Jump to content

Julyan Cartwright: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
still no source for place of birth or nationality
Line 27: Line 27:
including his studies of the dynamics of passive scalars in [[chaotic mixing|chaotic advection]] of fluids,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Feingold | first2=Mario | last3=Piro | first3=Oreste | title=Chaotic advection in three-dimensional unsteady incompressible laminar flow | journal=Journal of Fluid Mechanics | publisher=Cambridge University Press (CUP) | volume=316 | date=1996-06-10 | issn=0022-1120 | doi=10.1017/s0022112096000535 | pages=259–284|arxiv=chao-dyn/9504012| s2cid=930710 }}</ref><ref>{{cite journal | last1=Babiano | first1=Armando | last2=Cartwright | first2=Julyan H. E. | last3=Piro | first3=Oreste | last4=Provenzale | first4=Antonello | title=Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=84 | issue=25 | date=2000-06-19 | issn=0031-9007 | doi=10.1103/physrevlett.84.5764 | pages=5764–5767| pmid=10991049 |arxiv=nlin/0007033| bibcode=2000PhRvL..84.5764B | s2cid=35884368 }}</ref> [[bailout embedding]]s,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Magnasco | first2=Marcelo O. | last3=Piro | first3=Oreste | title=Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos | journal=Physical Review E | publisher=American Physical Society (APS) | volume=65 | issue=4 | date=2002-04-03 | issn=1063-651X | doi=10.1103/physreve.65.045203 | page=045203(R)| pmid=12005907 |arxiv=nlin/0111005| bibcode=2002PhRvE..65d5203C | s2cid=23498762 }}</ref> the [[Bogdanov map]],<ref>
including his studies of the dynamics of passive scalars in [[chaotic mixing|chaotic advection]] of fluids,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Feingold | first2=Mario | last3=Piro | first3=Oreste | title=Chaotic advection in three-dimensional unsteady incompressible laminar flow | journal=Journal of Fluid Mechanics | publisher=Cambridge University Press (CUP) | volume=316 | date=1996-06-10 | issn=0022-1120 | doi=10.1017/s0022112096000535 | pages=259–284|arxiv=chao-dyn/9504012| s2cid=930710 }}</ref><ref>{{cite journal | last1=Babiano | first1=Armando | last2=Cartwright | first2=Julyan H. E. | last3=Piro | first3=Oreste | last4=Provenzale | first4=Antonello | title=Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=84 | issue=25 | date=2000-06-19 | issn=0031-9007 | doi=10.1103/physrevlett.84.5764 | pages=5764–5767| pmid=10991049 |arxiv=nlin/0007033| bibcode=2000PhRvL..84.5764B | s2cid=35884368 }}</ref> [[bailout embedding]]s,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Magnasco | first2=Marcelo O. | last3=Piro | first3=Oreste | title=Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos | journal=Physical Review E | publisher=American Physical Society (APS) | volume=65 | issue=4 | date=2002-04-03 | issn=1063-651X | doi=10.1103/physreve.65.045203 | page=045203(R)| pmid=12005907 |arxiv=nlin/0111005| bibcode=2002PhRvE..65d5203C | s2cid=23498762 }}</ref> the [[Bogdanov map]],<ref>
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.</ref> the influence of [[fluid mechanics]] on the development of vertebrate [[left-right asymmetry (biology)|left-right asymmetry]],<ref>{{cite journal | last1=Cartwright | first1=J. H. E. | last2=Piro | first2=O. | last3=Tuval | first3=I. | title=Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates | journal=Proceedings of the National Academy of Sciences | volume=101 | issue=19 | date=2004-04-26 | issn=0027-8424 | doi=10.1073/pnas.0402001101 | pages=7234–7239|pmid=15118088| pmc=409902 | bibcode=2004PNAS..101.7234C | doi-access=free }}</ref> [[biomineralization]] structures of molluscs including mother of pearl ([[nacre]])<ref name='Checa2011'>{{cite journal|doi=10.1016/j.jsb.2011.09.011|pmid=21982842|title=Mineral bridges in nacre|year=2011|last1=Checa|first1=Antonio|last2=Cartwright|first2=Julyan|last3=Willinger|first3=Marc-Georg|journal=Journal of Structural Biology|volume=176|issue=3|pages=330–339}}</ref><ref>Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.</ref><ref>
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.</ref> the influence of [[fluid mechanics]] on the development of vertebrate [[left-right asymmetry (biology)|left-right asymmetry]],<ref>{{cite journal | last1=Cartwright | first1=J. H. E. | last2=Piro | first2=O. | last3=Tuval | first3=I. | title=Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates | journal=Proceedings of the National Academy of Sciences | volume=101 | issue=19 | date=2004-04-26 | issn=0027-8424 | doi=10.1073/pnas.0402001101 | pages=7234–7239|pmid=15118088| pmc=409902 | bibcode=2004PNAS..101.7234C | doi-access=free }}</ref> [[biomineralization]] structures of molluscs including mother of pearl ([[nacre]])<ref name='Checa2011'>{{cite journal|doi=10.1016/j.jsb.2011.09.011|pmid=21982842|title=Mineral bridges in nacre|year=2011|last1=Checa|first1=Antonio|last2=Cartwright|first2=Julyan|last3=Willinger|first3=Marc-Georg|journal=Journal of Structural Biology|volume=176|issue=3|pages=330–339}}</ref><ref>Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.</ref><ref>
Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.</ref> and [[cuttlebone]],<ref>{{Cite journal|last1=Checa|first1=Antonio G.|last2=Cartwright|first2=Julyan H. E.|last3=Sánchez-Almazo|first3=Isabel|last4=Andrade|first4=José P.|last5=Ruiz-Raya|first5=Francisco|date=September 2015|title=The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor|url= |journal=Scientific Reports|language=en|volume=5|issue=1|pages=11513|doi=10.1038/srep11513|issn=2045-2322|pmc=4471886|pmid=26086668| arxiv=1506.08290 | bibcode=2015NatSR...511513C }}</ref> [[excitable media]],<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Eguíluz | first2=Víctor M. | last3=Hernández-García | first3=Emilio | last4=Piro | first4=Oreste | title=Dynamics of Elastic Excitable Media | journal=International Journal of Bifurcation and Chaos | volume=09 | issue=11 | year=1999 | issn=0218-1274 | doi=10.1142/s0218127499001620|arxiv=chao-dyn/9905035 | pages=2197–2202| bibcode=1999IJBC....9.2197C | s2cid=9120223 }}</ref> and chemobrionics<ref>Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323</ref>: [[self-assembly|self-assembling]] porous precipitate structures, such as [[chemical gardens]]<ref>{{Cite journal|last1=Barge|first1=Laura M.|last2=Cardoso|first2=Silvana S. S.|last3=Cartwright|first3=Julyan H. E.|last4=Cooper|first4=Geoffrey J. T.|last5=Cronin|first5=Leroy|last6=De Wit|first6=Anne|last7=Doloboff|first7=Ivria J.|last8=Escribano|first8=Bruno|last9=Goldstein|first9=Raymond E.|date=2015-08-26|title=From Chemical Gardens to Chemobrionics|journal=Chemical Reviews|volume=115|issue=16|pages=8652–8703|doi=10.1021/acs.chemrev.5b00014|pmid=26176351|issn=0009-2665|doi-access=free}}</ref>, [[brinicle|brinicles]]<ref>{{Cite journal|last=Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval|date=2013|title=Brinicles as a case of inverse chemical gardens|journal=Langmuir|volume=29|issue=25|pages=7655–7660|doi=10.1021/la4009703|pmid=23551166|arxiv=1304.1774|s2cid=207727184}}</ref>, and submarine [[hydrothermal vent]]s.<ref>{{Cite journal |url=https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0104 |title = The origin of life: the submarine alkaline vent theory at 30| year=2019 | doi=10.1098/rsfs.2019.0104 | last1=Cartwright | first1=Julyan H. E. | last2=Russell | first2=Michael J. | journal=Interface Focus | volume=9 | issue=6 | s2cid=204753957 }}</ref>
Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.</ref> and [[cuttlebone]],<ref>{{Cite journal|last1=Checa|first1=Antonio G.|last2=Cartwright|first2=Julyan H. E.|last3=Sánchez-Almazo|first3=Isabel|last4=Andrade|first4=José P.|last5=Ruiz-Raya|first5=Francisco|date=September 2015|title=The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor|url= |journal=Scientific Reports|language=en|volume=5|issue=1|pages=11513|doi=10.1038/srep11513|issn=2045-2322|pmc=4471886|pmid=26086668| arxiv=1506.08290 | bibcode=2015NatSR...511513C }}</ref> [[excitable media]],<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Eguíluz | first2=Víctor M. | last3=Hernández-García | first3=Emilio | last4=Piro | first4=Oreste | title=Dynamics of Elastic Excitable Media | journal=International Journal of Bifurcation and Chaos | volume=09 | issue=11 | year=1999 | issn=0218-1274 | doi=10.1142/s0218127499001620|arxiv=chao-dyn/9905035 | pages=2197–2202| bibcode=1999IJBC....9.2197C | s2cid=9120223 }}</ref> and chemobrionics:<ref>Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323</ref> [[self-assembly|self-assembling]] porous precipitate structures, such as [[chemical gardens]],<ref>{{Cite journal|last1=Barge|first1=Laura M.|last2=Cardoso|first2=Silvana S. S.|last3=Cartwright|first3=Julyan H. E.|last4=Cooper|first4=Geoffrey J. T.|last5=Cronin|first5=Leroy|last6=De Wit|first6=Anne|last7=Doloboff|first7=Ivria J.|last8=Escribano|first8=Bruno|last9=Goldstein|first9=Raymond E.|date=2015-08-26|title=From Chemical Gardens to Chemobrionics|journal=Chemical Reviews|volume=115|issue=16|pages=8652–8703|doi=10.1021/acs.chemrev.5b00014|pmid=26176351|issn=0009-2665|doi-access=free}}</ref> [[brinicle]]s,<ref>{{Cite journal|last=Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval|date=2013|title=Brinicles as a case of inverse chemical gardens|journal=Langmuir|volume=29|issue=25|pages=7655–7660|doi=10.1021/la4009703|pmid=23551166|arxiv=1304.1774|s2cid=207727184}}</ref> and submarine [[hydrothermal vent]]s.<ref>{{Cite journal |url=https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0104 |title = The origin of life: the submarine alkaline vent theory at 30| year=2019 | doi=10.1098/rsfs.2019.0104 | last1=Cartwright | first1=Julyan H. E. | last2=Russell | first2=Michael J. | journal=Interface Focus | volume=9 | issue=6 | s2cid=204753957 }}</ref>


He is among the researchers in the Stanford list of the World's top 2% most cited scientists.<ref>{{Cite journal|url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/3|title = August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"| year=2021 | doi=10.17632/btchxktzyw.3 | author1=Jeroen Baas | last2=Boyack | first2=Kevin | last3=Ioannidis | first3=John P. A. | volume=3 | publisher=Elsevier BV }}</ref><ref>{{Cite web|url=
He is among the researchers in the Stanford list of the World's top 2% most cited scientists.<ref>{{Cite journal|url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/3|title = August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"| year=2021 | doi=10.17632/btchxktzyw.3 | author1=Jeroen Baas | last2=Boyack | first2=Kevin | last3=Ioannidis | first3=John P. A. | volume=3 | publisher=Elsevier BV }}</ref><ref>{{Cite web|url=
https://www.granadahoy.com/granada/lista-completa-investigadores-Universidad-Granada_0_1623138968.html | title = La lista completa de los investigadores más destacados de la Universidad de Granada}}</ref> He is chair of the international [[European Cooperation in Science and Technology|COST]] action Chemobionics<ref>{{Cite web|url=https://www.cost.eu/cost-action/chemobrionics/| title = Chemobrionics - COST}}</ref> and chair of the scientific advisory committee to the international conference Dynamics Days Europe.<ref>{{Cite web|url=http://www.dynamicsdays.org |title = European Dynamics Days}}</ref>
https://www.granadahoy.com/granada/lista-completa-investigadores-Universidad-Granada_0_1623138968.html | title = La lista completa de los investigadores más destacados de la Universidad de Granada}}</ref> He is chair of the international [[European Cooperation in Science and Technology|COST]] action Chemobionics<ref>{{Cite web|url=https://www.cost.eu/cost-action/chemobrionics/| title = Chemobrionics - COST}}</ref> and chair of the scientific advisory committee to the international conference Dynamics Days Europe.<ref>{{Cite web|url=http://www.dynamicsdays.org |title = European Dynamics Days}}</ref>


Press interest in his research has highlighted his work on chemical gardens,<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2015/02/150217122706.htm|title = Recent research provides new data on chemical gardens, whose formation is a mystery for science}}</ref> on how bees construct spiral bee combs,<ref>{{Cite web|url=https://www.smithsonianmag.com/smart-news/stingless-bees-build-spiral-honeycombs-grow-crystals-180975405/|title = Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs}}</ref><ref>{{Cite web|url=https://www.sciencealert.com/scientists-discover-these-incredible-beehives-have-a-lot-in-common-with-crystals|title = Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals}}</ref><ref>{{Cite web|url=https://www.livescience.com/tetragonula-spiral-bee-comb-grow-like-crystals.html|title = Strange, spiral bee combs look like fantastical crystal palaces. Now we know why.}}</ref> on the formation of nacre<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2009/02/090212112741.htm |title = Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones}}</ref> and pearls,<ref>{{Cite web|url=https://www.technologyreview.com/2013/04/18/178984/pearls-and-the-puzzle-of-how-they-form-perfect-spheres/|title = Pearls and the Puzzle of How They Form Perfect Spheres}}</ref><ref>{{Cite web|url=https://phys.org/news/2013-06-pearly.html|title =Pearly perfection}}</ref><ref>{{Cite web|url=https://www.newscientist.com/article/mg21829155-700-micro-ratchet-spins-pearls-with-perfect-symmetry/|title = Micro-ratchet spins pearls with perfect symmetry}}</ref><ref>{{Cite web|url=http://www.sci-news.com/biology/article01167-how-pearls-form.html|title = Researchers Try to Explain How Perfect Pearls Form}}</ref> on how [[brinicle]] ice tubes grow both on Earth<ref>{{Cite web | url=https://www.wired.com/2013/05/swimming-beneath-the-brinicles-in-antarctica/ |title = Swimming Beneath the Brinicles, in Antarctica}}</ref><ref>{{Cite web|url= https://www.sciencedaily.com/releases/2013/04/130424112316.htm|title = Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life}}</ref> and on [[Jupiter]]'s moon, [[Europa (moon)|Europa]],<ref>{{Cite web | url=http://astrobiology.com/2019/03/self-assembling-ice-membranes-on-europa.html |title = Self-Assembling Ice Membranes on Europa – Astrobiology}}</ref> on the information content of materials<ref>{{Cite web|url= https://www.technologyreview.com/2012/07/19/255574/crystals-information-and-the-origin-of-life/|title = Crystals, Information And The Origin of Life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat3437|title =Bringing crystals to life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nphys2393|title =Instructions for assembly}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat4122|title =Beyond the crystal}}</ref> on the nature of [[Hokusai|Hokusai's]] famous [[the Great Wave off Kanagawa]],<ref>{{Cite web|url=https://blogs.egu.eu/geolog/2019/07/08/imaggeo-on-mondays-recreating-monster-waves-in-art-and-science/|title = Recreating monster waves in art and science}}</ref><ref>{{Cite web | url=https://www.usgs.gov/media/images/hokusai-under-wave-kanagawa |title = Hokusai Under the Wave off Kanagawa}}</ref><ref>{{Cite web | url=https://www.sueddeutsche.de/kultur/serie-am-wasser-der-anstoessige-superstar-1.4123445|title =Der anstößige Superstar}}</ref> on the [[Möbius strip]] before [[August Ferdinand Möbius|Möbius]],<ref>{{Cite web | url= https://auralcrave.com/2021/12/07/escher-il-nastro-di-mobius-e-gli-idiot-savant-fin-dove-si-puo-arrivare-col-pensiero/|title = Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?| date=7 December 2021 }}</ref> on the possible melting of oceanic [[methane hydrate]] deposits owing to [[climate change]],<ref>{{Cite web | url=https://phys.org/news/2017-03-percent-global-methane-deposits-due.html |title = 3.5 percent of global methane deposits could be melted by 2100 due to climate change}}</ref> and on the origin of life at alkaline submarine hydrothermal vents and their relevance to [[astrobiology]]<ref>{{Cite web | url=https://www.ideal.es/miugr/expertos-internacionales-debaten-20190312191937-nt.html|title = Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida}}</ref>.
Press interest in his research has highlighted his work on chemical gardens,<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2015/02/150217122706.htm|title = Recent research provides new data on chemical gardens, whose formation is a mystery for science}}</ref> on how bees construct spiral bee combs,<ref>{{Cite web|url=https://www.smithsonianmag.com/smart-news/stingless-bees-build-spiral-honeycombs-grow-crystals-180975405/|title = Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs}}</ref><ref>{{Cite web|url=https://www.sciencealert.com/scientists-discover-these-incredible-beehives-have-a-lot-in-common-with-crystals|title = Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals}}</ref><ref>{{Cite web|url=https://www.livescience.com/tetragonula-spiral-bee-comb-grow-like-crystals.html|title = Strange, spiral bee combs look like fantastical crystal palaces. Now we know why.}}</ref> on the formation of nacre<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2009/02/090212112741.htm |title = Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones}}</ref> and pearls,<ref>{{Cite web|url=https://www.technologyreview.com/2013/04/18/178984/pearls-and-the-puzzle-of-how-they-form-perfect-spheres/|title = Pearls and the Puzzle of How They Form Perfect Spheres}}</ref><ref>{{Cite web|url=https://phys.org/news/2013-06-pearly.html|title =Pearly perfection}}</ref><ref>{{Cite web|url=https://www.newscientist.com/article/mg21829155-700-micro-ratchet-spins-pearls-with-perfect-symmetry/|title = Micro-ratchet spins pearls with perfect symmetry}}</ref><ref>{{Cite web|url=http://www.sci-news.com/biology/article01167-how-pearls-form.html|title = Researchers Try to Explain How Perfect Pearls Form}}</ref> on how [[brinicle]] ice tubes grow both on Earth<ref>{{Cite web | url=https://www.wired.com/2013/05/swimming-beneath-the-brinicles-in-antarctica/ |title = Swimming Beneath the Brinicles, in Antarctica}}</ref><ref>{{Cite web|url= https://www.sciencedaily.com/releases/2013/04/130424112316.htm|title = Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life}}</ref> and on [[Jupiter]]'s moon, [[Europa (moon)|Europa]],<ref>{{Cite web | url=http://astrobiology.com/2019/03/self-assembling-ice-membranes-on-europa.html |title = Self-Assembling Ice Membranes on Europa – Astrobiology}}</ref> on the information content of materials<ref>{{Cite web|url= https://www.technologyreview.com/2012/07/19/255574/crystals-information-and-the-origin-of-life/|title = Crystals, Information And The Origin of Life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat3437|title =Bringing crystals to life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nphys2393|title =Instructions for assembly}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat4122|title =Beyond the crystal}}</ref> on the nature of [[Hokusai|Hokusai's]] famous [[the Great Wave off Kanagawa]],<ref>{{Cite web|url=https://blogs.egu.eu/geolog/2019/07/08/imaggeo-on-mondays-recreating-monster-waves-in-art-and-science/|title = Recreating monster waves in art and science}}</ref><ref>{{Cite web | url=https://www.usgs.gov/media/images/hokusai-under-wave-kanagawa |title = Hokusai Under the Wave off Kanagawa}}</ref><ref>{{Cite web | url=https://www.sueddeutsche.de/kultur/serie-am-wasser-der-anstoessige-superstar-1.4123445|title =Der anstößige Superstar}}</ref> on the [[Möbius strip]] before [[August Ferdinand Möbius|Möbius]],<ref>{{Cite web | url= https://auralcrave.com/2021/12/07/escher-il-nastro-di-mobius-e-gli-idiot-savant-fin-dove-si-puo-arrivare-col-pensiero/|title = Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?| date=7 December 2021 }}</ref> on the possible melting of oceanic [[methane hydrate]] deposits owing to [[climate change]],<ref>{{Cite web | url=https://phys.org/news/2017-03-percent-global-methane-deposits-due.html |title = 3.5 percent of global methane deposits could be melted by 2100 due to climate change}}</ref> and on the origin of life at alkaline submarine hydrothermal vents and their relevance to [[astrobiology]].<ref>{{Cite web | url=https://www.ideal.es/miugr/expertos-internacionales-debaten-20190312191937-nt.html|title = Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida}}</ref>


== References ==
== References ==
Line 43: Line 43:
[[Category:British physicists]]
[[Category:British physicists]]
[[Category:Spanish physicists]]
[[Category:Spanish physicists]]
[[Category:Year of birth missing (living people)]]

Revision as of 21:26, 3 May 2022

Julyan Cartwright
Born
CitizenshipBritish[citation needed]
Alma materUniversity of Newcastle upon Tyne,
Queen Mary College, University of London
Scientific career
Fieldsdynamical systems, nonlinear science, complexity, pattern formation
InstitutionsCSIC (Spanish National Research Council)
Doctoral advisorDavid Arrowsmith[1]
Other academic advisorsDavid Tritton,
Ian C. Percival

Julyan Cartwright is an interdisciplinary physicist working in Granada, Spain at the Andalusian Earth Sciences Institute[2] of the CSIC (Spanish National Research Council) and affiliated with the Carlos I Institute of Theoretical and Computational Physics[3] at the University of Granada.

He is known for his research[4] in dynamical systems, nonlinear science, complexity and pattern formation, across many fields including his studies of the dynamics of passive scalars in chaotic advection of fluids,[5][6] bailout embeddings,[7] the Bogdanov map,[8] the influence of fluid mechanics on the development of vertebrate left-right asymmetry,[9] biomineralization structures of molluscs including mother of pearl (nacre)[10][11][12] and cuttlebone,[13] excitable media,[14] and chemobrionics:[15] self-assembling porous precipitate structures, such as chemical gardens,[16] brinicles,[17] and submarine hydrothermal vents.[18]

He is among the researchers in the Stanford list of the World's top 2% most cited scientists.[19][20] He is chair of the international COST action Chemobionics[21] and chair of the scientific advisory committee to the international conference Dynamics Days Europe.[22]

Press interest in his research has highlighted his work on chemical gardens,[23] on how bees construct spiral bee combs,[24][25][26] on the formation of nacre[27] and pearls,[28][29][30][31] on how brinicle ice tubes grow both on Earth[32][33] and on Jupiter's moon, Europa,[34] on the information content of materials[35][36][37][38] on the nature of Hokusai's famous the Great Wave off Kanagawa,[39][40][41] on the Möbius strip before Möbius,[42] on the possible melting of oceanic methane hydrate deposits owing to climate change,[43] and on the origin of life at alkaline submarine hydrothermal vents and their relevance to astrobiology.[44]

References

  1. ^ Julyan Cartwright at the Mathematics Genealogy Project
  2. ^ "IACT Staff - Julyan Cartwright".
  3. ^ "List of members of the iC1".
  4. ^ "Julyan Cartwright - Google Scholar".
  5. ^ Cartwright, Julyan H. E.; Feingold, Mario; Piro, Oreste (1996-06-10). "Chaotic advection in three-dimensional unsteady incompressible laminar flow". Journal of Fluid Mechanics. 316. Cambridge University Press (CUP): 259–284. arXiv:chao-dyn/9504012. doi:10.1017/s0022112096000535. ISSN 0022-1120. S2CID 930710.
  6. ^ Babiano, Armando; Cartwright, Julyan H. E.; Piro, Oreste; Provenzale, Antonello (2000-06-19). "Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems". Physical Review Letters. 84 (25). American Physical Society (APS): 5764–5767. arXiv:nlin/0007033. Bibcode:2000PhRvL..84.5764B. doi:10.1103/physrevlett.84.5764. ISSN 0031-9007. PMID 10991049. S2CID 35884368.
  7. ^ Cartwright, Julyan H. E.; Magnasco, Marcelo O.; Piro, Oreste (2002-04-03). "Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos". Physical Review E. 65 (4). American Physical Society (APS): 045203(R). arXiv:nlin/0111005. Bibcode:2002PhRvE..65d5203C. doi:10.1103/physreve.65.045203. ISSN 1063-651X. PMID 12005907. S2CID 23498762.
  8. ^ Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
  9. ^ Cartwright, J. H. E.; Piro, O.; Tuval, I. (2004-04-26). "Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates". Proceedings of the National Academy of Sciences. 101 (19): 7234–7239. Bibcode:2004PNAS..101.7234C. doi:10.1073/pnas.0402001101. ISSN 0027-8424. PMC 409902. PMID 15118088.
  10. ^ Checa, Antonio; Cartwright, Julyan; Willinger, Marc-Georg (2011). "Mineral bridges in nacre". Journal of Structural Biology. 176 (3): 330–339. doi:10.1016/j.jsb.2011.09.011. PMID 21982842.
  11. ^ Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.
  12. ^ Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.
  13. ^ Checa, Antonio G.; Cartwright, Julyan H. E.; Sánchez-Almazo, Isabel; Andrade, José P.; Ruiz-Raya, Francisco (September 2015). "The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor". Scientific Reports. 5 (1): 11513. arXiv:1506.08290. Bibcode:2015NatSR...511513C. doi:10.1038/srep11513. ISSN 2045-2322. PMC 4471886. PMID 26086668.
  14. ^ Cartwright, Julyan H. E.; Eguíluz, Víctor M.; Hernández-García, Emilio; Piro, Oreste (1999). "Dynamics of Elastic Excitable Media". International Journal of Bifurcation and Chaos. 09 (11): 2197–2202. arXiv:chao-dyn/9905035. Bibcode:1999IJBC....9.2197C. doi:10.1142/s0218127499001620. ISSN 0218-1274. S2CID 9120223.
  15. ^ Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323
  16. ^ Barge, Laura M.; Cardoso, Silvana S. S.; Cartwright, Julyan H. E.; Cooper, Geoffrey J. T.; Cronin, Leroy; De Wit, Anne; Doloboff, Ivria J.; Escribano, Bruno; Goldstein, Raymond E. (2015-08-26). "From Chemical Gardens to Chemobrionics". Chemical Reviews. 115 (16): 8652–8703. doi:10.1021/acs.chemrev.5b00014. ISSN 0009-2665. PMID 26176351.
  17. ^ Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval (2013). "Brinicles as a case of inverse chemical gardens". Langmuir. 29 (25): 7655–7660. arXiv:1304.1774. doi:10.1021/la4009703. PMID 23551166. S2CID 207727184.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Cartwright, Julyan H. E.; Russell, Michael J. (2019). "The origin of life: the submarine alkaline vent theory at 30". Interface Focus. 9 (6). doi:10.1098/rsfs.2019.0104. S2CID 204753957.
  19. ^ Jeroen Baas; Boyack, Kevin; Ioannidis, John P. A. (2021). "August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"". 3. Elsevier BV. doi:10.17632/btchxktzyw.3. {{cite journal}}: Cite journal requires |journal= (help)
  20. ^ "La lista completa de los investigadores más destacados de la Universidad de Granada".
  21. ^ "Chemobrionics - COST".
  22. ^ "European Dynamics Days".
  23. ^ "Recent research provides new data on chemical gardens, whose formation is a mystery for science".
  24. ^ "Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs".
  25. ^ "Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals".
  26. ^ "Strange, spiral bee combs look like fantastical crystal palaces. Now we know why".
  27. ^ "Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones".
  28. ^ "Pearls and the Puzzle of How They Form Perfect Spheres".
  29. ^ "Pearly perfection".
  30. ^ "Micro-ratchet spins pearls with perfect symmetry".
  31. ^ "Researchers Try to Explain How Perfect Pearls Form".
  32. ^ "Swimming Beneath the Brinicles, in Antarctica".
  33. ^ "Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life".
  34. ^ "Self-Assembling Ice Membranes on Europa – Astrobiology".
  35. ^ "Crystals, Information And The Origin of Life".
  36. ^ "Bringing crystals to life". {{cite journal}}: Cite journal requires |journal= (help)
  37. ^ "Instructions for assembly". {{cite journal}}: Cite journal requires |journal= (help)
  38. ^ "Beyond the crystal". {{cite journal}}: Cite journal requires |journal= (help)
  39. ^ "Recreating monster waves in art and science".
  40. ^ "Hokusai Under the Wave off Kanagawa".
  41. ^ "Der anstößige Superstar".
  42. ^ "Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?". 7 December 2021.
  43. ^ "3.5 percent of global methane deposits could be melted by 2100 due to climate change".
  44. ^ "Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida".