Jump to content

Hydroxychavicol

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Machinexa (talk | contribs) at 22:15, 4 June 2021. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Hydroxychavicol
Names
IUPAC name
4-prop-2-enylbenzene-1,2-diol
Other names
  • Allypyrocatechol
  • 4-Allylpyrocatechol
  • Desmethylisoeugenol
  • 3,4-dihydroxy-allylbenzene
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.208.658 Edit this at Wikidata
EC Number
  • 683-143-7
  • InChI=1S/C9H10O2/c1-2-3-7-4-5-8(10)9(11)6-7/h2,4-6,10-11H,1,3H2
    Key: FHEHIXJLCWUPCZ-UHFFFAOYSA-N
  • C=CCC1=CC(=C(C=C1)O)O
Properties
C9H10O2
Molar mass 150.177 g·mol−1
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H302, H312, H315, H319
P264, P270, P280, P301+P312, P302+P352, P305+P351+P338, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hydroxychavicol is a phenylpropanoid compound present in leaves of Piper betle.[1] It is a more potent inhibitor of xanthine oxidase (IC50=16.7 µM) than allopurinol.[2][3]

Forschung

It might be a useful new compound in treating cutaneous fungal infections.[4] It is a promising agent in prevention and treatment of dental disorders as it had bactericidal and fungicidal effect on streptococcus intermedius, streptococcus mutans, and candida albicans and inhibited biofilm formation.[5]

See also

References

  1. ^ Atiya A, Sinha BN, Lal UR (March 2020). "The new ether derivative of phenylpropanoid and bioactivity was investigated from the leaves of Piper betle L". Natural Product Research. 34 (5): 638–645. doi:10.1080/14786419.2018.1495634. PMID 30169967.
  2. ^ Murata K, Nakao K, Hirata N, Namba K, Nomi T, Kitamura Y, Moriyama K, Shintani T, Iinuma M, Matsuda H (July 2009). "Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle". Journal of Natural Medicines. 63 (3): 355–9. doi:10.1007/s11418-009-0331-y. PMID 19387769.
  3. ^ Nishiwaki K, Ohigashi K, Deguchi T, Murata K, Nakamura S, Matsuda H, Nakanishi I (July 2018). "Structure-Activity Relationships and Docking Studies of Hydroxychavicol and Its Analogs as Xanthine Oxidase Inhibitors". Chemical & Pharmaceutical Bulletin. 66 (7): 741–747. doi:10.1248/cpb.c18-00197. PMID 29695658.
  4. ^ Ali I, Satti NK, Dutt P, Prasad R, Khan IA (November 2016). "Hydroxychavicol: A phytochemical targeting cutaneous fungal infections". Scientific Reports. 6: 37867. Bibcode:2016NatSR...637867A. doi:10.1038/srep37867. PMC 5126685. PMID 27897199.
  5. ^ Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S (May 2020). "Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans". Archives of Oral Biology. 113: 104690. doi:10.1016/j.archoralbio.2020.104690. PMID 32155466.