Jump to content

Cylindrical equal-area projection: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Euro2023 (talk | contribs)
Euro2023 (talk | contribs)
→‎External links: rm broken link: * [https://web.archive.org/web/20150504232642/http://www.uff.br/mapprojections/LambertCylindricalEqualArea_en.html An interactive Java Applet to study the metric deformations of the Lambert Cylindrical Equal-Area Projection].
Line 178: Line 178:
==External links==
==External links==
* [http://www.radicalcartography.net/?projectionref Table of examples and properties of all common projections], from radicalcartography.net
* [http://www.radicalcartography.net/?projectionref Table of examples and properties of all common projections], from radicalcartography.net
* [https://web.archive.org/web/20150504232642/http://www.uff.br/mapprojections/LambertCylindricalEqualArea_en.html An interactive Java Applet to study the metric deformations of the Lambert Cylindrical Equal-Area Projection].


{{Map Projections}}
{{Map Projections}}

Revision as of 01:14, 10 January 2023

Lambert cylindrical equal-area projection of the world; standard parallel at 0°
The Lambert (standard parallel at 0°, normal) cylindrical equal-area projection with Tissot's indicatrix of deformation

In cartography, the normal cylindrical equal-area projection is a family of normal cylindrical, equal-area map projections.

History

The invention of the Lambert cylindrical equal-area projection is attributed to the Swiss mathematician Johann Heinrich Lambert in 1772.[1] Variations of it appeared over the years by inventors who stretched the height of the Lambert and compressed the width commensurately in various ratios.

Description

How the Earth is projected onto a cylinder

The term "normal cylindrical projection" is used to refer to any projection in which meridians are mapped to equally spaced vertical lines and circles of latitude are mapped to horizontal lines (or, mutatis mutandis, more generally, radial lines from a fixed point are mapped to equally spaced parallel lines and concentric circles around it are mapped to perpendicular lines).

The mapping of meridians to vertical lines can be visualized by imagining a cylinder of which the axis coincides with the Earth's axis of rotation, and then projecting onto the cylinder, and subsequently unfolding the cylinder.

By the geometry of their construction, cylindrical projections stretch distances east-west. The amount of stretch is the same at any chosen latitude on all cylindrical projections, and is given by the secant of the latitude as a multiple of the equator's scale. The various cylindrical projections are distinguished from each other solely by their north-south stretching (where latitude is given by φ):

The only normal cylindrical projections that preserve area have a north-south compression precisely the reciprocal of east-west stretching (cos φ). This divides north-south distances by a factor equal to the secant of the latitude, preserving area but distorting shapes.

East–west scale matching the north–south scale

Depending on the stretch factor S, any particular cylindrical equal-area projection either has zero, one or two latitudes for which the east–west scale matches the north–south scale.

  • S>1 : zero
  • S=1 : one, that latitude is the equator
  • S<1 : a pair of identical latitudes of opposite sign

Formulae

The formulae presume a spherical model and use these definitions[2]:

  • λ is the longitude
  • λ0 is the central meridian
  • φ is the latitude
  • φ0 is the standard latitude
  • S is the stretch factor
  • x is the horizontal coordinate of the projected location on the map
  • y is the vertical coordinate of the projected location on the map

Except for the Lambrecht case one of φ0 and S has to be provided.

using standard latitude φ0 using stretch factor S S=1, φ0=0
using radians
using degrees

Relationship between S and φ0:

  • S = (cos φ0)2
  • φ0 = arccos(S0.5)

Specializations

Template:Tissot indicatrix world map cyl equal-area proj comparison.svg The specializations of the normal cylindric equal-area projection differ only in the ratio of the vertical to horizontal axis. Some specializations of the cylindrical equal-area projection have been described, promoted, or otherwise named.[3][4][5][6][7]

Specializations of the normal cylindrical equal-area projection, images showing projection centered on the Greenwich meridian
Stretch factor
S
Aspect ratio
(width-to-height)
πS
Standard parallel(s)
φ0
Image (Tissot's indicatrix) Image (Blue Marble) Name Publisher Year of publication
1 π
≈ 3.142
Lambert cylindrical equal-area Johann Heinrich Lambert 1772
3/4
= 0.75
3π/4 ≈ 2.356 30° Behrmann Walter Behrmann 1910
2/π
≈ 0.6366
2
≈ 37°04′17″
≈ 37.071435°
Smyth equal-surface
= Craster rectangular
Charles Piazzi Smyth 1870
(cos(37.4°))2
≈ 0.6311
≈ 1.983 37°24′
= 37.4°
Trystan Edwards Trystan Edwards 1953
(cos(37.5°))2
≈ 0.6294
≈ 1.977 37°30′
= 37.5°
Hobo–Dyer Mick Dyer 2002
(cos(40°))2
≈ 0.5868
≈ 1.84356 40° (unnamed)
1/2
=0.5
π/2 ≈ 1.571 45° Gall–Peters
= Gall orthographic
= Peters
James Gall,
Promoted by Arno Peters as his own invention
1855 (Gall),
1967 (Peters)
(cos(50°))2
≈ 0.4132
≈ 1.298 50° Balthasart M. Balthasart 1935
1/π
≈ 0.3183
1
≈ 55°39′14″
≈ 55.6539665°
Tobler's world in a square Waldo Tobler 1986

Derivatives

The Tobler hyperelliptical projection, first described by Tobler in 1973, is a further generalization of the cylindrical equal-area family.

The HEALPix projection is an equal-area hybrid combination of: the Lambert cylindrical equal-area projection, for the equatorial regions of the sphere; and an interrupted Collignon projection, for the polar regions.

References

  1. ^ Mulcahy, Karen. "Cylindrical Projections". City University of New York. Retrieved 2007-03-30.
  2. ^ Map Projections – A Working Manual Archived 2010-07-01 at the Wayback Machine, USGS Professional Paper 1395, John P. Snyder, 1987, pp.76–85
  3. ^ Snyder, John P. (1989). An Album of Map Projections p. 19. Washington, D.C.: U.S. Geological Survey Professional Paper 1453. (Mathematical properties of the Gall–Peters and related projections.)
  4. ^ Monmonier, Mark (2004). Rhumb Lines and Map Wars: A Social History of the Mercator Projection p. 152. Chicago: The University of Chicago Press. (Thorough treatment of the social history of the Mercator projection and Gall–Peters projections.)
  5. ^ Smyth, C. Piazzi. (1870). On an Equal-Surface Projection and its Anthropological Applications. Edinburgh: Edmonton & Douglas. (Monograph describing an equal-area cylindric projection and its virtues, specifically disparaging Mercator's projection.)
  6. ^ Weisstein, Eric W. "Cylindrical Equal-Area Projection." From MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com/CylindricalEqual-AreaProjection.html
  7. ^ Tobler, Waldo and Chen, Zi-tan(1986). A Quadtree for Global Information Storage. http://www.geog.ucsb.edu/~kclarke/Geography232/Tobler1986.pdf