Jump to content

Semiregular polytope: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎References: liink j
Makarov
Line 17: Line 17:
In [[three-dimensional space]] and below, the terms ''semiregular polytope'' and ''[[uniform polytope]]'' have identical meanings, because all uniform [[polygon]]s must be [[regular polygon|regular]]. However, since not all [[uniform polyhedra]] are [[regular polyhedra|regular]], the number of semiregular polytopes in dimensions higher than three is much smaller than the number of uniform polytopes in the same number of dimensions.
In [[three-dimensional space]] and below, the terms ''semiregular polytope'' and ''[[uniform polytope]]'' have identical meanings, because all uniform [[polygon]]s must be [[regular polygon|regular]]. However, since not all [[uniform polyhedra]] are [[regular polyhedra|regular]], the number of semiregular polytopes in dimensions higher than three is much smaller than the number of uniform polytopes in the same number of dimensions.


The three convex semiregular [[4-polytope]]s are the [[rectified 5-cell]], [[snub 24-cell]] and [[rectified 600-cell]]. The only semiregular polytopes in higher dimensions are the [[uniform k 21 polytope|''k''<sub>21</sub> polytopes]], where the rectified 5-cell is the special case of ''k'' = 0. These were all listed by Gosset, but a proof of the completeness of this list was not published until the work of {{harvtxt|Blind|Blind|1991}}.
The three convex semiregular [[4-polytope]]s are the [[rectified 5-cell]], [[snub 24-cell]] and [[rectified 600-cell]]. The only semiregular polytopes in higher dimensions are the [[uniform k 21 polytope|''k''<sub>21</sub> polytopes]], where the rectified 5-cell is the special case of ''k'' = 0. These were all listed by Gosset, but a proof of the completeness of this list was not published until the work of {{harvtxt|Makarov|1988}} for four dimensions, and {{harvtxt|Blind|Blind|1991}} for higher dimensions.


;Gosset's 4-polytopes (with his names in parentheses):
;Gosset's 4-polytopes (with his names in parentheses):
Line 89: Line 89:
* {{Cite book | last = Elte | first = E. L. | title = The Semiregular Polytopes of the Hyperspaces | publisher = University of Groningen | location = Groningen | year = 1912 | isbn = 1-4181-7968-X}}
* {{Cite book | last = Elte | first = E. L. | title = The Semiregular Polytopes of the Hyperspaces | publisher = University of Groningen | location = Groningen | year = 1912 | isbn = 1-4181-7968-X}}
* {{cite journal | last=Gosset | first=Thorold | title = On the regular and semi-regular figures in space of ''n'' dimensions | journal = [[Messenger of Mathematics]] | volume = 29 | pages = 43&ndash;48 | year = 1900}}
* {{cite journal | last=Gosset | first=Thorold | title = On the regular and semi-regular figures in space of ''n'' dimensions | journal = [[Messenger of Mathematics]] | volume = 29 | pages = 43&ndash;48 | year = 1900}}
* {{cite journal
| last = Makarov | first = P. V.
| department = Voprosy Diskret. Geom.
| journal = Mat. Issled. Akad. Nauk. Mold.
| mr = 958024
| pages = 139–150, 177
| title = On the derivation of four-dimensional semi-regular polytopes
| volume = 103
| year = 1988
| ref = harv}}


[[Category:Polytopes]]
[[Category:Polytopes]]

Revision as of 21:27, 16 September 2015

Gosset's figures
3D honeycombs

Simple tetroctahedric check

Complex tetroctahedric check
4D polytopes

Tetroctahedric

Octicosahedric

Tetricosahedric

In geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-uniform and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as The Semiregular Polytopes of the Hyperspaces which included a wider definition.

Gosset's list

In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular. However, since not all uniform polyhedra are regular, the number of semiregular polytopes in dimensions higher than three is much smaller than the number of uniform polytopes in the same number of dimensions.

The three convex semiregular 4-polytopes are the rectified 5-cell, snub 24-cell and rectified 600-cell. The only semiregular polytopes in higher dimensions are the k21 polytopes, where the rectified 5-cell is the special case of k = 0. These were all listed by Gosset, but a proof of the completeness of this list was not published until the work of Makarov (1988) for four dimensions, and Blind & Blind (1991) for higher dimensions.

Gosset's 4-polytopes (with his names in parentheses)
Rectified 5-cell (Tetroctahedric),
Rectified 600-cell (Octicosahedric),
Snub 24-cell (Tetricosahedric),
Semiregular E-polytopes in higher dimensions
5-demicube (5-ic semi-regular), a 5-polytope,
221 polytope (6-ic semi-regular), a 6-polytope,
321 polytope (7-ic semi-regular), a 7-polytope,
421 polytope (8-ic semi-regular), an 8-polytope,

Euclidean honeycombs

Semiregular polytopes can be extended to semiregular honeycombs. The semiregular Euclidean honeycombs are the tetrahedral-octahedral honeycomb (3D), gyrated alternated cubic honeycomb (3D) and the 521 honeycomb (8D).

Gosset honeycombs:

Semiregular E-honeycomb:

Hyperbolic honeycombs

There are also hyperbolic uniform honeycombs composed of only regular cells (Coxeter & Whitrow 1950), including:

See also

References

  • Blind, G.; Blind, R. (1991). "The semiregular polytopes". Commentarii Mathematici Helvetici. 66 (1): 150–154. doi:10.1007/BF02566640. MR 1090169. {{cite journal}}: Invalid |ref=harv (help)
  • Coxeter, H. S. M. (1973). Regular Polytopes (3rd ed.). New York: Dover Publications. ISBN 0-486-61480-8.
  • Coxeter, H. S. M.; Whitrow, G. J. (1950). "World-structure and non-Euclidean honeycombs". Proceedings of the Royal Society. 201: 417–437. doi:10.1098/rspa.1950.0070. MR 0041576. {{cite journal}}: Invalid |ref=harv (help)
  • Elte, E. L. (1912). The Semiregular Polytopes of the Hyperspaces. Groningen: University of Groningen. ISBN 1-4181-7968-X.
  • Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics. 29: 43–48.
  • Makarov, P. V. (1988). "On the derivation of four-dimensional semi-regular polytopes". Voprosy Diskret. Geom. Mat. Issled. Akad. Nauk. Mold. 103: 139–150, 177. MR 0958024. {{cite journal}}: Invalid |ref=harv (help)