Jump to content

Carnosine: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
add semisystematic name
Line 8: Line 8:
| ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile = Carnosine.svg
| ImageFile = Carnosine.svg
| IUPACName = β-Alanylhistidine
| PIN = (2''S'')-2-(3-Aminopropanamido)-3-(3''H''-imidazol-4-yl)propanoic acid
| SystematicName = (2''S'')-2-(3-Aminopropanamido)-3-(3''H''-imidazol-4-yl)propanoic acid
| OtherNames = β-Alanyl-<small>L</small>-histidine
| OtherNames = β-Alanyl-<small>L</small>-histidine
| Section1 = {{Chembox Identifiers
| Section1 = {{Chembox Identifiers

Revision as of 03:36, 30 April 2023

Carnosine
Names
IUPAC name
β-Alanylhistidine
Systematic IUPAC name
(2S)-2-(3-Aminopropanamido)-3-(3H-imidazol-4-yl)propanoic acid
Other names
β-Alanyl-L-histidine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.610 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C9H14N4O3/c10-2-1-8(14)13-7(9(15)16)3-6-4-11-5-12-6/h4-5,7H,1-3,10H2,(H,11,12)(H,13,14)(H,15,16)/t7-/m0/s1 checkY
    Key: CQOVPNPJLQNMDC-ZETCQYMHSA-N checkY
  • InChI=1/C9H14N4O3/c10-2-1-8(14)13-7(9(15)16)3-6-4-11-5-12-6/h4-5,7H,1-3,10H2,(H,11,12)(H,13,14)(H,15,16)/t7-/m0/s1
    Key: CQOVPNPJLQNMDC-ZETCQYMHBX
  • O=C(O)C(NC(=O)CCN)Cc1c[nH]cn1
  • c1c(nc[nH]1)C[C@@H](C(=O)O)NC(=O)CCN
Properties
C9H14N4O3
Molar mass 226.236 g·mol−1
Appearance Crystalline solid
Melting point 253 °C (487 °F; 526 K) (decomposition)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Carnosine (beta-alanyl-L-histidine) is a dipeptide molecule, made up of the amino acids beta-alanine and histidine. It is highly concentrated in muscle and brain tissues.[citation needed] Carnosine was discovered by Russian chemist Vladimir Gulevich.[1]

Carnosine is naturally produced by the body in the liver[2] from beta-alanine and histidine. Like carnitine, carnosine is composed of the root word carn, meaning "flesh", alluding to its prevalence in meat.[3] There are no plant-based sources of carnosine.[4] Carnosine is readily available as a synthetic nutritional supplement.

Biosynthesis

Carnosine is synthesized within the body from beta-alanine and histidine. Beta-alanine is a product of pyrimidine catabolism[5] and histidine is an essential amino acid. Since beta-alanine is the limiting substrate, supplementing just beta-alanine effectively increases the intramuscular concentration of carnosine.[6][7]

Physiological effects

pH buffer

Carnosine has a pKa value of 6.83, making it a good buffer for the pH range of animal muscles.[8] Since beta-alanine is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar). Occurring at 17–25 mmol/kg (dry muscle),[9] carnosine (β-alanyl-L-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.

Anti-oxidant

Carnosine has been proven to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes formed from peroxidation of cell membrane fatty acids during oxidative stress. It also buffers pH in muscle cells, and acts as a neurotransmitter in the brain. It is also a zwitterion, a neutral molecule with a positive and negative end.[citation needed]

Antiglycating

Carnosine acts as an antiglycating agent, reducing the rate of formation of advanced glycation end-products (substances that can be a factor in the development or worsening of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney failure, and Alzheimer's disease[10]), and ultimately reducing development of atherosclerotic plaque build-up.[11][12][13]

Geroprotective

Carnosine is considered as a geroprotector.[14] Carnosine can increase the Hayflick limit in human fibroblasts,[15] as well as appearing to reduce the telomere shortening rate.[16] Carnosine may also slow aging through its anti-glycating properties (chronic glycolysis is speculated to accelerate aging).[17]

Other

Carnosine can chelate divalent metal ions.[11]

Carnosine administration has been shown to have cardioprotective properties, protecting against ischaemia-reperfusion injury, and doxorubicin-induced cardiomyopathy.[18]

Carnosine demonstrated neuroprotective effects in multiple animal studies.[19][20][21]

Research has demonstrated a positive association between muscle tissue carnosine concentration and exercise performance.[22][23][24] β-Alanine supplementation is thought to increase exercise performance by promoting carnosine production in muscle. Exercise has conversely been found to increase muscle carnosine concentrations, and muscle carnosine content is higher in athletes engaging in anaerobic exercise.[22]

Carnosine appears to protect in experimental ischemic stroke by influencing a number of mechanisms that are activated during stroke. It is a potent pH buffer and has anti-matrix metalloproteinase activity, antioxidant and antiexcitotoxic properties and protects the blood brain barrier.[25][26][27][28][29][30][31][32][33][34]

See also

References

  1. ^ Gulewitsch, Wl.; Amiradžibi, S. (1900). "Ueber das Carnosin, eine neue organische Base des Fleischextractes". Berichte der Deutschen Chemischen Gesellschaft. 33 (2): 1902–1903. doi:10.1002/cber.19000330275.
  2. ^ Trexler, Eric T.; Smith-Ryan, Abbie E.; Stout, Jeffrey R.; Hoffman, Jay R.; Wilborn, Colin D.; Sale, Craig; Kreider, Richard B.; Jäger, Ralf; Earnest, Conrad P.; Bannock, Laurent; Campbell, Bill (2015-07-15). "International society of sports nutrition position stand: Beta-Alanine". Journal of the International Society of Sports Nutrition. 12: 30. doi:10.1186/s12970-015-0090-y. ISSN 1550-2783. PMC 4501114. PMID 26175657.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Hipkiss, A. R. (2006). "Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?". Annals of the New York Academy of Sciences. 1067 (1): 361–8. Bibcode:2006NYASA1067..361H. doi:10.1196/annals.1354.051. PMID 16804012. S2CID 41175541.
  4. ^ Alan R. Hipkiss (2009). "Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health". Advances in Food and Nutrition Research.
  5. ^ "beta-ureidopropionate + H2O => beta-alanine + NH4+ + CO2". reactome. Archived from the original on 2013-10-23. Retrieved 2020-02-08. Cytosolic 3-ureidopropionase catalyzes the reaction of 3-ureidopropionate and water to form beta-alanine, CO2, and NH3 (van Kuilenberg et al. 2004).
  6. ^ Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (August 9, 2007). "Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters". J Appl Physiol. 103 (5): 1736–43. doi:10.1152/japplphysiol.00397.2007. PMID 17690198. S2CID 6990201.
  7. ^ Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007). "Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity". Amino Acids. 32 (2): 225–33. doi:10.1007/s00726-006-0364-4. PMID 16868650. S2CID 23988054.
  8. ^ Bate-Smith, EC (1938). "The buffering of muscle in rigor: protein, phosphate and carnosine". Journal of Physiology. 92 (3): 336–343. doi:10.1113/jphysiol.1938.sp003605. PMC 1395289. PMID 16994977.
  9. ^ Mannion, AF; Jakeman, PM; Dunnett, M; Harris, RC; Willan, PLT (1992). "Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans". Eur. J. Appl. Physiol. 64 (1): 47–50. doi:10.1007/BF00376439. PMID 1735411. S2CID 24590951.
  10. ^ Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G (Aug 2013). "Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation". Free Radic. Res. 47: Suppl 1:3–27. doi:10.3109/10715762.2013.815348. PMID 23767955. S2CID 207517855.
  11. ^ a b Reddy, V. P.; Garrett, MR; Perry, G; Smith, MA (2005). "Carnosine: A Versatile Antioxidant and Antiglycating Agent". Science of Aging Knowledge Environment. 2005 (18): pe12. doi:10.1126/sageke.2005.18.pe12. PMID 15872311.
  12. ^ Rashid, Imran; Van Reyk, David M.; Davies, Michael J. (2007). "Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro". FEBS Letters. 581 (5): 1067–70. doi:10.1016/j.febslet.2007.01.082. PMID 17316626. S2CID 46535145.
  13. ^ Hipkiss, A. R. (2005). "Glycation, ageing and carnosine: Are carnivorous diets beneficial?". Mechanisms of Ageing and Development. 126 (10): 1034–9. doi:10.1016/j.mad.2005.05.002. PMID 15955546. S2CID 19979631.
  14. ^ Boldyrev, A. A.; Stvolinsky, S. L.; Fedorova, T. N.; Suslina, Z. A. (2010). "Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials". Rejuvenation Research. 13 (2–3): 156–8. doi:10.1089/rej.2009.0923. PMID 20017611.
  15. ^ McFarland, G; Holliday, R (1994). "Retardation of the Senescence of Cultured Human Diploid Fibroblasts by Carnosine". Experimental Cell Research. 212 (2): 167–75. doi:10.1006/excr.1994.1132. PMID 8187813.
  16. ^ Shao, Lan; Li, Qing-Huan; Tan, Zheng (2004). "L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts". Biochemical and Biophysical Research Communications. 324 (2): 931–6. doi:10.1016/j.bbrc.2004.09.136. PMID 15474517.
  17. ^ Hipkiss, A. R. (2006). "Does Chronic Glycolysis Accelerate Aging? Could This Explain How Dietary Restriction Works?". Annals of the New York Academy of Sciences. 1067 (1): 361–8. Bibcode:2006NYASA1067..361H. doi:10.1196/annals.1354.051. PMID 16804012. S2CID 41175541.
  18. ^ McCarty, Mark F; DiNicolantonio, James J (2014-08-04). "β-Alanine and orotate as supplements for cardiac protection". Open Heart. 1 (1): e000119. doi:10.1136/openhrt-2014-000119. ISSN 2053-3624. PMC 4189254. PMID 25332822.
  19. ^ Virdi, Jasleen Kaur; Bhanot, Amritansh; Jaggi, Amteshwar Singh; Agarwal, Neha (2020-10-02). "Investigation on beneficial role of l -carnosine in neuroprotective mechanism of ischemic postconditioning in mice: possible role of histidine histamine pathway". International Journal of Neuroscience. 130 (10): 983–998. doi:10.1080/00207454.2020.1715393. ISSN 0020-7454. PMID 31951767. S2CID 210710039.
  20. ^ Rajanikant, G.K.; Zemke, Daniel; Senut, Marie-Claude; Frenkel, Mark B.; Chen, Alex F.; Gupta, Rishi; Majid, Arshad (November 2007). "Carnosine Is Neuroprotective Against Permanent Focal Cerebral Ischemia in Mice". Stroke. 38 (11): 3023–3031. doi:10.1161/STROKEAHA.107.488502. ISSN 0039-2499. PMID 17916766.
  21. ^ Min, Jiangyong; Senut, Marie-Claude; Rajanikant, Krishnamurthy; Greenberg, Eric; Bandagi, Ram; Zemke, Daniel; Mousa, Ahmad; Kassab, Mounzer; Farooq, Muhammad U.; Gupta, Rishi; Majid, Arshad (October 2008). "Differential neuroprotective effects of carnosine, anserine, and N -acetyl carnosine against permanent focal ischemia". Journal of Neuroscience Research. 86 (13): 2984–2991. doi:10.1002/jnr.21744. PMC 2805719. PMID 18543335.
  22. ^ a b Culbertson, Julie Y.; Kreider, Richard B.; Greenwood, Mike; Cooke, Matthew (2010-01-25). "Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance:A Review of the Current Literature". Nutrients. 2 (1): 75–98. doi:10.3390/nu2010075. ISSN 2072-6643. PMC 3257613. PMID 22253993.
  23. ^ Baguet, Audrey; Bourgois, Jan; Vanhee, Lander; Achten, Eric; Derave, Wim (2010-07-29). "Important role of muscle carnosine in rowing performance". Journal of Applied Physiology. 109 (4): 1096–1101. doi:10.1152/japplphysiol.00141.2010. ISSN 8750-7587. PMID 20671038. S2CID 199729.
  24. ^ Varanoske, Alyssa N.; Hoffman, Jay R.; Church, David D.; Wang, Ran; Baker, Kayla M.; Dodd, Sarah J.; Coker, Nicholas A.; Oliveira, Leonardo P.; Dawson, Virgil L.; Fukuda, David H.; Stout, Jeffrey R. (2017-09-07). "Influence of Skeletal Muscle Carnosine Content on Fatigue during Repeated Resistance Exercise in Recreationally Active Women". Nutrients. 9 (9): 988. doi:10.3390/nu9090988. ISSN 2072-6643. PMC 5622748. PMID 28880219.
  25. ^ Kim, EH; Kim, ES; Shin, D; Kim, D; Choi, S; Shin, YJ; Kim, KA; Noh, D; Caglayan, AB; Rajanikant, GK; Majid, A; Bae, ON (13 July 2021). "Carnosine Protects against Cerebral Ischemic Injury by Inhibiting Matrix-Metalloproteinases". International Journal of Molecular Sciences. 22 (14): 7495. doi:10.3390/ijms22147495. PMC 8306548. PMID 34299128.
  26. ^ Jain, S; Kim, ES; Kim, D; Burrows, D; De Felice, M; Kim, M; Baek, SH; Ali, A; Redgrave, J; Doeppner, TR; Gardner, I; Bae, ON; Majid, A (26 April 2020). "Comparative Cerebroprotective Potential of d- and l-Carnosine Following Ischemic Stroke in Mice". International Journal of Molecular Sciences. 21 (9): 3053. doi:10.3390/ijms21093053. PMC 7246848. PMID 32357505.
  27. ^ Kim, ES; Kim, D; Nyberg, S; Poma, A; Cecchin, D; Jain, SA; Kim, KA; Shin, YJ; Kim, EH; Kim, M; Baek, SH; Kim, JK; Doeppner, TR; Ali, A; Redgrave, J; Battaglia, G; Majid, A; Bae, ON (20 January 2020). "LRP-1 functionalized polymersomes enhance the efficacy of carnosine in experimental stroke". Scientific Reports. 10 (1): 699. Bibcode:2020NatSR..10..699K. doi:10.1038/s41598-020-57685-5. PMC 6971073. PMID 31959846.
  28. ^ Schön, M; Mousa, A; Berk, M; Chia, WL; Ukropec, J; Majid, A; Ukropcová, B; de Courten, B (28 May 2019). "The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence". Nutrients. 11 (6): 1196. doi:10.3390/nu11061196. PMC 6627134. PMID 31141890.
  29. ^ Davis, CK; Laud, PJ; Bahor, Z; Rajanikant, GK; Majid, A (October 2016). "Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke". Journal of Cerebral Blood Flow and Metabolism. 36 (10): 1686–1694. doi:10.1177/0271678X16658302. PMC 5046161. PMID 27401803.
  30. ^ Baek, SH; Noh, AR; Kim, KA; Akram, M; Shin, YJ; Kim, ES; Yu, SW; Majid, A; Bae, ON (August 2014). "Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage". Stroke. 45 (8): 2438–2443. doi:10.1161/STROKEAHA.114.005183. PMC 4211270. PMID 24938837.
  31. ^ Bae, ON; Majid, A (21 August 2013). "Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage". Brain Research. 1527: 246–54. doi:10.1016/j.brainres.2013.07.004. PMID 23850642. S2CID 29660551.
  32. ^ Bae, ON; Serfozo, K; Baek, SH; Lee, KY; Dorrance, A; Rumbeiha, W; Fitzgerald, SD; Farooq, MU; Naravelta, B; Bhatt, A; Majid, A (January 2013). "Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke". Stroke. 44 (1): 205–12. doi:10.1161/STROKEAHA.112.673954. PMC 3678096. PMID 23250994.
  33. ^ Min, J; Senut, MC; Rajanikant, K; Greenberg, E; Bandagi, R; Zemke, D; Mousa, A; Kassab, M; Farooq, MU; Gupta, R; Majid, A (October 2008). "Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia". Journal of Neuroscience Research. 86 (13): 2984–91. doi:10.1002/jnr.21744. PMC 2805719. PMID 18543335.
  34. ^ Rajanikant, GK; Zemke, D; Senut, MC; Frenkel, MB; Chen, AF; Gupta, R; Majid, A (November 2007). "Carnosine is neuroprotective against permanent focal cerebral ischemia in mice". Stroke. 38 (11): 3023–31. doi:10.1161/STROKEAHA.107.488502. PMID 17916766. S2CID 14036194.