Jump to content

Carnosine: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
Citation bot (talk | contribs)
Add: s2cid, page, authors 1-1. Removed proxy or dead URL that duplicated free-DOI or unique identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Pages linked from cached Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | via #UCB_webform_linked 147/336
Line 57: Line 57:
Carnosine and [[carnitine]] were discovered by Russian chemist [[Vladimir Gulevich]].<ref>{{cite journal |doi=10.1002/cber.19000330275 |title=Ueber das Carnosin, eine neue organische Base des Fleischextractes |year=1900 |last1=Gulewitsch |first1=Wl. |last2=Amiradžibi |first2=S. |journal=Berichte der Deutschen Chemischen Gesellschaft |volume=33 |issue=2 |pages=1902–1903|url=https://zenodo.org/record/1425978 }}</ref> It has been proven to scavenge [[reactive oxygen species]] (ROS) as well as alpha-beta unsaturated [[aldehydes]] formed from peroxidation of cell membrane [[fatty acids]] during [[oxidative stress]]. It also buffers pH in muscle cells, and acts as a neurotransmitter in the brain. It is also a [[zwitterion]], a neutral molecule with a positive and negative end.{{citation needed|date=March 2018}}
Carnosine and [[carnitine]] were discovered by Russian chemist [[Vladimir Gulevich]].<ref>{{cite journal |doi=10.1002/cber.19000330275 |title=Ueber das Carnosin, eine neue organische Base des Fleischextractes |year=1900 |last1=Gulewitsch |first1=Wl. |last2=Amiradžibi |first2=S. |journal=Berichte der Deutschen Chemischen Gesellschaft |volume=33 |issue=2 |pages=1902–1903|url=https://zenodo.org/record/1425978 }}</ref> It has been proven to scavenge [[reactive oxygen species]] (ROS) as well as alpha-beta unsaturated [[aldehydes]] formed from peroxidation of cell membrane [[fatty acids]] during [[oxidative stress]]. It also buffers pH in muscle cells, and acts as a neurotransmitter in the brain. It is also a [[zwitterion]], a neutral molecule with a positive and negative end.{{citation needed|date=March 2018}}


Carnosine is naturally produced by the body in the liver<ref>{{Cite journal|last=Trexler|first=Eric T.|last2=Smith-Ryan|first2=Abbie E.|last3=Stout|first3=Jeffrey R.|last4=Hoffman|first4=Jay R.|last5=Wilborn|first5=Colin D.|last6=Sale|first6=Craig|last7=Kreider|first7=Richard B.|last8=Jäger|first8=Ralf|last9=Earnest|first9=Conrad P.|last10=Bannock|first10=Laurent|last11=Campbell|first11=Bill|date=2015-07-15|title=International society of sports nutrition position stand: Beta-Alanine|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501114/|journal=Journal of the International Society of Sports Nutrition|volume=12|doi=10.1186/s12970-015-0090-y|issn=1550-2783|pmc=4501114|pmid=26175657}}</ref> from [[Β-Alanine|beta-alanine]] and [[histidine]]. Like carnitine, carnosine is composed of the root word ''carn'', meaning "flesh", alluding to its prevalence in meat.<ref>{{Cite journal
Carnosine is naturally produced by the body in the liver<ref>{{Cite journal|last1=Trexler|first1=Eric T.|last2=Smith-Ryan|first2=Abbie E.|last3=Stout|first3=Jeffrey R.|last4=Hoffman|first4=Jay R.|last5=Wilborn|first5=Colin D.|last6=Sale|first6=Craig|last7=Kreider|first7=Richard B.|last8=Jäger|first8=Ralf|last9=Earnest|first9=Conrad P.|last10=Bannock|first10=Laurent|last11=Campbell|first11=Bill|date=2015-07-15|title=International society of sports nutrition position stand: Beta-Alanine|journal=Journal of the International Society of Sports Nutrition|volume=12|page=30|doi=10.1186/s12970-015-0090-y|issn=1550-2783|pmc=4501114|pmid=26175657}}</ref> from [[Β-Alanine|beta-alanine]] and [[histidine]]. Like carnitine, carnosine is composed of the root word ''carn'', meaning "flesh", alluding to its prevalence in meat.<ref>{{Cite journal
| pmid = 16804012
| pmid = 16804012
| year = 2006
| year = 2006
Line 69: Line 69:
| doi = 10.1196/annals.1354.051
| doi = 10.1196/annals.1354.051
| bibcode = 2006NYASA1067..361H
| bibcode = 2006NYASA1067..361H
| s2cid = 41175541
}}</ref> There are no plant-based sources of carnosine,<ref>{{cite book | title = Advances in Food and Nutrition Research | chapter = Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health | author = Alan R. Hipkiss | date = 2009}}</ref> however synthetic supplements do exist.
}}</ref> There are no plant-based sources of carnosine,<ref>{{cite book | title = Advances in Food and Nutrition Research | chapter = Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health | author = Alan R. Hipkiss | date = 2009}}</ref> however synthetic supplements do exist.


Line 93: Line 94:


==Biosynthesis==
==Biosynthesis==
Carnosine is synthesized within the body from [[Β-Alanine|beta-alanine]] and [[histidine]]. Beta-alanine is a product of [[pyrimidine catabolism]]<ref>{{Cite web|last=|first=|date=|title=beta-ureidopropionate + H2O => beta-alanine + NH4+ + CO2|url=https://reactome.org/PathwayBrowser/#/R-HSA-8956319&SEL=R-HSA-73591&PATH=R-HSA-1430728,R-HSA-15869|url-status=live|archive-url=|archive-date=|access-date=2020-02-08|website=reactome|quote=Cytosolic 3-ureidopropionase catalyzes the reaction of 3-ureidopropionate and water to form beta-alanine, CO2, and NH3 (van Kuilenberg et al. 2004).}}</ref> and histidine is an [[essential amino acid]]. Since beta-alanine is the limiting substrate, supplementing just beta-alanine effectively increases the intramuscular concentration of carnosine.<ref>{{cite journal|vauthors=Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E |s2cid=6990201 |title=Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters |journal=J Appl Physiol |date=August 9, 2007 |pmid = 17690198 |doi=10.1152/japplphysiol.00397.2007 |volume=103|issue=5 |pages=1736–43 }}</ref><ref name="Hill2007">{{cite journal|vauthors=Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA |title=Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity |journal= Amino Acids |year=2007 |issue=2 |volume=32 |pages=225–33 |pmid =16868650 |doi=10.1007/s00726-006-0364-4 }}</ref>
Carnosine is synthesized within the body from [[Β-Alanine|beta-alanine]] and [[histidine]]. Beta-alanine is a product of [[pyrimidine catabolism]]<ref>{{Cite web|last=|first=|date=|title=beta-ureidopropionate + H2O => beta-alanine + NH4+ + CO2|url=https://reactome.org/PathwayBrowser/#/R-HSA-8956319&SEL=R-HSA-73591&PATH=R-HSA-1430728,R-HSA-15869|url-status=live|archive-url=|archive-date=|access-date=2020-02-08|website=reactome|quote=Cytosolic 3-ureidopropionase catalyzes the reaction of 3-ureidopropionate and water to form beta-alanine, CO2, and NH3 (van Kuilenberg et al. 2004).}}</ref> and histidine is an [[essential amino acid]]. Since beta-alanine is the limiting substrate, supplementing just beta-alanine effectively increases the intramuscular concentration of carnosine.<ref>{{cite journal|vauthors=Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E |s2cid=6990201 |title=Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters |journal=J Appl Physiol |date=August 9, 2007 |pmid = 17690198 |doi=10.1152/japplphysiol.00397.2007 |volume=103|issue=5 |pages=1736–43 }}</ref><ref name="Hill2007">{{cite journal|vauthors=Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA |title=Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity |journal= Amino Acids |year=2007 |issue=2 |volume=32 |pages=225–33 |pmid =16868650 |doi=10.1007/s00726-006-0364-4 |s2cid=23988054 }}</ref>


==Physiological effects==
==Physiological effects==
Carnosine has a pK<sub>a</sub> value of 6.83, making it a good [[Buffer solution|buffer]] for the pH range of animal muscles.<ref>{{Cite journal | last1 = Bate-Smith | first1 = EC | year = 1938 | title = The buffering of muscle in rigor: protein, phosphate and carnosine | journal = Journal of Physiology | volume = 92 | issue = 3| pages = 336–343 | pmid = 16994977 | pmc = 1395289 | doi = 10.1113/jphysiol.1938.sp003605 }}</ref> Since beta-alanine is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar). Occurring at 17–25&nbsp;mmol/kg (dry muscle),<ref>{{Cite journal | doi = 10.1007/BF00376439 | pmid = 1735411 | last1 = Mannion | first1 = AF | last2 = Jakeman | first2 = PM | last3 = Dunnett | first3 = M | last4 = Harris | first4 = RC | last5 = Willan | first5 = PLT | year = 1992 | title = Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans | journal = Eur. J. Appl. Physiol | volume = 64 | issue = 1| pages = 47–50 }}</ref> carnosine (β-alanyl-<small>L</small>-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.
Carnosine has a pK<sub>a</sub> value of 6.83, making it a good [[Buffer solution|buffer]] for the pH range of animal muscles.<ref>{{Cite journal | last1 = Bate-Smith | first1 = EC | year = 1938 | title = The buffering of muscle in rigor: protein, phosphate and carnosine | journal = Journal of Physiology | volume = 92 | issue = 3| pages = 336–343 | pmid = 16994977 | pmc = 1395289 | doi = 10.1113/jphysiol.1938.sp003605 }}</ref> Since beta-alanine is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar). Occurring at 17–25&nbsp;mmol/kg (dry muscle),<ref>{{Cite journal | doi = 10.1007/BF00376439 | pmid = 1735411 | last1 = Mannion | first1 = AF | last2 = Jakeman | first2 = PM | last3 = Dunnett | first3 = M | last4 = Harris | first4 = RC | last5 = Willan | first5 = PLT | year = 1992 | title = Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans | journal = Eur. J. Appl. Physiol | volume = 64 | issue = 1| pages = 47–50 | s2cid = 24590951 }}</ref> carnosine (β-alanyl-<small>L</small>-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.


===Atherosclerosis and aging===
===Atherosclerosis and aging===
Carnosine acts as an antiglycating agent, reducing the rate of formation of [[advanced glycation end-products]] (substances that can be a factor in the development or worsening of many [[degenerative diseases]], such as [[diabetes]], [[atherosclerosis]], [[chronic kidney failure]], and [[Alzheimer's disease]]<ref>{{cite journal|last=Vistoli|first=G|author2=De Maddis, D|author3= Cipak, A|author4= Zarkovic, N|author5= Carini, M|author6= Aldini, G|title=Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.|journal=Free Radic. Res.|date=Aug 2013|volume=47|pages=Suppl 1:3–27|pmid=23767955|doi=10.3109/10715762.2013.815348|url=http://fulir.irb.hr/3540/}}
Carnosine acts as an antiglycating agent, reducing the rate of formation of [[advanced glycation end-products]] (substances that can be a factor in the development or worsening of many [[degenerative diseases]], such as [[diabetes]], [[atherosclerosis]], [[chronic kidney failure]], and [[Alzheimer's disease]]<ref>{{cite journal|last=Vistoli|first=G|author2=De Maddis, D|author3= Cipak, A|author4= Zarkovic, N|author5= Carini, M|author6= Aldini, G|title=Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.|journal=Free Radic. Res.|date=Aug 2013|volume=47|pages=Suppl 1:3–27|pmid=23767955|doi=10.3109/10715762.2013.815348|s2cid=207517855|url=http://fulir.irb.hr/3540/}}
</ref>), and ultimately reducing development of atherosclerotic plaque build-up.<ref name="pmid15872311" /><ref>{{cite journal |doi=10.1016/j.febslet.2007.01.082 |title=Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro |year=2007 |last1=Rashid |first1=Imran |last2=Van Reyk |first2=David M. |last3=Davies |first3=Michael J. |journal=FEBS Letters |volume=581 |issue=5 |pages=1067–70 |pmid=17316626}}</ref><ref>{{Cite journal
</ref>), and ultimately reducing development of atherosclerotic plaque build-up.<ref name="pmid15872311" /><ref>{{cite journal |doi=10.1016/j.febslet.2007.01.082 |title=Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro |year=2007 |last1=Rashid |first1=Imran |last2=Van Reyk |first2=David M. |last3=Davies |first3=Michael J. |journal=FEBS Letters |volume=581 |issue=5 |pages=1067–70 |pmid=17316626|s2cid=46535145 }}</ref><ref>{{Cite journal
| pmid = 15955546
| pmid = 15955546
| year = 2005
| year = 2005
Line 111: Line 112:
| pages = 1034–9
| pages = 1034–9
| doi = 10.1016/j.mad.2005.05.002
| doi = 10.1016/j.mad.2005.05.002
| s2cid = 19979631
}}</ref> Chronic glycolysis is speculated to accelerate aging, making carnosine a candidate for therapeutic potential.<ref>{{cite journal |doi=10.1196/annals.1354.051 |title=Does Chronic Glycolysis Accelerate Aging? Could This Explain How Dietary Restriction Works? |year=2006 |last1=Hipkiss |first1=A. R. |journal=Annals of the New York Academy of Sciences |volume=1067 |issue=1 |pages=361–8 |pmid=16804012|bibcode=2006NYASA1067..361H }}</ref>
}}</ref> Chronic glycolysis is speculated to accelerate aging, making carnosine a candidate for therapeutic potential.<ref>{{cite journal |doi=10.1196/annals.1354.051 |title=Does Chronic Glycolysis Accelerate Aging? Could This Explain How Dietary Restriction Works? |year=2006 |last1=Hipkiss |first1=A. R. |journal=Annals of the New York Academy of Sciences |volume=1067 |issue=1 |pages=361–8 |pmid=16804012|bibcode=2006NYASA1067..361H |s2cid=41175541 }}</ref>


==See also==
==See also==

Revision as of 07:31, 23 February 2021

Carnosine[1]
Names
IUPAC name
(2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl)propanoic acid
Other names
β-Alanyl-L-histidine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.610 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C9H14N4O3/c10-2-1-8(14)13-7(9(15)16)3-6-4-11-5-12-6/h4-5,7H,1-3,10H2,(H,11,12)(H,13,14)(H,15,16)/t7-/m0/s1 checkY
    Key: CQOVPNPJLQNMDC-ZETCQYMHSA-N checkY
  • InChI=1/C9H14N4O3/c10-2-1-8(14)13-7(9(15)16)3-6-4-11-5-12-6/h4-5,7H,1-3,10H2,(H,11,12)(H,13,14)(H,15,16)/t7-/m0/s1
    Key: CQOVPNPJLQNMDC-ZETCQYMHBX
  • O=C(O)C(NC(=O)CCN)Cc1c[nH]cn1
  • c1c(nc[nH]1)C[C@@H](C(=O)O)NC(=O)CCN
Properties
C9H14N4O3
Molar mass 226.236 g·mol−1
Appearance Crystalline solid
Melting point 253 °C (487 °F; 526 K) (decomposition)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Carnosine (beta-alanyl-L-histidine) is a dipeptide molecule, made up of the amino acids beta-alanine and histidine. It is highly concentrated in muscle and brain tissues.[citation needed]

Carnosine and carnitine were discovered by Russian chemist Vladimir Gulevich.[2] It has been proven to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes formed from peroxidation of cell membrane fatty acids during oxidative stress. It also buffers pH in muscle cells, and acts as a neurotransmitter in the brain. It is also a zwitterion, a neutral molecule with a positive and negative end.[citation needed]

Carnosine is naturally produced by the body in the liver[3] from beta-alanine and histidine. Like carnitine, carnosine is composed of the root word carn, meaning "flesh", alluding to its prevalence in meat.[4] There are no plant-based sources of carnosine,[5] however synthetic supplements do exist.

Carnosine can chelate divalent metal ions.[6]

Carnosine can increase the Hayflick limit in human fibroblasts,[7] as well as appearing to reduce the telomere shortening rate.[8] It is also considered as a geroprotector.[9]

Biosynthesis

Carnosine is synthesized within the body from beta-alanine and histidine. Beta-alanine is a product of pyrimidine catabolism[10] and histidine is an essential amino acid. Since beta-alanine is the limiting substrate, supplementing just beta-alanine effectively increases the intramuscular concentration of carnosine.[11][12]

Physiological effects

Carnosine has a pKa value of 6.83, making it a good buffer for the pH range of animal muscles.[13] Since beta-alanine is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar). Occurring at 17–25 mmol/kg (dry muscle),[14] carnosine (β-alanyl-L-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.

Atherosclerosis and aging

Carnosine acts as an antiglycating agent, reducing the rate of formation of advanced glycation end-products (substances that can be a factor in the development or worsening of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney failure, and Alzheimer's disease[15]), and ultimately reducing development of atherosclerotic plaque build-up.[6][16][17] Chronic glycolysis is speculated to accelerate aging, making carnosine a candidate for therapeutic potential.[18]

See also

References

  1. ^ "C9625 L-Carnosine ~99%, crystalline". Sigma-Aldrich.
  2. ^ Gulewitsch, Wl.; Amiradžibi, S. (1900). "Ueber das Carnosin, eine neue organische Base des Fleischextractes". Berichte der Deutschen Chemischen Gesellschaft. 33 (2): 1902–1903. doi:10.1002/cber.19000330275.
  3. ^ Trexler, Eric T.; Smith-Ryan, Abbie E.; Stout, Jeffrey R.; Hoffman, Jay R.; Wilborn, Colin D.; Sale, Craig; Kreider, Richard B.; Jäger, Ralf; Earnest, Conrad P.; Bannock, Laurent; Campbell, Bill (2015-07-15). "International society of sports nutrition position stand: Beta-Alanine". Journal of the International Society of Sports Nutrition. 12: 30. doi:10.1186/s12970-015-0090-y. ISSN 1550-2783. PMC 4501114. PMID 26175657.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Hipkiss, A. R. (2006). "Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?". Annals of the New York Academy of Sciences. 1067 (1): 361–8. Bibcode:2006NYASA1067..361H. doi:10.1196/annals.1354.051. PMID 16804012. S2CID 41175541.
  5. ^ Alan R. Hipkiss (2009). "Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health". Advances in Food and Nutrition Research.
  6. ^ a b Reddy, V. P.; Garrett, MR; Perry, G; Smith, MA (2005). "Carnosine: A Versatile Antioxidant and Antiglycating Agent". Science of Aging Knowledge Environment. 2005 (18): pe12. doi:10.1126/sageke.2005.18.pe12. PMID 15872311.
  7. ^ McFarland, G; Holliday, R (1994). "Retardation of the Senescence of Cultured Human Diploid Fibroblasts by Carnosine". Experimental Cell Research. 212 (2): 167–75. doi:10.1006/excr.1994.1132. PMID 8187813.
  8. ^ Shao, Lan; Li, Qing-Huan; Tan, Zheng (2004). "L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts". Biochemical and Biophysical Research Communications. 324 (2): 931–6. doi:10.1016/j.bbrc.2004.09.136. PMID 15474517.
  9. ^ Boldyrev, A. A.; Stvolinsky, S. L.; Fedorova, T. N.; Suslina, Z. A. (2010). "Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials". Rejuvenation Research. 13 (2–3): 156–8. doi:10.1089/rej.2009.0923. PMID 20017611.
  10. ^ "beta-ureidopropionate + H2O => beta-alanine + NH4+ + CO2". reactome. Retrieved 2020-02-08. Cytosolic 3-ureidopropionase catalyzes the reaction of 3-ureidopropionate and water to form beta-alanine, CO2, and NH3 (van Kuilenberg et al. 2004).{{cite web}}: CS1 maint: url-status (link)
  11. ^ Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (August 9, 2007). "Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters". J Appl Physiol. 103 (5): 1736–43. doi:10.1152/japplphysiol.00397.2007. PMID 17690198. S2CID 6990201.
  12. ^ Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007). "Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity". Amino Acids. 32 (2): 225–33. doi:10.1007/s00726-006-0364-4. PMID 16868650. S2CID 23988054.
  13. ^ Bate-Smith, EC (1938). "The buffering of muscle in rigor: protein, phosphate and carnosine". Journal of Physiology. 92 (3): 336–343. doi:10.1113/jphysiol.1938.sp003605. PMC 1395289. PMID 16994977.
  14. ^ Mannion, AF; Jakeman, PM; Dunnett, M; Harris, RC; Willan, PLT (1992). "Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans". Eur. J. Appl. Physiol. 64 (1): 47–50. doi:10.1007/BF00376439. PMID 1735411. S2CID 24590951.
  15. ^ Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G (Aug 2013). "Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation". Free Radic. Res. 47: Suppl 1:3–27. doi:10.3109/10715762.2013.815348. PMID 23767955. S2CID 207517855.
  16. ^ Rashid, Imran; Van Reyk, David M.; Davies, Michael J. (2007). "Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro". FEBS Letters. 581 (5): 1067–70. doi:10.1016/j.febslet.2007.01.082. PMID 17316626. S2CID 46535145.
  17. ^ Hipkiss, A. R. (2005). "Glycation, ageing and carnosine: Are carnivorous diets beneficial?". Mechanisms of Ageing and Development. 126 (10): 1034–9. doi:10.1016/j.mad.2005.05.002. PMID 15955546. S2CID 19979631.
  18. ^ Hipkiss, A. R. (2006). "Does Chronic Glycolysis Accelerate Aging? Could This Explain How Dietary Restriction Works?". Annals of the New York Academy of Sciences. 1067 (1): 361–8. Bibcode:2006NYASA1067..361H. doi:10.1196/annals.1354.051. PMID 16804012. S2CID 41175541.