Jump to content

Methylorubrum extorquens: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Eswanner (talk | contribs)
m added a link
Citation bot (talk | contribs)
Alter: pages, journal, pmc. Add: bibcode, pages, page, pmc, author pars. 1-1. Removed proxy or dead URL that duplicated free-DOI or unique identifier. Removed parameters. Formatted dashes. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by Headbomb | Category:CS1 maint: PMC format | via #UCB_Category 9/11
Line 14: Line 14:
}}
}}


''Methylobacterium extorquens'' is a [[Gram-negative]] [[bacterium]]. Methylobacterium often appear pink, and are classified as pink-pigmented facultative methylotrophs, or [[Pink-Pigmented Facultative Methylotrophs|PPFMs]].<ref name=":0">{{Cite journal|last=Lidstrom|first=Mary E.|last2=Chistoserdova|first2=Ludmila|date=2002-04-01|title=Plants in the Pink: Cytokinin Production by Methylobacterium|url=https://jb.asm.org/content/184/7/1818|journal=Journal of Bacteriology|language=en|volume=184|issue=7|pages=1818–1818|doi=10.1128/JB.184.7.1818.2002|issn=0021-9193|pmid=11889085}}</ref> The [[wild type]] has been known to use both methane and multiple carbon compounds as energy sources.<ref name=":0" /> Specifically, ''M. extorquens'' has been observed to use primarily methanol and [https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095556816?result=4&rskey=JZOYGl#:~:text=any%20(real%20or%20hypothetical)%20organic,of%20Biochemistry%20and%20Molecular%20Biology%20%C2%BB C<sub>1</sub> compounds] as substrates in their energy cycles.<ref>{{Cite journal|last=Belkhelfa|first=Sophia|last2=Roche|first2=David|last3=Dubois|first3=Ivan|last4=Berger|first4=Anne|last5=Delmas|first5=Valérie A.|last6=Cattolico|first6=Laurence|last7=Perret|first7=Alain|last8=Labadie|first8=Karine|last9=Perdereau|first9=Aude C.|last10=Darii|first10=Ekaterina|last11=Pateau|first11=Emilie|date=2019|title=Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595629/|journal=Frontiers in Microbiology|language=en|volume=10|doi=10.3389/fmicb.2019.01313|pmid=31281294}}</ref>
''Methylobacterium extorquens'' is a [[Gram-negative]] [[bacterium]]. Methylobacterium often appear pink, and are classified as pink-pigmented facultative methylotrophs, or [[Pink-Pigmented Facultative Methylotrophs|PPFMs]].<ref name=":0">{{Cite journal|last1=Lidstrom|first1=Mary E.|last2=Chistoserdova|first2=Ludmila|date=2002-04-01|title=Plants in the Pink: Cytokinin Production by Methylobacterium|url=https://jb.asm.org/content/184/7/1818|journal=Journal of Bacteriology|language=en|volume=184|issue=7|pages=1818|doi=10.1128/JB.184.7.1818.2002|issn=0021-9193|pmid=11889085|pmc=134909}}</ref> The [[wild type]] has been known to use both methane and multiple carbon compounds as energy sources.<ref name=":0" /> Specifically, ''M. extorquens'' has been observed to use primarily methanol and [https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095556816?result=4&rskey=JZOYGl#:~:text=any%20(real%20or%20hypothetical)%20organic,of%20Biochemistry%20and%20Molecular%20Biology%20%C2%BB C<sub>1</sub> compounds] as substrates in their energy cycles.<ref>{{Cite journal|last1=Belkhelfa|first1=Sophia|last2=Roche|first2=David|last3=Dubois|first3=Ivan|last4=Berger|first4=Anne|last5=Delmas|first5=Valérie A.|last6=Cattolico|first6=Laurence|last7=Perret|first7=Alain|last8=Labadie|first8=Karine|last9=Perdereau|first9=Aude C.|last10=Darii|first10=Ekaterina|last11=Pateau|first11=Emilie|date=2019|title=Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations|journal=Frontiers in Microbiology|language=en|volume=10|page=1313|doi=10.3389/fmicb.2019.01313|pmid=31281294|pmc=6595629}}</ref>


== Genetic Structure ==
== Genetic Structure ==
After isolation from soil, ''M. extorquens'' was found to have a single [[chromosome]] measuring 5.71-[[Megabase|Mb]].<ref>{{Cite journal|last=Belkhelfa|first=Sophia|last2=Labadie|first2=Karine|last3=Cruaud|first3=Corinne|last4=Aury|first4=Jean-Marc|last5=Roche|first5=David|last6=Bouzon|first6=Madeleine|last7=Salanoubat|first7=Marcel|last8=Döring|first8=Volker|date=February 2018|title=Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824006/|journal=Genome Announcements|language=en|volume=6|issue=8|doi=10.1128/genomeA.00018-18|pmid=29472323}}</ref> The bacterium itself contains 70 [[Gene|genes]] over eight [[Chromosome regions|regions]] of the chromosome that are used for its metabolism of methanol.<ref>{{Cite journal|last=Dourado|first=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377440/|journal=BioMed Research International|volume=2015|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref> Within a section of the chromosome, of ''M. extorquens'' AM1 are two [https://jb.asm.org/content/198/8/1317 xoxF] genes that enable it to grow in methanol.<ref>{{Cite journal|last=Dourado|first=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377440/|journal=BioMed Research International|volume=2015|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref>
After isolation from soil, ''M. extorquens'' was found to have a single [[chromosome]] measuring 5.71-[[Megabase|Mb]].<ref>{{Cite journal|last1=Belkhelfa|first1=Sophia|last2=Labadie|first2=Karine|last3=Cruaud|first3=Corinne|last4=Aury|first4=Jean-Marc|last5=Roche|first5=David|last6=Bouzon|first6=Madeleine|last7=Salanoubat|first7=Marcel|last8=Döring|first8=Volker|date=February 2018|title=Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland|journal=Genome Announcements|language=en|volume=6|issue=8|doi=10.1128/genomeA.00018-18|pmid=29472323|pmc=5824006}}</ref> The bacterium itself contains 70 [[Gene|genes]] over eight [[Chromosome regions|regions]] of the chromosome that are used for its metabolism of methanol.<ref>{{Cite journal|last1=Dourado|first1=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|journal=BioMed Research International|volume=2015|page=909016|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref> Within a section of the chromosome, of ''M. extorquens'' AM1 are two [https://jb.asm.org/content/198/8/1317 xoxF] genes that enable it to grow in methanol.<ref>{{Cite journal|last1=Dourado|first1=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|journal=BioMed Research International|volume=2015|page=909016|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref>


''M. extorquens'' AM1 genome encodes a 47.5 kb gene of unknown function. This gene encodes an over 15,000 residue-long polypeptide along with three unique compounds that are not expressed.<ref name=":2">{{Cite journal|last=Vuilleumier|first=Stéphane|last2=Chistoserdova|first2=Ludmila|last3=Lee|first3=Ming-Chun|last4=Bringel|first4=Françoise|last5=Lajus|first5=Aurélie|last6=Zhou|first6=Yang|last7=Gourion|first7=Benjamin|last8=Barbe|first8=Valérie|last9=Chang|first9=Jean|last10=Cruveiller|first10=Stéphane|last11=Dossat|first11=Carole|date=2009-05-18|title=Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680597/|journal=PLoS ONE|volume=4|issue=5|doi=10.1371/journal.pone.0005584|issn=1932-6203|pmc=2680597|pmid=19440302}}</ref> The microbe uses the ''mxa'' gene<ref>{{Cite web|title=MX1 Gene - GeneCards {{!}} MX1 Protein {{!}} MX1 Antibody|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=MX1|access-date=2020-11-02|website=www.genecards.org}}</ref> as a way to dehydrogenate methanol and use it as an energy source.<ref name=":2" />
''M. extorquens'' AM1 genome encodes a 47.5 kb gene of unknown function. This gene encodes an over 15,000 residue-long polypeptide along with three unique compounds that are not expressed.<ref name=":2">{{Cite journal|last1=Vuilleumier|first1=Stéphane|last2=Chistoserdova|first2=Ludmila|last3=Lee|first3=Ming-Chun|last4=Bringel|first4=Françoise|last5=Lajus|first5=Aurélie|last6=Zhou|first6=Yang|last7=Gourion|first7=Benjamin|last8=Barbe|first8=Valérie|last9=Chang|first9=Jean|last10=Cruveiller|first10=Stéphane|last11=Dossat|first11=Carole|date=2009-05-18|title=Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources|journal=PLOS ONE|volume=4|issue=5|pages=e5584|doi=10.1371/journal.pone.0005584|issn=1932-6203|pmc=2680597|pmid=19440302|bibcode=2009PLoSO...4.5584V}}</ref> The microbe uses the ''mxa'' gene<ref>{{Cite web|title=MX1 Gene - GeneCards {{!}} MX1 Protein {{!}} MX1 Antibody|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=MX1|access-date=2020-11-02|website=www.genecards.org}}</ref> as a way to dehydrogenate methanol and use it as an energy source.<ref name=":2" />


== Chemical Usage ==
== Chemical Usage ==
''Methylobacterium extorquens'' uses primarily C<sub>1</sub> and C<sub>2</sub> compounds to grow.<ref>{{Cite journal|last=Dourado|first=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377440/|journal=BioMed Research International|volume=2015|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref> Utilizing compounds with few carbon-carbon bonds allows the bacterium to successfully grow in environments with methanol, such as on the surface of leaves whose stomata emit methanol.<ref>{{Cite journal|last=Nemecek-Marshall|first=M.|last2=MacDonald|first2=R. C.|last3=Franzen|first3=J. J.|last4=Wojciechowski|first4=C. L.|last5=Fall|first5=R.|date=1995-08-01|title=Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development)|url=http://www.plantphysiol.org/content/108/4/1359|journal=Plant Physiology|language=en|volume=108|issue=4|pages=1359–1368|doi=10.1104/pp.108.4.1359|issn=0032-0889|pmc=PMC157513|pmid=12228547}}</ref> The ability to use methanol as both a carbon and energy source was show to be advantageous when colonizing ''Medicago'' ''truncatula.''<ref>{{Cite journal|last=Sy|first=Abdoulaye|last2=Timmers|first2=Antonius C. J.|last3=Knief|first3=Claudia|last4=Vorholt|first4=Julia A.|date=2005-11-01|title=Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions|url=https://aem.asm.org/content/71/11/7245|journal=Applied and Environmental Microbiology|language=en|volume=71|issue=11|pages=7245–7252|doi=10.1128/AEM.71.11.7245-7252.2005|issn=0099-2240|pmid=16269765}}</ref>
''Methylobacterium extorquens'' uses primarily C<sub>1</sub> and C<sub>2</sub> compounds to grow.<ref>{{Cite journal|last1=Dourado|first1=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|journal=BioMed Research International|volume=2015|page=909016|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref> Utilizing compounds with few carbon-carbon bonds allows the bacterium to successfully grow in environments with methanol, such as on the surface of leaves whose stomata emit methanol.<ref>{{Cite journal|last1=Nemecek-Marshall|first1=M.|last2=MacDonald|first2=R. C.|last3=Franzen|first3=J. J.|last4=Wojciechowski|first4=C. L.|last5=Fall|first5=R.|date=1995-08-01|title=Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development)|url=http://www.plantphysiol.org/content/108/4/1359|journal=Plant Physiology|language=en|volume=108|issue=4|pages=1359–1368|doi=10.1104/pp.108.4.1359|issn=0032-0889|pmc=157513|pmid=12228547}}</ref> The ability to use methanol as both a carbon and energy source was show to be advantageous when colonizing ''Medicago'' ''truncatula.''<ref>{{Cite journal|last1=Sy|first1=Abdoulaye|last2=Timmers|first2=Antonius C. J.|last3=Knief|first3=Claudia|last4=Vorholt|first4=Julia A.|date=2005-11-01|title=Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions|url=https://aem.asm.org/content/71/11/7245|journal=Applied and Environmental Microbiology|language=en|volume=71|issue=11|pages=7245–7252|doi=10.1128/AEM.71.11.7245-7252.2005|issn=0099-2240|pmid=16269765|pmc=1287603}}</ref>


H<sub>4</sub>MPT-dependent formaldehyde oxidation was first isolated in ''M. extroquens'' AM1 and has been used to define if an organism is utilizing methylotrophic metabolism.<ref name=":2" />
H<sub>4</sub>MPT-dependent formaldehyde oxidation was first isolated in ''M. extroquens'' AM1 and has been used to define if an organism is utilizing methylotrophic metabolism.<ref name=":2" />


== Relationships with other Organisms ==
== Relationships with other Organisms ==
Many bacteria within the [[Methylobacterium]] genus live in different [https://www.dictionary.com/browse/biotic biotic] environments such as soils, dust, and plant leaves.<ref>{{Cite journal|last=Sy|first=Abdoulaye|last2=Timmers|first2=Antonius C. J.|last3=Knief|first3=Claudia|last4=Vorholt|first4=Julia A.|date=November 2005|title=Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287603/|journal=Applied and Environmental Microbiology|language=en|volume=71|issue=11|pages=7245|doi=10.1128/AEM.71.11.7245-7252.2005|issn=7245-7252|pmid=16269765}}</ref> Some of these bacteria have been found in [[Symbiosis|symbiotic]] relationships with the plants they inhabit in which they provide fixed nitrogen or produce [[Vitamin B12|vitamin B<sub>12</sub>]].<ref>{{Cite journal|last=Sy|first=Abdoulaye|last2=Timmers|first2=Antonius C. J.|last3=Knief|first3=Claudia|last4=Vorholt|first4=Julia A.|date=November 2005|title=Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287603/|journal=Applied and Environmental Microbiology|language=en|volume=71|issue=11|pages=7245|doi=10.1128/AEM.71.11.7245-7252.2005|issn=7245-7252|pmid=16269765}}</ref> ''M. extroquens'' also produces [https://www.researchgate.net/publication/5821746_PhyR_Is_Involved_in_the_General_Stress_Response_of_Methylobacterium_extorquens_AM1 PhyR] which plants use to regulate [[Environmental stress|stress response]], allowing the plant to survive in different conditions.<ref>{{Cite journal|last=Gourion|first=Benjamin|last2=Francez-Charlot|first2=Anne|last3=Vorholt|first3=Julia A.|date=2008-02-01|title=PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1|url=https://jb.asm.org/content/190/3/1027|journal=Journal of Bacteriology|language=en|volume=190|issue=3|pages=1027–1035|doi=10.1128/JB.01483-07|issn=0021-9193|pmid=18024517}}</ref> In addition to PhyR, the bacterium can produce a hormone related to overall plant and root growth.<ref>{{Cite journal|last=Dourado|first=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377440/|journal=BioMed Research International|volume=2015|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref>
Many bacteria within the [[Methylobacterium]] genus live in different [https://www.dictionary.com/browse/biotic biotic] environments such as soils, dust, and plant leaves.<ref>{{Cite journal|last1=Sy|first1=Abdoulaye|last2=Timmers|first2=Antonius C. J.|last3=Knief|first3=Claudia|last4=Vorholt|first4=Julia A.|date=November 2005|title=Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions|journal=Applied and Environmental Microbiology|language=en|volume=71|issue=11|pages=7245|doi=10.1128/AEM.71.11.7245-7252.2005|issn=7245-7252|pmid=16269765|pmc=1287603}}</ref> Some of these bacteria have been found in [[Symbiosis|symbiotic]] relationships with the plants they inhabit in which they provide fixed nitrogen or produce [[Vitamin B12|vitamin B<sub>12</sub>]].<ref>{{Cite journal|last1=Sy|first1=Abdoulaye|last2=Timmers|first2=Antonius C. J.|last3=Knief|first3=Claudia|last4=Vorholt|first4=Julia A.|date=November 2005|title=Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions|journal=Applied and Environmental Microbiology|language=en|volume=71|issue=11|pages=7245|doi=10.1128/AEM.71.11.7245-7252.2005|issn=7245-7252|pmid=16269765|pmc=1287603}}</ref> ''M. extroquens'' also produces [https://www.researchgate.net/publication/5821746_PhyR_Is_Involved_in_the_General_Stress_Response_of_Methylobacterium_extorquens_AM1 PhyR] which plants use to regulate [[Environmental stress|stress response]], allowing the plant to survive in different conditions.<ref>{{Cite journal|last1=Gourion|first1=Benjamin|last2=Francez-Charlot|first2=Anne|last3=Vorholt|first3=Julia A.|date=2008-02-01|title=PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1|url=https://jb.asm.org/content/190/3/1027|journal=Journal of Bacteriology|language=en|volume=190|issue=3|pages=1027–1035|doi=10.1128/JB.01483-07|issn=0021-9193|pmid=18024517|pmc=2223570}}</ref> In addition to PhyR, the bacterium can produce a hormone related to overall plant and root growth.<ref>{{Cite journal|last1=Dourado|first1=Manuella Nóbrega|last2=Aparecida Camargo Neves|first2=Aline|last3=Santos|first3=Daiene Souza|last4=Araújo|first4=Welington Luiz|date=2015|title=Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.|journal=BioMed Research International|volume=2015|page=909016|doi=10.1155/2015/909016|issn=2314-6133|pmc=4377440|pmid=25861650}}</ref>


''M. extroquens'' has been found having a [[Mutualism (biology)|mutualistic relationship]] with strawberries.<ref name=":1">{{Citation|last=Siegmund|first=Barbara|title=Chapter 26 - The Effect of Methylobacteria Application on Strawberry Flavor Investigated by GC-MS and Comprehensive GC×GC-qMS|date=2014-01-01|url=http://www.sciencedirect.com/science/article/pii/B978012398549100026X|work=Flavour Science|pages=141–145|editor-last=Ferreira|editor-first=Vicente|place=San Diego|publisher=Academic Press|language=en|isbn=978-0-12-398549-1|access-date=2020-09-21|last2=Leitner|first2=Erich|editor2-last=Lopez|editor2-first=Ricardo}}</ref> Ultimately, ''M. extroquens'' is used to oxidize 1,2-propanediol to lactaldehyde, which is later used in chemical reactions.<ref>{{Cite journal|last=Nasopoulou|first=Constantina|last2=Pohjanen|first2=Johanna|last3=Koskimäki|first3=Janne J.|last4=Zabetakis|first4=Ioannis|last5=Pirttilä|first5=Anna Maria|date=2014-08-15|title=Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization|url=https://pubmed.ncbi.nlm.nih.gov/24973582/|journal=Journal of Plant Physiology|volume=171|issue=13|pages=1099–1105|doi=10.1016/j.jplph.2014.03.018|issn=1618-1328|pmid=24973582}}</ref> If introduced to blooming plants, [[furaneol]] production increases, changing the way the strawberry tastes.<ref name=":1" />
''M. extroquens'' has been found having a [[Mutualism (biology)|mutualistic relationship]] with strawberries.<ref name=":1">{{Citation|last1=Siegmund|first1=Barbara|title=Chapter 26 - The Effect of Methylobacteria Application on Strawberry Flavor Investigated by GC-MS and Comprehensive GC×GC-qMS|date=2014-01-01|url=http://www.sciencedirect.com/science/article/pii/B978012398549100026X|work=Flavour Science|pages=141–145|editor-last=Ferreira|editor-first=Vicente|place=San Diego|publisher=Academic Press|language=en|isbn=978-0-12-398549-1|access-date=2020-09-21|last2=Leitner|first2=Erich|editor2-last=Lopez|editor2-first=Ricardo}}</ref> Ultimately, ''M. extroquens'' is used to oxidize 1,2-propanediol to lactaldehyde, which is later used in chemical reactions.<ref>{{Cite journal|last1=Nasopoulou|first1=Constantina|last2=Pohjanen|first2=Johanna|last3=Koskimäki|first3=Janne J.|last4=Zabetakis|first4=Ioannis|last5=Pirttilä|first5=Anna Maria|date=2014-08-15|title=Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization|url=https://pubmed.ncbi.nlm.nih.gov/24973582/|journal=Journal of Plant Physiology|volume=171|issue=13|pages=1099–1105|doi=10.1016/j.jplph.2014.03.018|issn=1618-1328|pmid=24973582}}</ref> If introduced to blooming plants, [[furaneol]] production increases, changing the way the strawberry tastes.<ref name=":1" />


==References==
==References==

Revision as of 21:55, 9 November 2020

Methylobacterium extorquens
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Binomial name
Methylobacterium extorquens
(Urakami and Komagata 1984)
Bousfield and Green 1985
Synonyms

Bacillus extorquens Bassalik 1913
Vibrio extorquens (Bassalik 1913) Bhat and Barker 1948
Pseudomonas extorquens (Bassalik 1913) Krasil'nikov 1949
Flavobacterium extorquens (Bassalik 1913) Bassalik et al. 1960
Protomonas extorquens (ex Bassalik 1913) Urakami and Komagata 1984
Methylobacterium chloromethanicum Kato et al. 2005
[1]
Methylobacterium dichloromethanicum Kato et al. 2005[1]

Methylobacterium extorquens is a Gram-negative bacterium. Methylobacterium often appear pink, and are classified as pink-pigmented facultative methylotrophs, or PPFMs.[2] The wild type has been known to use both methane and multiple carbon compounds as energy sources.[2] Specifically, M. extorquens has been observed to use primarily methanol and C1 compounds as substrates in their energy cycles.[3]

Genetic Structure

After isolation from soil, M. extorquens was found to have a single chromosome measuring 5.71-Mb.[4] The bacterium itself contains 70 genes over eight regions of the chromosome that are used for its metabolism of methanol.[5] Within a section of the chromosome, of M. extorquens AM1 are two xoxF genes that enable it to grow in methanol.[6]

M. extorquens AM1 genome encodes a 47.5 kb gene of unknown function. This gene encodes an over 15,000 residue-long polypeptide along with three unique compounds that are not expressed.[7] The microbe uses the mxa gene[8] as a way to dehydrogenate methanol and use it as an energy source.[7]

Chemical Usage

Methylobacterium extorquens uses primarily C1 and C2 compounds to grow.[9] Utilizing compounds with few carbon-carbon bonds allows the bacterium to successfully grow in environments with methanol, such as on the surface of leaves whose stomata emit methanol.[10] The ability to use methanol as both a carbon and energy source was show to be advantageous when colonizing Medicago truncatula.[11]

H4MPT-dependent formaldehyde oxidation was first isolated in M. extroquens AM1 and has been used to define if an organism is utilizing methylotrophic metabolism.[7]

Relationships with other Organisms

Many bacteria within the Methylobacterium genus live in different biotic environments such as soils, dust, and plant leaves.[12] Some of these bacteria have been found in symbiotic relationships with the plants they inhabit in which they provide fixed nitrogen or produce vitamin B12.[13] M. extroquens also produces PhyR which plants use to regulate stress response, allowing the plant to survive in different conditions.[14] In addition to PhyR, the bacterium can produce a hormone related to overall plant and root growth.[15]

M. extroquens has been found having a mutualistic relationship with strawberries.[16] Ultimately, M. extroquens is used to oxidize 1,2-propanediol to lactaldehyde, which is later used in chemical reactions.[17] If introduced to blooming plants, furaneol production increases, changing the way the strawberry tastes.[16]

References

  1. ^ a b LPSN lpsn.dsmz.de
  2. ^ a b Lidstrom, Mary E.; Chistoserdova, Ludmila (2002-04-01). "Plants in the Pink: Cytokinin Production by Methylobacterium". Journal of Bacteriology. 184 (7): 1818. doi:10.1128/JB.184.7.1818.2002. ISSN 0021-9193. PMC 134909. PMID 11889085.
  3. ^ Belkhelfa, Sophia; Roche, David; Dubois, Ivan; Berger, Anne; Delmas, Valérie A.; Cattolico, Laurence; Perret, Alain; Labadie, Karine; Perdereau, Aude C.; Darii, Ekaterina; Pateau, Emilie (2019). "Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations". Frontiers in Microbiology. 10: 1313. doi:10.3389/fmicb.2019.01313. PMC 6595629. PMID 31281294.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel; Döring, Volker (February 2018). "Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland". Genome Announcements. 6 (8). doi:10.1128/genomeA.00018-18. PMC 5824006. PMID 29472323.
  5. ^ Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp". BioMed Research International. 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMC 4377440. PMID 25861650.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp". BioMed Research International. 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMC 4377440. PMID 25861650.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ a b c Vuilleumier, Stéphane; Chistoserdova, Ludmila; Lee, Ming-Chun; Bringel, Françoise; Lajus, Aurélie; Zhou, Yang; Gourion, Benjamin; Barbe, Valérie; Chang, Jean; Cruveiller, Stéphane; Dossat, Carole (2009-05-18). "Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources". PLOS ONE. 4 (5): e5584. Bibcode:2009PLoSO...4.5584V. doi:10.1371/journal.pone.0005584. ISSN 1932-6203. PMC 2680597. PMID 19440302.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ "MX1 Gene - GeneCards | MX1 Protein | MX1 Antibody". www.genecards.org. Retrieved 2020-11-02.
  9. ^ Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp". BioMed Research International. 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMC 4377440. PMID 25861650.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R. (1995-08-01). "Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development)". Plant Physiology. 108 (4): 1359–1368. doi:10.1104/pp.108.4.1359. ISSN 0032-0889. PMC 157513. PMID 12228547.
  11. ^ Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (2005-11-01). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions". Applied and Environmental Microbiology. 71 (11): 7245–7252. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 0099-2240. PMC 1287603. PMID 16269765.
  12. ^ Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (November 2005). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions". Applied and Environmental Microbiology. 71 (11): 7245. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 7245-7252. PMC 1287603. PMID 16269765.
  13. ^ Sy, Abdoulaye; Timmers, Antonius C. J.; Knief, Claudia; Vorholt, Julia A. (November 2005). "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions". Applied and Environmental Microbiology. 71 (11): 7245. doi:10.1128/AEM.71.11.7245-7252.2005. ISSN 7245-7252. PMC 1287603. PMID 16269765.
  14. ^ Gourion, Benjamin; Francez-Charlot, Anne; Vorholt, Julia A. (2008-02-01). "PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1". Journal of Bacteriology. 190 (3): 1027–1035. doi:10.1128/JB.01483-07. ISSN 0021-9193. PMC 2223570. PMID 18024517.
  15. ^ Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz (2015). "Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp". BioMed Research International. 2015: 909016. doi:10.1155/2015/909016. ISSN 2314-6133. PMC 4377440. PMID 25861650.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ a b Siegmund, Barbara; Leitner, Erich (2014-01-01), Ferreira, Vicente; Lopez, Ricardo (eds.), "Chapter 26 - The Effect of Methylobacteria Application on Strawberry Flavor Investigated by GC-MS and Comprehensive GC×GC-qMS", Flavour Science, San Diego: Academic Press, pp. 141–145, ISBN 978-0-12-398549-1, retrieved 2020-09-21
  17. ^ Nasopoulou, Constantina; Pohjanen, Johanna; Koskimäki, Janne J.; Zabetakis, Ioannis; Pirttilä, Anna Maria (2014-08-15). "Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization". Journal of Plant Physiology. 171 (13): 1099–1105. doi:10.1016/j.jplph.2014.03.018. ISSN 1618-1328. PMID 24973582.

External links