Jump to content

Methylorubrum extorquens: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Added that "It has been also observed that use lanthanides as a cofactor to increase its methanol dehydrogenase activity" and references
m →‎top: Fix PMC warnings
Line 25: Line 25:
}}
}}


'''''Methylorubrum extorquens''''' is a [[Gram-negative bacterium]]. ''[[Methylorubrum]]'' species often appear pink, and are classified as pink-pigmented facultative methylotrophs, or [[Pink-Pigmented Facultative Methylotrophs|PPFMs]].<ref name=":0">{{Cite journal|last1=Lidstrom|first1=Mary E.|last2=Chistoserdova|first2=Ludmila|date=2002-04-01|title=Plants in the Pink: Cytokinin Production by Methylobacterium|url= |journal=Journal of Bacteriology|language=en|volume=184|issue=7|pages=1818|doi=10.1128/JB.184.7.1818.2002|issn=0021-9193|pmid=11889085|pmc=134909}}</ref> The [[wild type]] has been known to use both methane and multiple carbon compounds as energy sources.<ref name=":0" /> Specifically, ''M. extorquens'' has been observed to use primarily methanol and [https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095556816?result=4&rskey=JZOYGl#:~:text=any%20(real%20or%20hypothetical)%20organic,of%20Biochemistry%20and%20Molecular%20Biology%20%C2%BB C<sub>1</sub> compounds] as substrates in their energy cycles.<ref>{{Cite journal|last1=Belkhelfa|first1=Sophia|last2=Roche|first2=David|last3=Dubois|first3=Ivan|last4=Berger|first4=Anne|last5=Delmas|first5=Valérie A.|last6=Cattolico|first6=Laurence|last7=Perret|first7=Alain|last8=Labadie|first8=Karine|last9=Perdereau|first9=Aude C.|last10=Darii|first10=Ekaterina|last11=Pateau|first11=Emilie|date=2019|title=Continuous Culture Adaptation of ''Methylobacterium extorquens'' AM1 and TK 0001 to Very High Methanol Concentrations|journal=Frontiers in Microbiology|language=en|volume=10|page=1313|doi=10.3389/fmicb.2019.01313|pmid=31281294|pmc=6595629|doi-access=free}}</ref> It has been also observed that use [[Lanthanide|lanthanides]] as a cofactor to increase its [[methanol dehydrogenase]] activity<ref>{{Cite journal|last=Nakagawa|first=Tomoyuki|last2=Mitsui|first2=Ryoji|last3=Tani|first3=Akio|last4=Sasa|first4=Kentaro|last5=Tashiro|first5=Shinya|last6=Iwama|first6=Tomonori|last7=Hayakawa|first7=Takashi|last8=Kawai|first8=Keiichi|date=2012-11-27|title=A Catalytic Role of XoxF1 as La3+-Dependent Methanol Dehydrogenase in Methylobacterium extorquens Strain AM1|url=https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050480|journal=PLOS ONE|language=en|volume=7|issue=11|pages=e50480|doi=10.1371/journal.pone.0050480|issn=1932-6203|pmc=PMC3507691|pmid=23209751}}</ref><ref>{{Cite journal|last=Cotruvo|first=Joseph A.|date=2019-09-25|title=The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications|url=https://doi.org/10.1021/acscentsci.9b00642|journal=ACS Central Science|volume=5|issue=9|pages=1496–1506|doi=10.1021/acscentsci.9b00642|issn=2374-7943|pmc=PMC6764073|pmid=31572776}}</ref>
'''''Methylorubrum extorquens''''' is a [[Gram-negative bacterium]]. ''[[Methylorubrum]]'' species often appear pink, and are classified as pink-pigmented facultative methylotrophs, or [[Pink-Pigmented Facultative Methylotrophs|PPFMs]].<ref name=":0">{{Cite journal|last1=Lidstrom|first1=Mary E.|last2=Chistoserdova|first2=Ludmila|date=2002-04-01|title=Plants in the Pink: Cytokinin Production by Methylobacterium|url= |journal=Journal of Bacteriology|language=en|volume=184|issue=7|pages=1818|doi=10.1128/JB.184.7.1818.2002|issn=0021-9193|pmid=11889085|pmc=134909}}</ref> The [[wild type]] has been known to use both methane and multiple carbon compounds as energy sources.<ref name=":0" /> Specifically, ''M. extorquens'' has been observed to use primarily methanol and [https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095556816?result=4&rskey=JZOYGl#:~:text=any%20(real%20or%20hypothetical)%20organic,of%20Biochemistry%20and%20Molecular%20Biology%20%C2%BB C<sub>1</sub> compounds] as substrates in their energy cycles.<ref>{{Cite journal|last1=Belkhelfa|first1=Sophia|last2=Roche|first2=David|last3=Dubois|first3=Ivan|last4=Berger|first4=Anne|last5=Delmas|first5=Valérie A.|last6=Cattolico|first6=Laurence|last7=Perret|first7=Alain|last8=Labadie|first8=Karine|last9=Perdereau|first9=Aude C.|last10=Darii|first10=Ekaterina|last11=Pateau|first11=Emilie|date=2019|title=Continuous Culture Adaptation of ''Methylobacterium extorquens'' AM1 and TK 0001 to Very High Methanol Concentrations|journal=Frontiers in Microbiology|language=en|volume=10|page=1313|doi=10.3389/fmicb.2019.01313|pmid=31281294|pmc=6595629|doi-access=free}}</ref> It has been also observed that use [[lanthanide]]s as a cofactor to increase its [[methanol dehydrogenase]] activity<ref>{{Cite journal|last=Nakagawa|first=Tomoyuki|last2=Mitsui|first2=Ryoji|last3=Tani|first3=Akio|last4=Sasa|first4=Kentaro|last5=Tashiro|first5=Shinya|last6=Iwama|first6=Tomonori|last7=Hayakawa|first7=Takashi|last8=Kawai|first8=Keiichi|date=2012-11-27|title=A Catalytic Role of XoxF1 as La3+-Dependent Methanol Dehydrogenase in Methylobacterium extorquens Strain AM1|url=https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050480|journal=PLOS ONE|language=en|volume=7|issue=11|pages=e50480|doi=10.1371/journal.pone.0050480|issn=1932-6203|pmc=3507691|pmid=23209751}}</ref><ref>{{Cite journal|last=Cotruvo|first=Joseph A.|date=2019-09-25|title=The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications|url=https://doi.org/10.1021/acscentsci.9b00642|journal=ACS Central Science|volume=5|issue=9|pages=1496–1506|doi=10.1021/acscentsci.9b00642|issn=2374-7943|pmc=6764073|pmid=31572776}}</ref>


== Genetic structure ==
== Genetic structure ==

Revision as of 15:23, 22 November 2021

Methylorubrum extorquens
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Binomial name
Methylorubrum extorquens
(Urakami and Komagata 1984) Green and Ardley 2018[1]
Synonyms[2][3]
  • Bacillus extorquens Bassalik 1913
  • Vibrio extorquens (Bassalik 1913) Bhat and Barker 1948
  • Pseudomonas extorquens (Bassalik 1913) Krasil'nikov 1949
  • Flavobacterium extorquens (Bassalik 1913) Bassalik et al. 1960
  • Protomonas extorquens (ex Bassalik 1913) Urakami and Komagata 1984
  • Methylobacterium chloromethanicum McDonald et al. 2001
  • Methylobacterium dichloromethanicum Doronina et al. 2000
  • Methylobacterium extorquens (Urakami and Komagata 1984) Bousfield and Green 1985
  • Methylobacterium dichloromethanicum subsp. chloromethanicum (McDonald et al. 2001) Hördt et al. 2020

Methylorubrum extorquens is a Gram-negative bacterium. Methylorubrum species often appear pink, and are classified as pink-pigmented facultative methylotrophs, or PPFMs.[4] The wild type has been known to use both methane and multiple carbon compounds as energy sources.[4] Specifically, M. extorquens has been observed to use primarily methanol and C1 compounds as substrates in their energy cycles.[5] It has been also observed that use lanthanides as a cofactor to increase its methanol dehydrogenase activity[6][7]

Genetic structure

After isolation from soil, M. extorquens was found to have a single chromosome measuring 5.71-Mb.[8] The bacterium itself contains 70 genes over eight regions of the chromosome that are used for its metabolism of methanol.[9] Within a section of the chromosome, of M. extorquens AM1 are two xoxF genes that enable it to grow in methanol.[9]

M. extorquens AM1 genome encodes a 47.5 kb gene of unknown function. This gene encodes an over 15,000 residue-long polypeptide along with three unique compounds that are not expressed.[10] The microbe uses the mxa gene[11] as a way to dehydrogenate methanol and use it as an energy source.[10]

Chemical use

Methylorubrum extorquens uses primarily C1 and C2 compounds to grow.[9] Utilizing compounds with few carbon-carbon bonds allows the bacterium to successfully grow in environments with methanol, such as on the surface of leaves whose stomata emit methanol.[12] The ability to use methanol as both a carbon and energy source was show to be advantageous when colonizing Medicago truncatula.[13]

H4MPT-dependent formaldehyde oxidation was first isolated in M. extroquens AM1 and has been used to define if an organism is utilizing methylotrophic metabolism.[10]

Relationships with other organisms

Many bacteria within the family Methylobacteriaceae live in different biotic environments such as soils, dust, and plant leaves.[14] Some of these bacteria have been found in symbiotic relationships with the plants they inhabit in which they provide fixed nitrogen or produce vitamin B12.[14] M. extorquens also produces PhyR which plants use to regulate stress response, allowing the plant to survive in different conditions.[15] In addition to PhyR, the bacterium can produce a hormone related to overall plant and root growth.[9]

M. extorquens has been found to have a mutualistic relationship with strawberries.[16] Ultimately, M. extorquens is used to oxidize 1,2-propanediol to lactaldehyde, which is later used in chemical reactions.[17] If introduced to blooming plants, furaneol production increases, changing the way the strawberry tastes.[16]

See also

References

  1. ^ "Review of the genus Methylobacterium and closely related organisms: A proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov". Int J Syst Evol Microbiol. 68 (9): 2727–2748. 2018. doi:10.1099/ijsem.0.002856. PMID 30024371. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  2. ^ LPSN lpsn.dsmz.de
  3. ^ "Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum". J Gen Appl Microbiol. 51 (5): 287–299. 2005. doi:10.2323/jgam.51.287. PMID 16314683. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  4. ^ a b Lidstrom, Mary E.; Chistoserdova, Ludmila (2002-04-01). "Plants in the Pink: Cytokinin Production by Methylobacterium". Journal of Bacteriology. 184 (7): 1818. doi:10.1128/JB.184.7.1818.2002. ISSN 0021-9193. PMC 134909. PMID 11889085.
  5. ^ Belkhelfa, Sophia; Roche, David; Dubois, Ivan; Berger, Anne; Delmas, Valérie A.; Cattolico, Laurence; Perret, Alain; Labadie, Karine; Perdereau, Aude C.; Darii, Ekaterina; Pateau, Emilie (2019). "Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations". Frontiers in Microbiology. 10: 1313. doi:10.3389/fmicb.2019.01313. PMC 6595629. PMID 31281294.
  6. ^ Nakagawa, Tomoyuki; Mitsui, Ryoji; Tani, Akio; Sasa, Kentaro; Tashiro, Shinya; Iwama, Tomonori; Hayakawa, Takashi; Kawai, Keiichi (2012-11-27). "A Catalytic Role of XoxF1 as La3+-Dependent Methanol Dehydrogenase in Methylobacterium extorquens Strain AM1". PLOS ONE. 7 (11): e50480. doi:10.1371/journal.pone.0050480. ISSN 1932-6203. PMC 3507691. PMID 23209751.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Cotruvo, Joseph A. (2019-09-25). "The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications". ACS Central Science. 5 (9): 1496–1506. doi:10.1021/acscentsci.9b00642. ISSN 2374-7943. PMC 6764073. PMID 31572776.
  8. ^ Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel; Döring, Volker (February 2018). "Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland". Genome Announcements. 6 (8). doi:10.1128/genomeA.00018-18. PMC 5824006. PMID 29472323.
  9. ^ a b c d Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp". BioMed Research International. 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMC 4377440. PMID 25861650.
  10. ^ a b c Vuilleumier, Stéphane; Chistoserdova, Ludmila; Lee, Ming-Chun; Bringel, Françoise; Lajus, Aurélie; Zhou, Yang; Gourion, Benjamin; Barbe, Valérie; Chang, Jean; Cruveiller, Stéphane; Dossat, Carole (2009-05-18). "Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources". PLOS ONE. 4 (5): e5584. Bibcode:2009PLoSO...4.5584V. doi:10.1371/journal.pone.0005584. ISSN 1932-6203. PMC 2680597. PMID 19440302.
  11. ^ "MX1 Gene - GeneCards | MX1 Protein | MX1 Antibody". www.genecards.org. Retrieved 2020-11-02.
  12. ^ Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R. (1995-08-01). "Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development)". Plant Physiology. 108 (4): 1359–1368. doi:10.1104/pp.108.4.1359. ISSN 0032-0889. PMC 157513. PMID 12228547.
  13. ^ Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (2005-11-01). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions". Applied and Environmental Microbiology. 71 (11): 7245–7252. Bibcode:2005ApEnM..71.7245S. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 0099-2240. PMC 1287603. PMID 16269765.
  14. ^ a b Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (November 2005). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions". Applied and Environmental Microbiology. 71 (11): 7245–52. Bibcode:2005ApEnM..71.7245S. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 7245-7252. PMC 1287603. PMID 16269765.
  15. ^ Gourion, Benjamin; Francez-Charlot, Anne; Vorholt, Julia A. (2008-02-01). "PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1". Journal of Bacteriology. 190 (3): 1027–1035. doi:10.1128/JB.01483-07. ISSN 0021-9193. PMC 2223570. PMID 18024517.
  16. ^ a b Siegmund, Barbara; Leitner, Erich (2014-01-01), Ferreira, Vicente; Lopez, Ricardo (eds.), "Chapter 26 - The Effect of Methylobacteria Application on Strawberry Flavor Investigated by GC-MS and Comprehensive GC×GC-qMS", Flavour Science, San Diego: Academic Press, pp. 141–145, ISBN 978-0-12-398549-1, retrieved 2020-09-21
  17. ^ Nasopoulou, Constantina; Pohjanen, Johanna; Koskimäki, Janne J.; Zabetakis, Ioannis; Pirttilä, Anna Maria (2014-08-15). "Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization". Journal of Plant Physiology. 171 (13): 1099–1105. doi:10.1016/j.jplph.2014.03.018. ISSN 1618-1328. PMID 24973582.

External links