first1=Leonard|last2=Ozonoff|first2=Susan|last3=Thurman|first3=Angela John|last4=McDuffie|first4=Angela|last5=Schweitzer|first5=Julie|editor1-last=Hales|editor1-first=Robert|editor2-last=Yudofsky|editor2-first=Stuart|editor3-last=Robert|editor3-first=Laura Weiss|title=Chapter 8. Neurodevelopmental Disorders, The American Psychiatric Publishing Textbook of Psychiatry|publisher=American Psychiatric Publishing|location=Arlington, VA|isbn=978-1-58562-444-7|edition=6|doi=10.1176/appi.books.9781585625031.rh08|date=18 March 2014|s2cid=241966275 }}</ref>


Rett syndrome diagnosis involves close observation of the child's growth and development to observe any abnormalities in regards to developmental milestones.<ref name=":1">{{cite web|url=http://www.mayoclinic.org/diseases-conditions/rett-syndrome/basics/tests-diagnosis/con-20028086|title=Rett syndrome Tests and diagnosis|website=Mayo Clinic|language=en|url-status=live|archive-url=https://web.archive.org/web/20171030003645/https://www.mayoclinic.org/diseases-conditions/rett-syndrome/basics/tests-diagnosis/con-20028086|archive-date=2017-10-30}}</ref> A diagnosis is considered when decreased head growth is observed. Conditions with similar symptoms must first be ruled out.<ref name=":1" />
Rett syndrome diagnosis involves close observation of the child's growth and development to observe any abnormalities in regards to developmental milestones.<ref name=":1">{{cite web|url=http://www.mayoclinic.org/diseases-conditions/rett-syndrome/basics/tests-diagnosis/con-20028086|title=Rett syndrome Tests and diagnosis|website=Mayo Clinic|language=en|url-status=live|archive-url=https://web.archive.org/web/20171030003645/https://www.mayoclinic.org/diseases-conditions/rett-syndrome/basics/tests-diagnosis/con-20028086|archive-date=30 October 2017}}</ref> A diagnosis is considered when decreased head growth is observed. Conditions with similar symptoms must first be ruled out.<ref name=":1" />


There is a certain criteria that must be met for the diagnosis. A blood test can rule in or rule out the presence of the MECP2 mutation, however, this mutation is present in other conditions as well.<ref name=":0">{{cite web |url=https://www.rettsyndrome.org/about-rett-syndrome/rett-syndrome-diagnosis/|title= About Rett syndrome - Rett Syndrome Diagnosis |website=rettsyndrome.org|publisher=International Rett Syndrome Foundation |language=en-us |url-status=live |archive-url=https://web.archive.org/web/20171029173049/https://www.rettsyndrome.org/about-rett-syndrome/about-the-diagnosis|archive-date=2017-10-29 |access-date= 10 May 2020}}</ref>
There are certain criteria that must be met for the diagnosis. A blood test can rule in or rule out the presence of the MECP2 mutation, however, this mutation is present in other conditions as well.<ref name=":0">{{cite web |url=https://www.rettsyndrome.org/about-rett-syndrome/rett-syndrome-diagnosis/|title= About Rett syndrome - Rett Syndrome Diagnosis |website=rettsyndrome.org|publisher=International Rett Syndrome Foundation |language=en-us |url-status=live |archive-url=https://web.archive.org/web/20171029173049/https://www.rettsyndrome.org/about-rett-syndrome/about-the-diagnosis|archive-date=29 October 2017 |access-date= 10 May 2020}}</ref>


For a classic diagnosis, all four criteria for ruling in a diagnosis must be met, as well as the two criteria for ruling out a diagnosis. Supportive criteria may also be present, but are not required for diagnosis. For an atypical or variant diagnosis, at least two of the four criteria for ruling in the diagnosis must be met, as well as five of the eleven supportive criteria. A period of symptom regression followed by recovery or symptom stabilization must also occur.<ref name=":0" /> Children are often misdiagnosed as having autism, cerebral palsy, or another form of developmental delay. A positive test for the MECP2 mutation is not enough to make a diagnosis.<ref name=":0" />
For a classic diagnosis, all four criteria for ruling in a diagnosis must be met, as well as the two criteria for ruling out a diagnosis. Supportive criteria may also be present, but are not required for diagnosis. For an atypical or variant diagnosis, at least two of the four criteria for ruling in the diagnosis must be met, as well as five of the eleven supportive criteria. A period of symptom regression followed by recovery or symptom stabilization must also occur.<ref name=":0" /> Children are often misdiagnosed as having autism, cerebral palsy, or another form of developmental delay. A positive test for the MECP2 mutation is not enough to make a diagnosis.<ref name=":0" />
Line 138: Line 138:


===Differential diagnosis===
===Differential diagnosis===
Signs of Rett syndrome that are similar to [[autism]]:<ref>{{Cite web |title=Seven Disorders Closely Related to Autism |url=https://autism.org/related-disorders/ |access-date=5 February 2024 |website=Autism Research Institute |language=en-US}}</ref><ref>{{Cite journal |last=Neul |first=Jeffrey Lorenz |date=2012 |title=The relationship of Rett syndrome and MECP2 disorders to autism |journal=Dialogues in Clinical Neuroscience |volume=14 |issue=3 |pages=253–262 |doi=10.31887/DCNS.2012.14.3/jneul |issn=1294-8322 |pmc=3513680 |pmid=23226951}}</ref>
{{unreferenced section|date=January 2020}}

Signs of Rett syndrome that are similar to [[autism]]:
{{columns-list|colwidth=30em|
{{columns-list|colwidth=30em|
* screaming fits
* screaming fits
Line 152: Line 150:
}}
}}


Signs of Rett syndrome that are also present in [[cerebral palsy]]:<ref>{{Cite web |title=Rett Syndrome {{!}} Rady Children's Hospital |url=https://www.rchsd.org/programs-services/neurology/conditions-treated/rett-syndrome/ |access-date=5 February 2024 |website=www.rchsd.org}}</ref><ref>{{Cite web |title=Cerebral Palsy Misdiagnosis |url=https://www.cerebralpalsyguidance.com/cerebral-palsy/misdiagnosis/ |access-date=5 February 2024 |website=Cerebral Palsy Guidance |language=en-US}}</ref>
Signs of Rett syndrome that are also present in [[cerebral palsy]] (regression of the type seen in Rett syndrome would be unusual in cerebral palsy; this confusion could rarely be made):
{{columns-list|colwidth=30em|
{{columns-list|colwidth=30em|
* possible short stature, sometimes with unusual body proportions because of difficulty walking or [[malnutrition]] caused by [[dysphagia|difficulty swallowing]]
* possible short stature, sometimes with unusual body proportions because of difficulty walking or [[malnutrition]] caused by [[dysphagia|difficulty swallowing]]
Line 169: Line 167:
==Treatment==
==Treatment==
{{Main|Treatment of Rett syndrome}}
{{Main|Treatment of Rett syndrome}}
Currently there is no cure for Rett syndrome.<ref name=NIH2017/> Treatment is directed towards improving function and addressing symptoms.<ref name=NIH2017/> A multi-disciplinary team approach is typically used to treat the person throughout life. This team may include a [[primary care physician]], physical therapist, occupational therapist, speech-language pathologist, nutritionist, and support services in academic and occupational settings. Some children may require special equipment and aids such as braces to arrest scoliosis, splints to modify hand movements, and nutritional programs to help them maintain adequate weight.<ref name=NIH2017/>
There is no cure for Rett syndrome.<ref name=NIH2017/> Treatment is directed towards improving function and addressing symptoms.<ref name=NIH2017/> A multi-disciplinary team approach is typically used to treat the person throughout life. This team may include a [[primary care physician]], physical therapist, occupational therapist, speech-language pathologist, nutritionist, and support services in academic and occupational settings. Some children may require special equipment and aids such as braces to arrest scoliosis, splints to modify hand movements, and nutritional programs to help them maintain adequate weight.<ref name=NIH2017/>


Because of the increased risk of sudden cardiac death, when [[long QT syndrome]] is found on an annual screening EKG it is treated with an anti-arrhythmic such as a [[beta-blocker]]. There is some evidence that [[phenytoin]] may be more effective than a beta-blocker.<ref>{{Cite journal |last1=McCauley |first1=Mark D. |last2=Wang |first2=Tiannan |last3=Mike |first3=Elise |last4=Herrera |first4=Jose |last5=Beavers |first5=David L. |last6=Huang |first6=Teng-Wei |last7=Ward |first7=Christopher S. |last8=Skinner |first8=Steven |last9=Percy |first9=Alan K. |date=2011-12-14 |title=Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome |journal=[[Science Translational Medicine]] |language=en |volume=3 |issue=113 |pages=113ra125 |doi=10.1126/scitranslmed.3002982 |issn=1946-6234 |pmid=22174313|pmc=3633081 }}</ref>
Because of the increased risk of sudden cardiac death, when [[long QT syndrome]] is found on an annual screening EKG it is treated with an anti-arrhythmic such as a [[beta-blocker]]. There is some evidence that [[phenytoin]] may be more effective than a beta-blocker.<ref>{{Cite journal |last1=McCauley |first1=Mark D. |last2=Wang |first2=Tiannan |last3=Mike |first3=Elise |last4=Herrera |first4=Jose |last5=Beavers |first5=David L. |last6=Huang |first6=Teng-Wei |last7=Ward |first7=Christopher S. |last8=Skinner |first8=Steven |last9=Percy |first9=Alan K. |date=14 December 2011 |title=Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome |journal=[[Science Translational Medicine]] |language=en |volume=3 |issue=113 |pages=113ra125 |doi=10.1126/scitranslmed.3002982 |issn=1946-6234 |pmid=22174313|pmc=3633081 }}</ref>


While medicinal interventions to mitigate breathing challenges in children with Rett Syndrome (RTT) are still being developed,<ref name=":2">{{Cite journal|last1=Mackay|first1=Jessica|last2=Downs|first2=Jenny|last3=Wong|first3=Kingsley|last4=Heyworth|first4=Jane|last5=Epstein|first5=Amy|last6=Leonard|first6=Helen|year=2017|title=Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study|journal=Journal of Neurodevelopmental Disorders|volume=9|pages=15|doi=10.1186/s11689-017-9196-7|issn=1866-1947|pmc=5410057|pmid=28465761}}</ref> children with RTT may be prescribed rebreathing techniques (e.g., rebreathing masks), oxygen delivery, or non-invasive ventilation as preventative or rescue breathing treatments.<ref>{{Cite journal|last=Harish Kumar|first=S.|date=2017-01-19|title=Cardio respiratory physiotherapy management in Rett's syndrome - Literature review|url=https://www.researchgate.net/publication/344295987|journal=International Journal of Pharma and Bio Sciences|pages=5|via=ResearchGate}}</ref> High oxidative stress levels in individuals with RTT have exacerbated effects on their cardiorespiratory health and functionality,<ref name=":2" /> dramatically increasing the risk for sudden cardiac death—an anomaly that has an associated 300x increased occurrence risk in children with Rett Syndrome.<ref>{{Cite journal|last1=Kyle|first1=Stephanie M.|last2=Vashi|first2=Neeti|last3=Justice|first3=Monica J.|author-link3=Monica Justice|date=February 2018|title=Rett syndrome: a neurological disorder with metabolic components|journal=Open Biology|volume=8|issue=2|pages=170216|doi=10.1098/rsob.170216|issn=2046-2441|pmc=5830535|pmid=29445033}}</ref> Due to this, it is vital to closely monitor atypical breathing behaviors in children with RTT, making sure to effectively use lifesaving respiratory improvement devices and strategies as prescribed.<ref>{{Cite journal|last1=De Felice|first1=Claudio|last2=Maffei|first2=Silvia|last3=Signorini|first3=Cinzia|last4=Leoncini|first4=Silvia|last5=Lunghetti|first5=Stefano|last6=Valacchi|first6=Giuseppe|last7=D'Esposito|first7=Maurizio|last8=Filosa|first8=Stefania|last9=Della Ragione|first9=Floriana|last10=Butera|first10=Gianfranco|last11=Favilli|first11=Roberto|date=April 2012|title=Subclinical myocardial dysfunction in Rett syndrome|url=https://pubmed.ncbi.nlm.nih.gov/22113206/|journal=European Heart Journal -Cardiovascular Imaging|volume=13|issue=4|pages=339–345|doi=10.1093/ejechocard/jer256|issn=2047-2412|pmid=22113206|access-date=29 November 2021|archive-date=29 November 2021|archive-url=https://web.archive.org/web/20211129045123/https://pubmed.ncbi.nlm.nih.gov/22113206/|url-status=live}}</ref>  
While medicinal interventions to mitigate breathing challenges in children with Rett Syndrome (RTT) are still being developed,<ref name=":2">{{Cite journal|last1=Mackay|first1=Jessica|last2=Downs|first2=Jenny|last3=Wong|first3=Kingsley|last4=Heyworth|first4=Jane|last5=Epstein|first5=Amy|last6=Leonard|first6=Helen|year=2017|title=Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study|journal=[[Journal of Neurodevelopmental Disorders]]|volume=9|pages=15|doi=10.1186/s11689-017-9196-7|issn=1866-1947|pmc=5410057|pmid=28465761 |doi-access=free }}</ref> children with RTT may be prescribed rebreathing techniques (e.g., rebreathing masks), oxygen delivery, or non-invasive ventilation as preventative or rescue breathing treatments.{{cn|date=May 2024}} High oxidative stress levels in individuals with RTT have exacerbated effects on their cardiorespiratory health and functionality,<ref name=":2" /> dramatically increasing the risk for sudden cardiac death—an anomaly that has an associated 300x increased occurrence risk in children with Rett Syndrome.<ref>{{Cite journal|last1=Kyle|first1=Stephanie M.|last2=Vashi|first2=Neeti|last3=Justice|first3=Monica J.|author-link3=Monica Justice|date=February 2018|title=Rett syndrome: a neurological disorder with metabolic components|journal=[[Open Biology]]|volume=8|issue=2|pages=170216|doi=10.1098/rsob.170216|issn=2046-2441|pmc=5830535|pmid=29445033}}</ref> Due to this, it is vital to closely monitor atypical breathing behaviors in children with RTT, making sure to effectively use lifesaving respiratory improvement devices and strategies as prescribed.<ref>{{Cite journal|last1=De Felice|first1=Claudio|last2=Maffei|first2=Silvia|last3=Signorini|first3=Cinzia|last4=Leoncini|first4=Silvia|last5=Lunghetti|first5=Stefano|last6=Valacchi|first6=Giuseppe|last7=D'Esposito|first7=Maurizio|last8=Filosa|first8=Stefania|last9=Della Ragione|first9=Floriana|last10=Butera|first10=Gianfranco|last11=Favilli|first11=Roberto|date=April 2012|title=Subclinical myocardial dysfunction in Rett syndrome|url=https://pubmed.ncbi.nlm.nih.gov/22113206/|journal=European Heart Journal: Cardiovascular Imaging|volume=13|issue=4|pages=339–345|doi=10.1093/ejechocard/jer256|issn=2047-2412|pmid=22113206|access-date=29 November 2021|archive-date=29 November 2021|archive-url=https://web.archive.org/web/20211129045123/https://pubmed.ncbi.nlm.nih.gov/22113206/|url-status=live}}</ref>  


Prescribed treatment methods may vary depending on the breathing characteristic phenotype expressed by the child. Physicians have identified three major RTT breathing phenotypes; forceful breathers, feeble breathers, and apneustic breathers.<ref name=":3">{{Cite journal|last1=Smeets|first1=Eric E. J.|last2=Julu|first2=Peter O. O.|last3=Waardenburg|first3=Dick van|last4=Engerström|first4=Ingegerd Witt|last5=Hansen|first5=Stig|last6=Apartopoulos|first6=Flora|last7=Curfs|first7=Leopold M. G.|last8=Schrander-Stumpel|first8=Connie T. R. M.|date=2006-11-01|title=Management of a severe forceful breather with Rett Syndrome using carbogen|url=https://www.brainanddevelopment.com/article/S0387-7604(06)00113-6/abstract|journal=Brain and Development|language=English|volume=28|issue=10|pages=625–632|doi=10.1016/j.braindev.2006.04.010|issn=0387-7604|pmid=16765005|s2cid=15545729|access-date=29 November 2021|archive-date=1 October 2022|archive-url=https://web.archive.org/web/20221001023950/https://www.brainanddevelopment.com/article/S0387-7604%2806%2900113-6/fulltext|url-status=live}}</ref> For forceful breathers, for example, rebreathing masks may be used while the child is awake.<ref name=":3" />
Prescribed treatment methods may vary depending on the breathing characteristic phenotype expressed by the child. Physicians have identified three major RTT breathing phenotypes; forceful breathers, feeble breathers, and apneustic breathers.<ref name=":3">{{Cite journal|last1=Smeets|first1=Eric E. J.|last2=Julu|first2=Peter O. O.|last3=Waardenburg|first3=Dick van|last4=Engerström|first4=Ingegerd Witt|last5=Hansen|first5=Stig|last6=Apartopoulos|first6=Flora|last7=Curfs|first7=Leopold M. G.|last8=Schrander-Stumpel|first8=Connie T. R. M.|date=1 November 2006|title=Management of a severe forceful breather with Rett Syndrome using carbogen|url=https://www.brainanddevelopment.com/article/S0387-7604(06)00113-6/abstract|journal=Brain and Development|language=English|volume=28|issue=10|pages=625–632|doi=10.1016/j.braindev.2006.04.010|issn=0387-7604|pmid=16765005|s2cid=15545729|access-date=29 November 2021|archive-date=1 October 2022|archive-url=https://web.archive.org/web/20221001023950/https://www.brainanddevelopment.com/article/S0387-7604%2806%2900113-6/fulltext|url-status=live}}</ref> For forceful breathers, for example, rebreathing masks may be used while the child is awake.<ref name=":3" />


=== Therapeutic ===
In Dec 2021, Australian company Neuren Pharmaceuticals reported positive results in a phase 3 trial of [[trofinetide]] for the treatment of Rett syndrome. <ref>{{cite report |date=2021-12-07 |title=Positive top-line results from pivotal Phase 3 trial in Rett syndrome |url=https://www.asx.com.au/asxpdf/20211207/pdf/453wfgwhyjhqx8.pdf |publisher= [[Australian Stock Exchange]]}} </ref> In Sep 2022, the FDA accepted a new drug application for trofinetide and granted it priority review. <ref>{{cite report |date=2022-09-13 |title=Rett Syndrome New Drug Application accepted for Priority Review by FDA |url=https://www.asx.com.au/asxpdf/20220913/pdf/45f0zwnq0bhysh.pdf |publisher= [[Australian Stock Exchange]]}}</ref> In March 2023 the drug received FDA approval for treatment of Rett Syndrome. <ref>{{cite web |date=2023-03-11 |title=Margaret Brimble's Trofinetide Wins FDA Approval |url= https://www.auckland.ac.nz/en/news/2023/03/11/margaret-brimble-trofinetide-wins-FDA-approval.html |website=[[University of Auckland]]}}</ref>
==== Trofinetide ====
{{Excerpt|Trofinetide}}


==Prognosis==
==Prognosis==
[[File:Rett girl with stereotyped hands movements.jpg|thumb|alt=A picture of an infant with Rett Syndrome.|Girl with Rett syndrome with stereotyped hand movements.]]
[[File:Rett girl with stereotyped hands movements.jpg|thumb|alt=A picture of an infant with Rett Syndrome.|Girl with Rett syndrome with stereotyped hand movements]]
Males with pathogenic ''MECP2'' mutations usually die within the first 2 years from severe [[encephalopathy]], unless they have one or more extra X chromosomes, or have [[mosaic (genetics)|somatic mosaicism]].
Males with pathogenic ''MECP2'' mutations usually die within the first 2 years from severe [[encephalopathy]], unless they have one or more extra X chromosomes, or have [[mosaic (genetics)|somatic mosaicism]].


Male fetuses with the disorder rarely survive to term. Because the disease-causing gene is located on the X chromosome, a female born with an MECP2 mutation on her X [[chromosome]] has another X chromosome with an ostensibly normal copy of the same gene, while a male with the mutation on his X chromosome has no other X chromosome, only a Y chromosome; thus, he has no normal gene. Without a normal gene to provide normal proteins in addition to the abnormal proteins caused by a MECP2 mutation, the XY [[karyotype]] male fetus is unable to slow the development of the disease, hence the failure of many male fetuses with a MECP2 mutation to survive to term.
Male fetuses with the disorder rarely survive to term. Because the disease-causing gene is located on the X chromosome, a female born with an MECP2 mutation on her X [[chromosome]] has another X chromosome with an ostensibly normal copy of the same gene, while a male with the mutation on his X chromosome has no other X chromosome, only a Y chromosome; thus, he has no normal gene. Without a normal gene to provide normal proteins in addition to the abnormal proteins caused by a MECP2 mutation, the XY [[karyotype]] male fetus is unable to slow the development of the disease, hence the failure of many male fetuses with a MECP2 mutation to survive to term.{{citation needed|date=June 2024}}


Females with a MECP2 mutation, however, have a non-mutant chromosome that provides them enough normal [[protein]] to survive longer. Research shows that males with Rett syndrome may result from [[Klinefelter's syndrome]], in which the male has an XXY karyotype.<ref>{{cite journal |doi=10.1055/s-2001-16620 |title=Rett Syndrome in a Boy with a 47,XXY Karyotype Confirmed by a Rare Mutation in the MECP2 Gene |year=2001 |last1=Schwartzman |first1=J. S. |last2=Bernardino |first2=Andrea |last3=Nishimura |first3=Agnes |last4=Gomes |first4=Raquel R. |last5=Zatz |first5=Mayana |journal=Neuropediatrics |volume=32 |issue=3 |pages=162–4 |pmid=11521215}}</ref> Thus, a non-mutant ''MECP2'' gene is necessary for a Rett's-affected embryo to survive in most cases, and the embryo, male or female, must have another X chromosome.
Females with a MECP2 mutation, however, have a non-mutant chromosome that provides them enough normal [[protein]] to survive longer. Research shows that males with Rett syndrome may result from [[Klinefelter's syndrome]], in which the male has an XXY karyotype.<ref>{{cite journal |doi=10.1055/s-2001-16620 |title=Rett Syndrome in a Boy with a 47,XXY Karyotype Confirmed by a Rare Mutation in the MECP2 Gene |year=2001 |last1=Schwartzman |first1=J. S. |last2=Bernardino |first2=Andrea |last3=Nishimura |first3=Agnes |last4=Gomes |first4=Raquel R. |last5=Zatz |first5=Mayana |journal=Neuropediatrics |volume=32 |issue=3 |pages=162–4 |pmid=11521215|s2cid=260240039 }}</ref> Thus, a non-mutant ''MECP2'' gene is necessary for a Rett's-affected embryo to survive in most cases, and the embryo, male or female, must have another X chromosome.


There have, however, been several cases of 46,XY karyotype males with a MECP2 mutation (associated with classical Rett syndrome in females) carried to term, who were affected by neonatal encephalopathy and died before 2 years of age.<ref name="Hardwick-etal-2006" /> The incidence of Rett syndrome in males is unknown, partly owing to the low survival of male fetuses with the Rett syndrome-associated MECP2 mutations, and partly to differences between signs caused by MECP2 mutations and those caused by Rett's.<ref name="Hardwick-etal-2006">{{Cite journal |last1=Hardwick |first1=Simon A |last2=Reuter |first2=Kirsten |last3=Williamson |first3=Sarah L |last4=Vasudevan |first4=Vidya |last5=Donald |first5=Jennifer |last6=Slater |first6=Katrina |last7=Bennetts |first7=Bruce |last8=Bebbington |first8=Ami |last9=Leonard |first9=Helen |year= 2007|title=Delineation of large deletions of the MECP2 gene in Rett syndrome patients, including a familial case with a male proband |journal=European Journal of Human Genetics |volume=15 |issue=12 |pages=1218–29 |doi=10.1038/sj.ejhg.5201911 |pmid=17712354 |last10=Williams |first10=Simon R |last11=Smith |first11=Robert L |last12=Cloosterman |first12=Desiree |last13=Christodoulou |first13=John|doi-access=free }}</ref>
There have, however, been several cases of 46,XY karyotype males with a MECP2 mutation (associated with classical Rett syndrome in females) carried to term, who were affected by neonatal encephalopathy and died before 2 years of age.<ref name="Hardwick-etal-2006" /> The incidence of Rett syndrome in males is unknown, partly owing to the low survival of male fetuses with the Rett syndrome-associated MECP2 mutations, and partly to differences between signs caused by MECP2 mutations and those caused by Rett's.<ref name="Hardwick-etal-2006">{{Cite journal |last1=Hardwick |first1=Simon A |last2=Reuter |first2=Kirsten |last3=Williamson |first3=Sarah L |last4=Vasudevan |first4=Vidya |last5=Donald |first5=Jennifer |last6=Slater |first6=Katrina |last7=Bennetts |first7=Bruce |last8=Bebbington |first8=Ami |last9=Leonard |first9=Helen |year= 2007|title=Delineation of large deletions of the MECP2 gene in Rett syndrome patients, including a familial case with a male proband |journal=European Journal of Human Genetics |volume=15 |issue=12 |pages=1218–29 |doi=10.1038/sj.ejhg.5201911 |pmid=17712354 |last10=Williams |first10=Simon R |last11=Smith |first11=Robert L |last12=Cloosterman |first12=Desiree |last13=Christodoulou |first13=John|doi-access=free }}</ref>
Line 203: Line 203:


==History==
==History==
[[Andreas Rett]], a pediatrician in Vienna Austria, first described the condition in 1966.<ref name=NIH2017/><ref name="Rett1966">{{Cite journal |last=Rett |first=A. |author-link=Andreas Rett |date=1966-09-10 |title=[On an unusual brain atrophy syndrome in hyperammonemia in childhood]|journal=[[Wiener Medizinische Wochenschrift]] |language=de |volume=116 |issue=37 |pages=723–726 |issn=0043-5341 |pmid=5300597 |df=dmy}}</ref> As his writings were in German, they did not become widely known in the English-speaking world.<ref name=Per2013/> Bengt Hagberg, a Swedish pediatrician, published an English article in 1983 and named the condition after Rett.<ref name=Per2013/> In 1999, Lebanese-American physician [[Huda Zoghbi]] discovered the mutation that causes the condition.<ref name=Per2013/><ref name=Huda1999/>
[[Andreas Rett]], a pediatrician in Vienna Austria, first described the condition in 1966.<ref name=NIH2017/><ref name="Rett1966">{{Cite journal |last=Rett |first=A. |author-link=Andreas Rett |date=10 September 1966 |title=[On an unusual brain atrophy syndrome in hyperammonemia in childhood]|journal=[[Wiener Medizinische Wochenschrift]] |language=de |volume=116 |issue=37 |pages=723–726 |issn=0043-5341 |pmid=5300597 }}</ref> As his writings were in German, they did not become widely known in the English-speaking world.<ref name=Per2013/> Bengt Hagberg, a Swedish pediatrician, published an English article in 1983 and named the condition after Rett.<ref name=Per2013/> In 1999, Lebanese-American physician [[Huda Zoghbi]] discovered the mutation that causes the condition.<ref name=Per2013/><ref name=Huda1999/>


There are organizations that support this syndrome's awareness campaigns and fundraise to support treatment and research. For instance, the Noemie association hosts football competitions for young girls with Rett syndrome. Thierry Breton, an osteopath at the Parisis clinic, is the organizer of this event, which takes place in Cormeilles-en-Paris.<ref>{{cite web | url=https://www.leparisien.fr/val-d-oise-95/cormeilles-en-parisis-95240/cormeilles-un-tournoi-de-foot-solidaire-au-profit-de-noemie-26-06-2015-4896463.php | title=Cormeilles : Un tournoi de foot solidaire au profit de Noémie | date=26 June 2015 }}</ref>
Twelve teams will compete in this event. This particular moment has already occurred countless times. It is a soccer competition in support of the group La vie selon Noémi. Shirts from professional footballers Zlatan Ibrahimovic, Adrien Rabiot, Gianelli Imbula, Axel Ngando, and Karl Toko-Ekambi will be among the prizes given away. Two to three children with the syndrome will receive some of the treatment they need in a specialized facility in Barcelona thanks to the money contributed (Spain). This is the story of Noémie, who was born at the hospital in Cormeilles, Paris. The girl's parents founded this organization to aid her and other kids with multiple disabilities and to spread awareness of this condition.<ref>{{cite web | url=http://www.mdaroubaix.org/annuaire-associations-roubaix/action-sociale/association-noemi.html | title=Association Noémi }}</ref>
==Research==
==Research==
[[Gene therapy]] is under study in animal models to achieve regulated expression of a normal MECP2 gene.<ref name=NIH2017/> In March 2022, Taysha Gene Therapies announced that they had received Clinical Trial Application (CTA) approval from Health Canada for a clinical trial of their investigational gene therapy for adult females with Rett Syndrome.<ref>{{cite news |work=Taysha Gene Therapies |url=https://ir.tayshagtx.com/news-releases/news-release-details/taysha-gene-therapies-announces-initiation-clinical-0 |date=March 2022 |title=Taysha Gene Therapies Announces Initiation of Clinical Development of TSHA-102 in Rett Syndrome |access-date=6 May 2022 |archive-date=30 March 2022 |archive-url=https://web.archive.org/web/20220330150415/https://ir.tayshagtx.com/news-releases/news-release-details/taysha-gene-therapies-announces-initiation-clinical-0 |url-status=live }}</ref>
[[Gene therapy]] is under study in animal models to achieve regulated expression of a normal MECP2 gene.<ref name=NIH2017/> In March 2022, Taysha Gene Therapies announced that they had received Clinical Trial Application (CTA) approval from Health Canada for a clinical trial of their [[TSHA-102|investigational gene therapy]] for adult females with Rett Syndrome.<ref>{{cite news |work=Taysha Gene Therapies |url=https://ir.tayshagtx.com/news-releases/news-release-details/taysha-gene-therapies-announces-initiation-clinical-0 |date=March 2022 |title=Taysha Gene Therapies Announces Initiation of Clinical Development of TSHA-102 in Rett Syndrome |access-date=6 May 2022 |archive-date=30 March 2022 |archive-url=https://web.archive.org/web/20220330150415/https://ir.tayshagtx.com/news-releases/news-release-details/taysha-gene-therapies-announces-initiation-clinical-0 |url-status=live }}</ref>

==In fiction==
In August 2021, a novel by British author [https://www.toryscott.com Victoria Scott], ''Patience'', was published by Head of Zeus.<ref>{{Cite web |title=title |url=https://headofzeus.com/books/9781800240889 |access-date=2022-05-07 |website=Head of Zeus |language=en |archive-date=1 October 2022 |archive-url=https://web.archive.org/web/20221001023951/https://headofzeus.com/books/9781800240889 |url-status=live }}</ref> The novel featured a character with Rett syndrome and explored recent developments in gene therapy.


==References==
==References==
{{reflist}}
{{reflist}}


== External links ==
{{Medical resources
{{Medical resources
| meshName = Rett+Syndrome
| meshName = Rett+Syndrome
Line 237: Line 231:
{{X-linked disorders}}
{{X-linked disorders}}
{{Nonverbal communication}}
{{Nonverbal communication}}
{{Portal bar | Medicine}}
{{Authority control}}
{{Authority control}}


Line 245: Line 240:
[[Category:Pervasive developmental disorders]]
[[Category:Pervasive developmental disorders]]
[[Category:Syndromes affecting the nervous system]]
[[Category:Syndromes affecting the nervous system]]
[[Category:Syndromic autism]]
[[Category:Wikipedia medicine articles ready to translate]]
[[Category:Wikipedia medicine articles ready to translate]]
[[Category:X-linked dominant disorders]]
[[Category:X-linked dominant disorders]]

Revision as of 22:09, 15 August 2024

Rett syndrome
Other namesCerebroatrophic hyperammonemia (obsolete),[1][2] dementia, ataxia, and loss of purposeful hand use syndrome[3]
A girl with short brown hair sits in a neon orange pushchair.
A girl with Rett syndrome
SpecialtyPediatric Neurology, Medical Genetics
SymptomsImpairments in language and coordination, and repetitive movements, slower growth, smaller head[4]
ComplicationsSeizures, scoliosis, sleeping problems[4]
Usual onsetAfter 6–18 months of age[4]
DurationLifelong[5]
CausesMutation in the MECP2 gene[4]
Diagnostic methodBased on symptoms, genetic testing[5]
Differential diagnosisAngelman syndrome, autism, cerebral palsy, Childhood disintegrative disorder, various neurodegenerative disorders[6]
TreatmentSpecial education, physiotherapy, braces[5]
MedicationAnticonvulsants[5]
PrognosisLife expectancy for many is middle age.[5]
Frequency1 in 8,500 females[4]
Lethal in males, with rare exceptions.

Rett syndrome (RTT) is a genetic disorder that typically becomes apparent after 6–18 months of age and almost exclusively in females.[4] Symptoms include impairments in language and coordination, and repetitive movements.[4] Those affected often have slower growth, difficulty walking, and a smaller head size.[4][5] Complications of Rett syndrome can include seizures, scoliosis, and sleeping problems.[4] The severity of the condition is variable.[5]

Rett syndrome is due to a genetic mutation in the MECP2 gene,[4] on the X chromosome.[5] It almost always occurs as a new mutation, with less than one percent of cases being inherited.[4][5] It occurs almost exclusively in girls;[4] boys who have a similar mutation typically die shortly after birth.[5] Diagnosis is based on the symptoms and can be confirmed with genetic testing.[5]

There is no known cure for Rett syndrome.[5] Treatment is directed at improving symptoms.[5] Anticonvulsants may be used to help with seizures.[5] Special education, physiotherapy, and leg braces may also be useful depending on the needs of the child.[5] Many of those with the condition live into middle age.[5]

The condition affects about 1 in 8,500 females.[4] In 1999, Lebanese-American physician Huda Zoghbi discovered the mutation that causes the condition.[7][8]

Signs and symptoms

Stage I

Stage I, called early-onset, typically begins between 6 and 18 months of age.[5] This stage is often overlooked because symptoms of the disorder may be somewhat vague, and parents and doctors may not notice the subtle slowing of development at first.[5] The infant may begin to show less eye contact and have reduced interest in toys. There may be delays in gross motor skills such as sitting or crawling.[5] Hand-wringing and decreasing head growth may occur, but not enough to draw attention. This stage usually lasts for a few months but can continue for more than a year.[5]

Stage II

Stage II, or the rapid destructive stage, usually begins between ages 1 and 4 and may last for weeks or months.[5] Its onset may be rapid or gradual as the child loses purposeful hand skills and spoken language.[5] Characteristic hand movements such as wringing, washing, clapping, or tapping, as well as repeatedly moving the hands to the mouth often begin during this stage which is called mouthing.[5] The child may hold the hands clasped behind the back or held at the sides, with random touching, grasping, and releasing.[5] The movements continue while the child is awake but disappear during sleep.[5] Breathing irregularities such as episodes of apnea and hyperventilation may occur, although breathing usually improves during sleep.[5] Some girls also display autistic-like symptoms such as loss of social interaction and communication.[5] Walking may be unsteady and initiating motor movements can be difficult. Slowed head growth is usually noticed during this stage.[5]

Stage III

Stage III, or the plateau or pseudo-stationary stage, usually begins between ages 2 and 10 and can last for years.[5] Apraxia, motor problems, and seizures are prominent during this stage.[5] However, there may be improvement in behavior, with less irritability, crying, and autistic-like features.[5] In stage III there may be more interest in the surroundings and alertness, attention span, and communication skills may improve.[5] Many girls remain in this stage for most of their lives.[5]

Stage IV

Stage IV, or the late motor deterioration stage, can last for years or decades.[5] Prominent features include reduced mobility, curvature of the spine, and muscle weakness, rigidity, spasticity, and increased muscle tone with abnormal posturing of an arm or leg.[5] Girls who were previously able to walk may stop walking.[5] Cognition, communication, or hand skills generally do not decline in stage IV.[5] Repetitive hand movements may decrease and eye gaze usually improves.[5]

Variants

The signs and symptoms of the typical form of the Rett syndrome are well described. In addition to the classical form of Rett syndrome, several atypical forms have been described over the years;[9] the main groups are:

  • Congenital variant (Rolando variant): in this severe subtype of Rett syndrome, the development of the patients and their head circumference are abnormal from birth.[10] The typical gaze of Rett syndrome patients is usually absent;
  • Zappella variant of Rett Syndrome or preserved speech variant: in this subtype of Rett syndrome the patients acquire some manual skills and language is partially recovered around the age of 5 years (that is after the regression phase). Height, weight and head circumference are often in the normal range, and a good gross motor function can be observed.[11][12][13][14][15][16] The Zappella variant is a milder form of Rett syndrome;
  • Hanefeld variant or early epilepsy variant. In this form of Rett syndrome, the patients have epilepsy before 5 months of age.[17]

The definition itself of the Rett syndrome has been refined over the years: as the atypical forms subsist near to the classical form (Hagberg & Gillberg, 1993), the "Rett Complex" terminology has been introduced.[18][19]

Cause

Genetically, Rett syndrome (RTT) is often caused by mutations in the gene MECP2[20] located on the X chromosome (which is involved in transcriptional silencing and epigenetic regulation of methylated DNA), and can arise sporadically or from germline mutations. In less than 10% of RTT cases, mutations in the genes CDKL5 or FOXG1 have also been found to resemble it.[21][22] Rett syndrome is initially diagnosed by clinical observation, and is commonly associated with a genetic defect in the MECP2 gene.[20]

It has been argued that Rett syndrome is in fact a neurodevelopmental condition as opposed to a neurodegenerative condition. One piece of evidence for this is that mice with induced Rett Syndrome show no neuronal death, and some studies have suggested that their phenotypes can be partially rescued by adding functional MECP2 gene back when they are adults. This information has also helped lead to further studies aiming to treat the disorder.[23]

Sporadic mutations

In at least 95% of Rett syndrome cases, the cause is a de novo mutation in the child, almost exclusively from a de novo mutation on the male copy of the X chromosome.[24][25] It is not yet known what causes the sperm to mutate, and such mutations are rare.

Germline mutations

It can also be inherited from phenotypically normal mothers who have a germline mutation in the gene encoding methyl-CpG-binding protein-2, MeCP2.[26] In these cases, inheritance follows an X-linked dominant pattern and is seen almost exclusively in females, as most males die in utero or shortly after birth.[27] MECP2 is found near the end of the long arm of the X chromosome at Xq28. An atypical form of RTT, characterized by infantile spasms or early onset epilepsy, can also be caused by a mutation to the gene encoding cyclin-dependent kinase-like 5 (CDKL5). As stated by Aine Merwick, Margaret O'Brien, and Norman Delanty in an article on gene disorders titled Complex single gene disorders and epilepsy, "Rett syndrome affects one in every 12,500 female live births by age 12 years."[28]

Mechanism

The location of the gene responsible for Rett syndrome

Pontine noradrenergic deficits

Brain levels of norepinephrine are lower in people with Rett syndrome[29] (reviewed in[30]). The genetic loss of MECP2 changes the properties of cells in the locus coeruleus, the exclusive source of noradrenergic innervation to the cerebral cortex and hippocampus.[31][32] These changes include hyperexcitability and decreased functioning of its noradrenergic innervation.[33] Moreover, a reduction of the tyrosine hydroxylase (Th) mRNA level, the rate-limiting enzyme in catecholamine synthesis, was detected in the whole pons of MECP2-null male as well as in adult heterozygous (MECP2+/-) female mice.[34] Using immunoquantitative techniques, a decrease of Th protein staining level, number of locus coeruleus Th-expressing neurons and density of dendritic arborization surrounding the structure was shown in symptomatic MeCP2-deficient mice.[34] However, locus coeruleus cells are not dying, but are more likely losing their fully mature phenotype, since no apoptotic neurons in the pons were detected.[34]

Researchers have concluded that "Because these neurons are a pivotal source of norepinephrine throughout the brainstem and forebrain and are involved in the regulation of diverse functions disrupted in Rett syndrome, such as respiration and cognition, we hypothesize that the locus coeruleus is a critical site at which loss of MECP2 results in CNS dysfunction." The restoration of normal locus coeruleus function may therefore be of potential therapeutic value in the treatment of Rett syndrome.[33][34]

Midbrain dopaminergic disturbances

The majority of dopamine in the mammalian brain is synthesized by nuclei located in the mesencephalon. The substantia nigra pars compacta (SNpc), the ventral tegmental area (VTA) and the retrorubral field (RRF) contain dopaminergic neurons expressing tyrosine hydroxylase (Th, i.e. the rate-limiting enzyme in catecholamine synthesis).[35][36][37]

The nigro-striatal pathway originates from the SNpc; its principal rostral target is the caudate-putamen (CPu), which it irradiates through the median forebrain bundle (MFB). This connection is involved in the tight modulation of motor strategies computed by a cortico-basal ganglia-thalamo-cortical loop.[38]

Indeed, based on the canonical anatomofunctional model of basal ganglia, nigrostriatal dopamine is able to modulate the motor loop by acting on dopaminergic receptors located on striatal GABAergic medium spiny neurons.[39]

Dysregulation of the nigrostriatal pathway is causative from Parkinson disease (PD) in humans.[40] Toxic and/or genetic ablation of SNpc neurons produces experimental parkinsonism in mice and primates.[41] The common features of PD and PD animal models are motor impairments[42] (hypotonia, bradykinesia, hypokinesia).

RTT pathology, in some aspects, overlaps the motor phenotype observed in PD patients.[43][44][45] Several neuropathological studies on postmortem brain samples argued for an SNpc alteration, evidenced by neuromelanin hypopigmentation, reduction in the structure area, and even, controversially, signs of apoptosis. In parallel, a hypometabolism was underlined by a reduction of several catecholamines (dopamine, noradrenaline, adrenaline) and their principal metabolic by-products.[30] Mouse models of RTT are available; the most studied are constitutively deleted Mecp2 mice developed by Adrian Bird or Katelyn McCormick laboratories.[46][47][48][49]

In accordance with the motor spectrum of the RTT phenotype, Mecp2-null mice show motor abnormalities from postnatal day 30 that worsen until death. These models offer a crucial substrate to elucidate the molecular and neuroanatomical correlates of MeCP2-deficiency.[50] Recently (2008), it was shown that the conditional deletion of Mecp2 in catecholaminergic neurons (by crossing of Th-Cre mice with loxP-flanked Mecp2 ones) recapitulates a motor symptomatology; it was further documented that brain levels of Th in mice lacking MeCP2 in catecholaminergic neurons only are reduced, participating to the motor phenotype.[51]

However, the most studied model for the evaluation of therapeutics is the Mecp2-null mouse (totally devoid of MeCP2). In this context, a reduction in the number and soma size of Th-expressing neurons is present from 5 weeks of age and is accompanied by a decrease of Th immunoreactivity in the caudate-putamen, the principal target of dopaminergic neurons arising from the SNpc.[52] Moreover, a neurochemical analysis of dopaminergic contents in microdissected midbrain and striatal areas revealed a reduction of dopamine at five and nine weeks of age. It is noteworthy that later on (at nine weeks), the morphological parameters remain altered but not worsened, whereas the phenotype progresses and behavioral deficits are more severe. The amount of fully activated Th (Serine40-phosphorylated isoform) in neurons that remain in the SNpc is mildly affected at 5 weeks but severely impaired by 9 weeks.[52] Finally, using a chronic and oral L-Dopa treatment on MeCP2-deficient mice, authors reported an amelioration of some of the motor deficits previously identified.[52] Altogether, these results argue for an alteration of the nigrostriatal dopaminergic pathway in MeCP2-deficient animals as a contributor of the neuromotor deficits.[52]

There is an association of Rett syndrome with brain-derived neurotrophic factor (BDNF).[53]

Molecular functions of MECP2 in Rett syndrome pathology

As reviewed by Sharifi and Yasui,[54] MECP2 protein, encoded by the MECP2 gene binds to DNA with a high affinity for CpG methylated DNA sites and affects transcription. MECP2 can bind to 5mc (5-methylcytosine) and 5hmc (5-hydroxymethylcytosine) with similar affinity, and these dinucleotides account for the majority of MECP2 binding sites in the mammalian genome. MECP2 is involved in higher order chromatin organization and appears necessary for compacting chromosomes. MECP2 binding to DNA influences mRNA splicing events. MECP2 also appears to function in DNA repair processes. MECP2-/+ deficient female mice have elevated rates of cell death when exposed to DNA damaging agents and are prone to early senescence.[54]

Interactive pathway map

An interactive pathway map of Rett syndrome has been published.[55]

Diagnosis

A girl with short brown hair sits in a neon orange push chair. She is on a concrete pathway in front of a building.
A girl with Rett Syndrome mouthing her hands, a common behavior with Rett Syndrome

Prior to the discovery of a genetic cause, Rett syndrome had been designated as a pervasive developmental disorder by the Diagnostic and Statistical Manual of Mental Disorders (DSM), together with the autism spectrum disorders. Some argued against this conclusive assignment because RTT resembles non-autistic disorders such as fragile X syndrome, tuberous sclerosis, or Down syndrome that also exhibit autistic features.[56] After research proved the molecular mechanism, in 2013 the DSM-5 removed the syndrome altogether from classification as a mental disorder.[57]

Rett syndrome diagnosis involves close observation of the child's growth and development to observe any abnormalities in regards to developmental milestones.[58] A diagnosis is considered when decreased head growth is observed. Conditions with similar symptoms must first be ruled out.[58]

There are certain criteria that must be met for the diagnosis. A blood test can rule in or rule out the presence of the MECP2 mutation, however, this mutation is present in other conditions as well.[59]

For a classic diagnosis, all four criteria for ruling in a diagnosis must be met, as well as the two criteria for ruling out a diagnosis. Supportive criteria may also be present, but are not required for diagnosis. For an atypical or variant diagnosis, at least two of the four criteria for ruling in the diagnosis must be met, as well as five of the eleven supportive criteria. A period of symptom regression followed by recovery or symptom stabilization must also occur.[59] Children are often misdiagnosed as having autism, cerebral palsy, or another form of developmental delay. A positive test for the MECP2 mutation is not enough to make a diagnosis.[59]

Ruling in[59]

  • Decreased or loss of use of fine motor skills
  • Decreased or loss of verbal speech
  • Abnormalities during gait
  • Repetitive hand movements such as wringing/squeezing or clapping/tapping

Ruling out[59]

  • Traumatic or anoxic/hypoxic brain injury, neurometabolic disease, or severe infection that may better explain symptoms
  • Abnormal psychomotor development during the first six months of life

Supportive criteria[59]

  • Breathing disturbances when awake
  • Bruxism while awake
  • Impaired sleep pattern
  • Abnormal muscle tone
  • Peripheral vasomotor disturbances
  • Scoliosis/kyphosis
  • Growth retardation
  • Small cold hands and feet
  • Inappropriate laughing/screaming spells
  • Diminished response to pain
  • Intense eye communication (eye pointing)

Differential diagnosis

Signs of Rett syndrome that are similar to autism:[60][61]

  • screaming fits
  • inconsolable crying
  • avoidance of eye contact
  • lack of social/emotional reciprocity
  • markedly impaired use of nonverbal behaviors to regulate social interaction
  • loss of speech
  • sensory problems
  • sleep regression

Signs of Rett syndrome that are also present in cerebral palsy:[62][63]

Treatment

There is no cure for Rett syndrome.[5] Treatment is directed towards improving function and addressing symptoms.[5] A multi-disciplinary team approach is typically used to treat the person throughout life. This team may include a primary care physician, physical therapist, occupational therapist, speech-language pathologist, nutritionist, and support services in academic and occupational settings. Some children may require special equipment and aids such as braces to arrest scoliosis, splints to modify hand movements, and nutritional programs to help them maintain adequate weight.[5]

Because of the increased risk of sudden cardiac death, when long QT syndrome is found on an annual screening EKG it is treated with an anti-arrhythmic such as a beta-blocker. There is some evidence that phenytoin may be more effective than a beta-blocker.[64]

While medicinal interventions to mitigate breathing challenges in children with Rett Syndrome (RTT) are still being developed,[65] children with RTT may be prescribed rebreathing techniques (e.g., rebreathing masks), oxygen delivery, or non-invasive ventilation as preventative or rescue breathing treatments.[citation needed] High oxidative stress levels in individuals with RTT have exacerbated effects on their cardiorespiratory health and functionality,[65] dramatically increasing the risk for sudden cardiac death—an anomaly that has an associated 300x increased occurrence risk in children with Rett Syndrome.[66] Due to this, it is vital to closely monitor atypical breathing behaviors in children with RTT, making sure to effectively use lifesaving respiratory improvement devices and strategies as prescribed.[67]  

Prescribed treatment methods may vary depending on the breathing characteristic phenotype expressed by the child. Physicians have identified three major RTT breathing phenotypes; forceful breathers, feeble breathers, and apneustic breathers.[68] For forceful breathers, for example, rebreathing masks may be used while the child is awake.[68]

Therapeutic

Trofinetide

Trofinetide, sold under the brand name Daybue, is a medication used for the treatment of Rett syndrome.[69] It is taken by mouth.[69]

The most common adverse reactions include diarrhea and vomiting.[70]

Trofinetide was approved for medical use in the United States in March 2023.[69][70][71][72] The US Food and Drug Administration (FDA) considers it to be a first-in-class medication.[73]

Prognosis

A picture of an infant with Rett Syndrome.
Girl with Rett syndrome with stereotyped hand movements

Males with pathogenic MECP2 mutations usually die within the first 2 years from severe encephalopathy, unless they have one or more extra X chromosomes, or have somatic mosaicism.

Male fetuses with the disorder rarely survive to term. Because the disease-causing gene is located on the X chromosome, a female born with an MECP2 mutation on her X chromosome has another X chromosome with an ostensibly normal copy of the same gene, while a male with the mutation on his X chromosome has no other X chromosome, only a Y chromosome; thus, he has no normal gene. Without a normal gene to provide normal proteins in addition to the abnormal proteins caused by a MECP2 mutation, the XY karyotype male fetus is unable to slow the development of the disease, hence the failure of many male fetuses with a MECP2 mutation to survive to term.[citation needed]

Females with a MECP2 mutation, however, have a non-mutant chromosome that provides them enough normal protein to survive longer. Research shows that males with Rett syndrome may result from Klinefelter's syndrome, in which the male has an XXY karyotype.[74] Thus, a non-mutant MECP2 gene is necessary for a Rett's-affected embryo to survive in most cases, and the embryo, male or female, must have another X chromosome.

There have, however, been several cases of 46,XY karyotype males with a MECP2 mutation (associated with classical Rett syndrome in females) carried to term, who were affected by neonatal encephalopathy and died before 2 years of age.[75] The incidence of Rett syndrome in males is unknown, partly owing to the low survival of male fetuses with the Rett syndrome-associated MECP2 mutations, and partly to differences between signs caused by MECP2 mutations and those caused by Rett's.[75]

Females can live up to 40 years or more. Laboratory studies on Rett syndrome may show abnormalities such as:

A high proportion of deaths are abrupt, but most have no identifiable cause; in some instances death is the result most likely of:

History

Andreas Rett, a pediatrician in Vienna Austria, first described the condition in 1966.[5][77] As his writings were in German, they did not become widely known in the English-speaking world.[7] Bengt Hagberg, a Swedish pediatrician, published an English article in 1983 and named the condition after Rett.[7] In 1999, Lebanese-American physician Huda Zoghbi discovered the mutation that causes the condition.[7][8]

Forschung

Gene therapy is under study in animal models to achieve regulated expression of a normal MECP2 gene.[5] In March 2022, Taysha Gene Therapies announced that they had received Clinical Trial Application (CTA) approval from Health Canada for a clinical trial of their investigational gene therapy for adult females with Rett Syndrome.[78]

References

  1. ^ Davis AS (25 October 2010). Handbook of Pediatric Neuropsychology. Springer Publishing Company. p. 703. ISBN 978-0826157362. Archived from the original on 5 November 2017. Rett initially called this syndrome cerebroaatrophic hyperammonemia, but the elevated ammonia levels in the bloodstream were later found to be only rarely associated with this condition (can Acker, Loncola, & Can Acker, 2005).
  2. ^ Percy A (2014). "Rett Syndrome: Coming to Terms with Treatment". Advances in Neuroscience. 2014: 1–20. doi:10.1155/2014/345270.
  3. ^ "MeSH Browser". meshb.nlm.nih.gov. Archived from the original on 4 December 2020. Retrieved 22 October 2019.
  4. ^ a b c d e f g h i j k l m "Rett syndrome". Genetics Home Reference. December 2013. Archived from the original on 14 October 2017. Retrieved 14 October 2017.
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq "Rett Syndrome Fact Sheet". National Institute of Neurological Disorders and Stroke. Archived from the original on 14 October 2017. Retrieved 14 October 2017.
  6. ^ "Rett Syndrome". NORD (National Organization for Rare Disorders). 2015. Archived from the original on 19 February 2017. Retrieved 14 October 2017.
  7. ^ a b c d Percy A (January 2014). "The American History of Rett Syndrome". Pediatric Neurology. 50 (1): 1–3. doi:10.1016/j.pediatrneurol.2013.08.018. PMC 3874243. PMID 24200039.
  8. ^ a b Amir R, Van den Veyver I, Wan M, Tran C, Francke U, Zoghbi H (1999). "Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2". Nature Genetics. 23 (2): 185–8. doi:10.1038/13810. PMID 10508514. S2CID 3350350.
  9. ^ Neul Jl, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, et al. (Rettsearch Consortium) (2010). "Rett syndrome: Revised diagnostic criteria and nomenclature". Annals of Neurology. 68 (6): 944–50. doi:10.1002/ana.22124. PMC 3058521. PMID 21154482.
  10. ^ Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, et al. (11 July 2008). "FOXG1 is Responsible for the Congenital Variant of Rett Syndrome". The American Journal of Human Genetics. 83 (1): 89–93. doi:10.1016/j.ajhg.2008.05.015. PMC 2443837. PMID 18571142.
  11. ^ Zappella M (1992). "The rett girls with preserved speech". Brain and Development. 14 (2): 98–101. doi:10.1016/S0387-7604(12)80094-5. PMID 1621933. S2CID 4782923.
  12. ^ Skjeldal OH, Von Tetzchner S, Jacobsen K, Smith L, Heiberg A (2007). "Rett Syndrome - Distribution of Phenotypes with Special Attention to the Preserved Speech Variant". Neuropediatrics. 26 (2): 87. doi:10.1055/s-2007-979732. PMID 7566462. S2CID 260243402.
  13. ^ Sørensen E, Viken B (20 February 1995). "[Rett syndrome a developmental disorder. Presentation of a variant with preserved speech]". Tidsskrift for den Norske Laegeforening (in Norwegian). 115 (5): 588–590. ISSN 0029-2001. PMID 7900110.
  14. ^ Zappella M (1997). "The preserved speech variant of the Rett complex: A report of 8 cases". European Child & Adolescent Psychiatry. 6 (Suppl 1): 23–5. PMID 9452915.
  15. ^ Renieri A, Mari F, Mencarelli M, Scala E, Ariani F, Longo I, et al. (March 2009). "Diagnostic criteria for the Zappella variant of Rett syndrome (the preserved speech variant)". Brain and Development. 31 (3): 208–16. doi:10.1016/j.braindev.2008.04.007. PMID 18562141. S2CID 6223422.
  16. ^ Buoni S, Zannolli R, De Felice C, De Nicola A, Guerri V, Guerra B, et al. (May 2010). "EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome". Clinical Neurophysiology. 121 (5): 652–7. doi:10.1016/j.clinph.2010.01.003. PMID 20153689. S2CID 12976926.
  17. ^ Huppke P, Held M, Laccone F, Hanefeld F (2003). "The spectrum of phenotypes in females with Rett Syndrome". Brain and Development. 25 (5): 346–51. doi:10.1016/S0387-7604(03)00018-4. PMID 12850514. S2CID 9566219.
  18. ^ Gillberg d (1997). "Communication in Rett syndrome complex". European Child & Adolescent Psychiatry. 6 (Suppl 1): 21–2. PMID 9452914.
  19. ^ Zappella M, Gillberg C, Ehlers S (1998). "The preserved speech variant: A subgroup of the Rett complex: A clinical report of 30 cases". Journal of Autism and Developmental Disorders. 28 (6): 519–26. doi:10.1023/A:1026052128305. PMID 9932238. S2CID 22152062.
  20. ^ a b Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, et al. (2010). "Rett Syndrome: Revised Diagnostic Criteria and Nomenclature". Annals of Neurology. 68 (6): 944–950. doi:10.1002/ana.22124. ISSN 0364-5134. PMC 3058521. PMID 21154482.
  21. ^ Fahmi M, Yasui G, Seki K, Katayama S, Kaneko-Kawano T, Inazu T, et al. (2019). "In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment". International Journal of Molecular Sciences. 20 (22): 5593. doi:10.3390/ijms20225593. ISSN 1422-0067. PMC 6888432. PMID 31717404.
  22. ^ Cutri-French C, Armstrong D, Saby J, Gorman C, Lane J, Fu C, et al. (2020). "Comparison of core features in four Developmental Encephalopathies in the Rett Natural History Study". Annals of Neurology. 88 (2): 396–406. doi:10.1002/ana.25797. ISSN 0364-5134. PMC 8882337. PMID 32472944.
  23. ^ Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007). "Reversal of Neurological Defects in a Mouse Model of Rett Syndrome". Science. 315 (5815): 1143–7. Bibcode:2007Sci...315.1143G. doi:10.1126/science.1138389. PMC 7610836. PMID 17289941. S2CID 25172134.
  24. ^ Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F, et al. (2001). "MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin". The American Journal of Human Genetics. 68 (5): 1093–101. doi:10.1086/320109. PMC 1226090. PMID 11309679.
  25. ^ "Rett Syndrome - Symptoms, Causes, Treatment | NORD". rarediseases.org. Retrieved 5 February 2024.
  26. ^ Zoghbi HY, Van Den Veyver RE, Wan IB, Tran M, Francke CQ, Zoghbi U (1999). "Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2". Nature Genetics. 23 (2): 185–8. doi:10.1038/13810. PMID 10508514. S2CID 3350350.
  27. ^ "Rett syndrome". Genetics Home Reference. Archived from the original on 27 July 2016. Retrieved 29 May 2016.
  28. ^ Merwick A, O'Brien M, Delanty N (2012). "Complex single gene disorders and epilepsy". Epilepsia. 53 (s4): 81–91. doi:10.1111/j.1528-1167.2012.03617.x. ISSN 1528-1167. PMID 22946725. S2CID 37226510.
  29. ^ Zoghbi HY, Milstien S, Butler IJ, Smith EO, Kaufman S, Glaze DG, et al. (1989). "Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome". Annals of Neurology. 25 (1): 56–60. doi:10.1002/ana.410250109. PMID 2913929. S2CID 351243.
  30. ^ a b Roux JC, Villard L (2009). "Biogenic Amines in Rett Syndrome: The Usual Suspects". Behavior Genetics. 40 (1): 59–75. doi:10.1007/s10519-009-9303-y. PMID 19851857. S2CID 20352177.
  31. ^ Hokfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M (1984). "Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain". In Bjorklund A, Hokfelt T (eds.). Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS, Part I. Vol. 2. New York: Elsevier. pp. 277–379.
  32. ^ Berridge CW, Waterhouse BD (2003). "The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes". Brain Research Reviews. 42 (1): 33–84. doi:10.1016/S0165-0173(03)00143-7. PMID 12668290. S2CID 477754.
  33. ^ a b Taneja P, Ogier M, Brooks-Harris G, Schmid DA, Katz DM, Nelson SB (2009). "Pathophysiology of Locus Ceruleus Neurons in a Mouse Model of Rett Syndrome". Journal of Neuroscience. 29 (39): 12187–95. doi:10.1523/JNEUROSCI.3156-09.2009. PMC 2846656. PMID 19793977.
  34. ^ a b c d Roux JC, Panayotis N, Dura E, Villard L (2009). "Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice". Journal of Neuroscience Research. 88 (7): 1500–9. doi:10.1002/jnr.22312. PMID 19998492. S2CID 3404695.
  35. ^ Björklund A, Lindvall O (1984). "Dopamine-containing systems in the CNS". In Björklund A, Hökfelt T (eds.). Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS, Part l. Vol. 2. New York: Elsevier. pp. 55–122.
  36. ^ Hokfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984). "Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain". In Björklund A, Hökfelt T (eds.). Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS, Part I. Vol. 2. New York: Elsevier. pp. 277–379.
  37. ^ Björklund A, Dunnett SB (2007). "Dopamine neuron systems in the brain: An update". Trends in Neurosciences. 30 (5): 194–202. doi:10.1016/j.tins.2007.03.006. PMID 17408759. S2CID 14239716.
  38. ^ Parent A, Hazrati LN (1995). "Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop". Brain Research Reviews. 20 (1): 91–127. doi:10.1016/0165-0173(94)00007-C. PMID 7711769. S2CID 28252990.
  39. ^ Gerfen CR (2000). "Molecular effects of dopamine on striatal-projection pathways". Trends in Neurosciences. 23 (10 Suppl): S64–70. doi:10.1016/S1471-1931(00)00019-7. PMID 11052222. S2CID 3965480.
  40. ^ Lees AJ, Hardy J, Revesz T (2009). "Parkinson's disease". The Lancet. 373 (9680): 2055–66. doi:10.1016/S0140-6736(09)60492-X. PMID 19524782. S2CID 42608600.
  41. ^ Dauer W, Przedborski S (2003). "Parkinson's Disease". Neuron. 39 (6): 889–909. doi:10.1016/S0896-6273(03)00568-3. PMID 12971891. S2CID 10400095.
  42. ^ Jenner P (2009). "Functional models of Parkinson's disease: A valuable tool in the development of novel therapies". Annals of Neurology. 64: S16–29. doi:10.1002/ana.21489. PMID 19127585. S2CID 26065287.
  43. ^ Fitzgerald PM, Jankovic J, Percy AK (1990). "Rett syndrome and associated movement disorders". Movement Disorders. 5 (3): 195–202. doi:10.1002/mds.870050303. PMID 2388636. S2CID 43376602.
  44. ^ Neul JL, Zoghbi HY (2004). "Rett Syndrome: A Prototypical Neurodevelopmental Disorder". The Neuroscientist. 10 (2): 118–28. doi:10.1177/1073858403260995. PMID 15070486. S2CID 9617631.
  45. ^ Segawa M (2005). "Early motor disturbances in Rett syndrome and its pathophysiological importance". Brain and Development. 27: S54–S58. doi:10.1016/j.braindev.2004.11.010. PMID 16182486. S2CID 30218744.
  46. ^ Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001). "A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome". Nature Genetics. 27 (3): 322–6. doi:10.1038/85899. hdl:1842/727. PMID 11242117. S2CID 8698208.
  47. ^ Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001). "Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice". Nature Genetics. 27 (3): 327–31. doi:10.1038/85906. PMID 11242118. S2CID 24979562.
  48. ^ Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. (1998). "Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex". Nature. 393 (6683): 386–9. Bibcode:1998Natur.393..386N. doi:10.1038/30764. PMID 9620804. S2CID 4427745.
  49. ^ Cheval H, Guy J, Merusi C, De Sousa D, Selfridge J, Bird A (2012). "Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows". Human Molecular Genetics. 21 (17): 3806–14. doi:10.1093/hmg/dds208. PMC 3412380. PMID 22653753. Open access icon
  50. ^ Ricceri L, De Filippis B, Laviola G (2008). "Mouse models of Rett syndrome: From behavioural phenotyping to preclinical evaluation of new therapeutic approaches". Behavioural Pharmacology. 19 (5–6): 501–17. doi:10.1097/FBP.0b013e32830c3645. PMID 18690105. S2CID 33364486.
  51. ^ Samaco RC, Mandel-Brehm C, Chao HT, Ward CS, Fyffe-Maricich SL, Ren J, et al. (2009). "Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities". Proceedings of the National Academy of Sciences. 106 (51): 21966–71. Bibcode:2009PNAS..10621966S. doi:10.1073/pnas.0912257106. JSTOR 40536204. PMC 2799790. PMID 20007372.
  52. ^ a b c d Panayotis N, Pratte M, Borges-Correia A, Ghata A, Villard L, Roux JC (2011). "Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse". Neurobiology of Disease. 41 (2): 385–97. doi:10.1016/j.nbd.2010.10.006. PMID 20951208. S2CID 25414717.
  53. ^ Sun YE, Wu H (2006). "The Ups and Downs of BDNF in Rett Syndrome". Neuron. 49 (3): 321–3. doi:10.1016/j.neuron.2006.01.014. PMID 16446133.
  54. ^ a b Sharifi O, Yasui DH (2021). "The Molecular Functions of MeCP2 in Rett Syndrome Pathology". Frontiers in Genetics. 12: 624290. doi:10.3389/fgene.2021.624290. PMC 8102816. PMID 33968128.
  55. ^ Ehrhart F, Coort SL, Cirillo E, Smeets E, Evelo CT, Curfs LM (25 November 2016). "Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes". Orphanet Journal of Rare Diseases. 11 (1): 158. doi:10.1186/s13023-016-0545-5. PMC 5123333. PMID 27884167.
  56. ^ Tsai LY (1992). "Is Rett syndrome a subtype of pervasive developmental disorders?" (PDF). Journal of Autism and Developmental Disorders. 22 (4): 551–61. doi:10.1007/BF01046327. hdl:2027.42/44607. PMID 1483976. S2CID 17817425. Archived from the original on 29 August 2021. Retrieved 20 April 2018.
  57. ^ Abbeduto L, Ozonoff S, Thurman AJ, McDuffie A, Schweitzer J (18 March 2014). Hales R, Yudofsky S, Robert LW (eds.). Chapter 8. Neurodevelopmental Disorders, The American Psychiatric Publishing Textbook of Psychiatry (6 ed.). Arlington, VA: American Psychiatric Publishing. doi:10.1176/appi.books.9781585625031.rh08. ISBN 978-1-58562-444-7. S2CID 241966275.
  58. ^ a b "Rett syndrome Tests and diagnosis". Mayo Clinic. Archived from the original on 30 October 2017.
  59. ^ a b c d e f "About Rett syndrome - Rett Syndrome Diagnosis". rettsyndrome.org. International Rett Syndrome Foundation. Archived from the original on 29 October 2017. Retrieved 10 May 2020.
  60. ^ "Seven Disorders Closely Related to Autism". Autism Research Institute. Retrieved 5 February 2024.
  61. ^ Neul JL (2012). "The relationship of Rett syndrome and MECP2 disorders to autism". Dialogues in Clinical Neuroscience. 14 (3): 253–262. doi:10.31887/DCNS.2012.14.3/jneul. ISSN 1294-8322. PMC 3513680. PMID 23226951.
  62. ^ "Rett Syndrome | Rady Children's Hospital". www.rchsd.org. Retrieved 5 February 2024.
  63. ^ "Cerebral Palsy Misdiagnosis". Cerebral Palsy Guidance. Retrieved 5 February 2024.
  64. ^ McCauley MD, Wang T, Mike E, Herrera J, Beavers DL, Huang TW, et al. (14 December 2011). "Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome". Science Translational Medicine. 3 (113): 113ra125. doi:10.1126/scitranslmed.3002982. ISSN 1946-6234. PMC 3633081. PMID 22174313.
  65. ^ a b Mackay J, Downs J, Wong K, Heyworth J, Epstein A, Leonard H (2017). "Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study". Journal of Neurodevelopmental Disorders. 9: 15. doi:10.1186/s11689-017-9196-7. ISSN 1866-1947. PMC 5410057. PMID 28465761.
  66. ^ Kyle SM, Vashi N, Justice MJ (February 2018). "Rett syndrome: a neurological disorder with metabolic components". Open Biology. 8 (2): 170216. doi:10.1098/rsob.170216. ISSN 2046-2441. PMC 5830535. PMID 29445033.
  67. ^ De Felice C, Maffei S, Signorini C, Leoncini S, Lunghetti S, Valacchi G, et al. (April 2012). "Subclinical myocardial dysfunction in Rett syndrome". European Heart Journal: Cardiovascular Imaging. 13 (4): 339–345. doi:10.1093/ejechocard/jer256. ISSN 2047-2412. PMID 22113206. Archived from the original on 29 November 2021. Retrieved 29 November 2021.
  68. ^ a b Smeets EE, Julu PO, Waardenburg Dv, Engerström IW, Hansen S, Apartopoulos F, et al. (1 November 2006). "Management of a severe forceful breather with Rett Syndrome using carbogen". Brain and Development. 28 (10): 625–632. doi:10.1016/j.braindev.2006.04.010. ISSN 0387-7604. PMID 16765005. S2CID 15545729. Archived from the original on 1 October 2022. Retrieved 29 November 2021.
  69. ^ a b c "Daybue- trofinetide solution". DailyMed. 29 March 2023. Archived from the original on 2 July 2023. Retrieved 20 November 2023.
  70. ^ a b "FDA approves first treatment for Rett Syndrome". U.S. Food and Drug Administration (FDA). 13 March 2023. Archived from the original on 13 March 2023. Retrieved 13 March 2023. Public Domain This article incorporates text from this source, which is in the public domain.
  71. ^ Keam SJ (June 2023). "Trofinetide: First Approval". Drugs. 83 (9): 819–824. doi:10.1007/s40265-023-01883-8. PMID 37191913. S2CID 258715933.
  72. ^ "Drug Trials Snapshots: Daybue". U.S. Food and Drug Administration (FDA). 12 March 2023. Retrieved 19 July 2024. Public Domain This article incorporates text from this source, which is in the public domain.
  73. ^ New Drug Therapy Approvals 2023 (PDF). U.S. Food and Drug Administration (FDA) (Report). January 2024. Archived from the original on 10 January 2024. Retrieved 9 January 2024.
  74. ^ Schwartzman JS, Bernardino A, Nishimura A, Gomes RR, Zatz M (2001). "Rett Syndrome in a Boy with a 47,XXY Karyotype Confirmed by a Rare Mutation in the MECP2 Gene". Neuropediatrics. 32 (3): 162–4. doi:10.1055/s-2001-16620. PMID 11521215. S2CID 260240039.
  75. ^ a b Hardwick SA, Reuter K, Williamson SL, Vasudevan V, Donald J, Slater K, et al. (2007). "Delineation of large deletions of the MECP2 gene in Rett syndrome patients, including a familial case with a male proband". European Journal of Human Genetics. 15 (12): 1218–29. doi:10.1038/sj.ejhg.5201911. PMID 17712354.
  76. ^ Acampa M, Guideri F (May 2006). "Cardiac disease and Rett syndrome". Archives of Disease in Childhood. 91 (5): 440–443. doi:10.1136/adc.2005.090290. ISSN 1468-2044. PMC 2082747. PMID 16632674.
  77. ^ Rett A (10 September 1966). "[On an unusual brain atrophy syndrome in hyperammonemia in childhood]". Wiener Medizinische Wochenschrift (in German). 116 (37): 723–726. ISSN 0043-5341. PMID 5300597.
  78. ^ "Taysha Gene Therapies Announces Initiation of Clinical Development of TSHA-102 in Rett Syndrome". Taysha Gene Therapies. March 2022. Archived from the original on 30 March 2022. Retrieved 6 May 2022.