Jump to content

Hyperuniformity

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 155.69.183.54 (talk) at 05:39, 1 June 2022 (→‎Non-equilibrium hyperuniform fluids and length scales). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Hyperuniformity is defined by the scaling of the variance of the number of points that are within a disk of radius R. For the ideal gas (left), this variance scales like the area of the disk. For a hyperuniform system (center), it scales slower than the area of the disk.[1] For example, for a crystal (right), it scales like the boundary length of the disk; adapted after Figure 1 of Ref.[2]

Hyperuniform materials are mixed-component many-particle systems with unusually low fluctuations in component density at large scales, when compared to the distribution of constituents in common disordered systems, like a mixed ideal gas (air) or typical liquids or amorphous solids: A disordered hyperuniform system is statistically isotropic, like a liquid, but exhibits reduced long-wavelength density fluctuations, similar to crystals.[1][2]

All perfect crystals,[1] perfect quasicrystals[3][4] and special disordered systems are hyperuniform.

Quantitatively, a many-particle system is hyperuniform if the variance of the number of points within a spherical observation window grows more slowly than the volume of the observation window. This definition is equivalent to a vanishing of the structure factor in the long-wavelength limit.[1] Disordered hyperuniform systems, were shown to be poised at an "inverted" critical point.[1] They can be obtained via equilibrium or nonequilibrium routes, and are found in both classical physical and quantum-mechanical systems.[1][2]

Disordered hyperuniform systems are exotic ideal states of matter that lie between a crystal and liquid: They are like perfect crystals, in that their large-scale density fluctuations are unusually low, and yet are like liquids or glasses in that they are statistically isotropic, with no Bragg peaks, and hence lack any conventional long-range order. These peculiar organizational characteristics are now known to endow hyperuniform materials with novel physical properties [citations].[citation needed]

Originally coined to describe materials, the concept has been abstracted to collections of mathematical objects like the prime numbers, so that now the concept of hyperuniformity connects a broad range of topics in physics,[2] mathematics,[5][6][7][8][9][10] biology,[11][12] and materials science.[13][14]

History

The term hyperuniformity (also independently called 'super-homogeneity in the context of cosmology [15]) was coined and studied by Salvatore Torquato and Frank Stillinger in a 2003 paper[1] in which, they showed, that among other things, hyperuniformity provides a unified framework to classify and structurally characterize crystals, quasicrystals, and the exotic disordered varieties. Thus, hyperuniformity is a long-range property that can be viewed as generalizing the traditional notion of long-range order (e.g., translational / orientational order of crystals or orientational order of quasicrystals) to also encompass exotic disordered systems.[2]

Hyperuniformity was first introduced for point processes[1] and later generalized to two-phase materials (or porous media)[3] and random scalar or vectors fields.[16]

Examples

Examples of disordered hyperuniform systems in physics are disordered ground states,[17] jammed disordered sphere packings,[18][19][20][21][22][23][24] amorphous speckle patterns,[25] certain fermionic systems,[26] random self-organization,[27][28][29][30][31] perturbed lattices,[32][33][34][35] and avian photoreceptor cells.[11]

In mathematics, disordered hyperuniformity has been studied in the context of probability theory,[5][36][6] geometry,[8][9] and number theory,[7][37] where the prime numbers have been found to be effectively limit periodic and hyperuniform in a certain scaling limit.[7] Further examples include certain random walks[38] and stable matchings of point processes.[10][20][21][22][23][39] amorphous speckle patterns,[25] certain fermionic systems,[40] random self-organization,[27][28][29][30][31] perturbed lattices,[32][33][41][35] and avian photoreceptor cells.[11]

Ordered hyperuniformity

While weakly correlated noise typically preserves hyperuniformity, correlated excitations at finite temperature tend to destroy hyperuniformity.[42]

Examples of ordered, hyperuniform systems include all crystals,[1] all quasicrystals,[3][4][43] and limit-periodic sets.[44]

Hyperuniformity was also reported for fermionic quantum matter in correlated electron systems as a result of cramming.[45]

Disordered hyperuniformity

Torquato (2014)[46] gives an illustrative example of the hidden order found in a "shaken box of marbles",[46] which fall into an arrangement, called maximally random jammed packing.[18][47] Such hidden order may eventually be used for self-organizing colloids or optics with the ability to transmit light with an efficiency like a crystal but with a highly flexible design.[46]

It has been found that disordered hyperuniform systems possess unique optical properties. For example, disordered hyperuniform photonic networks have been found to exhibit complete photonic band gaps that are comparable in size to those of photonic crystals but with the added advantage of isotropy, which enables free-form waveguides not possible with crystal structures.[13][14][48][49] Moreover, in stealthy hyperuniform systems,[17] light of any wavelength longer than a value specific to the material is able to propagate forward without loss (due to the correlated disorder) even for high particle density.[50]

By contrast, in conditions where light is propagated through an uncorrelated, disordered material of the same density, the material would appear opaque due to multiple scattering. “Stealthy” hyperuniform materials can be theoretically designed for light of any wavelength, and the applications of the concept cover a wide variety of fields of wave physics and materials engineering.[50][51]

Disordered hyperuniformity was found in the photoreceptor cell patterns in the eyes of chickens.[11] This is thought to be the case because the light-sensitive cells in chicken or other bird eyes cannot easily attain an optimal crystalline arrangement but instead form a disordered configuration that is as uniform as possible.[11][52][53] Indeed, it is the remarkable property of "mulithyperuniformity" of the avian cone patterns, that enables birds to achieve acute color sensing.[11]

Disordered hyperuniformity was recently discovered in amorphous 2‑D materials, which was shown to enhance electronic transport in the material.[54] It may also emerge in the mysterious biological patterns known as fairy circles - circle and patterns of circles that emerge in arid places.[55][56]

Making disordered, but highly uniform, materials

The challenge of creating disordered hyperuniform materials is partly attributed to the inevitable presence of imperfections, such as defects and thermal fluctuations. For example, the fluctuation-compressibility relation dictates that any compressible one-component fluid in thermal equilibrium cannot be strictly hyperuniform at finite temperature.[2]

Recently Chremos & Douglas (2018) proposed a design rule for the practical creation of hyperuniform materials at the molecular level.[57][58] Specifically, effective hyperuniformity as measured by the hyperuniformity index is achieved by specific parts of the molecules (e.g., the core of the star polymers or the backbone chains in the case of bottlebrush polymers).[59][2]

The combination of these features leads to molecular packings that are highly uniform at both small and large length scales.[57][58]

Non-equilibrium hyperuniform fluids and length scales

Disordered hyperuniformity implies a long-ranged direct correlation function (the Ornstein–Zernike equation).[1] In an equilibrium many-particle system, this requires delicately designed effectively long-ranged interactions, which are not necessary for the dynamic self-assembly of non-equilibrium hyperuniform states. In 2019, Ni and co-workers theoretically predicted a non-equilibrium strongly hyperuniform fluid phase that exists in systems of circularly swimming active hard spheres,[60] which was confirmed experimentally in 2022 [61].

This new hyperuniform fluid features a special length scale, i.e., the diameter of the circular trajectory of active particles, below which large density fluctuations are observed. Moreover, based on a generalized random organising model, Lei and Ni (2019)[62] formulated a hydrodynamic theory for non-equilibrium hyperuniform fluids, and the length scale above which the system is hyperuniform is controlled by the inertia of the particles. The theory generalizes the mechanism of fluidic hyperuniformity as the damping of the stochastic harmonic oscillator, which indicates that the suppressed long-wavelength density fluctuation can exhibit as either acoustic (resonance) mode or diffusive (overdamped) mode.[62]

See also

References

  1. ^ a b c d e f g h i j Torquato, Salvatore; Stillinger, Frank H. (29 October 2003). "Local density fluctuations, hyperuniformity, and order metrics". Physical Review E. 68 (4): 041113. arXiv:cond-mat/0311532. Bibcode:2003PhRvE..68d1113T. doi:10.1103/PhysRevE.68.041113. PMID 14682929. S2CID 9162488.
  2. ^ a b c d e f g Torquato, Salvatore (2018). "Hyperuniform states of matter". Physics Reports. 745: 1–95. arXiv:1801.06924. Bibcode:2018PhR...745....1T. doi:10.1016/j.physrep.2018.03.001. S2CID 119378373.
  3. ^ a b c Zachary, Chase E.; Torquato, Salvatore (21 December 2009). "Hyperuniformity in point patterns and two-phase random heterogeneous media". Journal of Statistical Mechanics: Theory and Experiment. 2009 (12): P12015. arXiv:0910.2172. Bibcode:2009JSMTE..12..015Z. doi:10.1088/1742-5468/2009/12/P12015. ISSN 1742-5468. S2CID 18838058.
  4. ^ a b Oğuz, Erdal C.; Socolar, Joshua E.S.; Steinhardt, Paul J.; Torquato, Salvatore (23 February 2017). "Hyperuniformity of quasicrystals". Physical Review B. 95 (5): 054119. arXiv:1612.01975. Bibcode:2017PhRvB..95e4119O. doi:10.1103/PhysRevB.95.054119. ISSN 2469-9950. S2CID 85522310.
  5. ^ a b Ghosh, Subhroshekhar; Lebowitz, Joel L. (2017). "Fluctuations, large deviations and rigidity in hyperuniform systems: A brief survey". Indian Journal of Pure and Applied Mathematics. 48 (4): 609–631. arXiv:1608.07496. doi:10.1007/s13226-017-0248-1. ISSN 0019-5588. S2CID 8709357.
  6. ^ a b Ghosh, Subhroshekhar; Lebowitz, Joel L. (2018). "Generalized stealthy hyperuniform processes: Maximal rigidity and the bounded holes conjecture". Communications in Mathematical Physics. 363 (1): 97–110. arXiv:1707.04328. Bibcode:2018CMaPh.363...97G. doi:10.1007/s00220-018-3226-5. ISSN 0010-3616. S2CID 6243545.
  7. ^ a b c Torquato, Salvatore; Zhang, Ge; De Courcy-Ireland, Matthew (29 March 2019). "Hidden multiscale order in the primes". Journal of Physics A: Mathematical and Theoretical. 52 (13): 135002. arXiv:1804.06279. Bibcode:2019JPhA...52m5002T. doi:10.1088/1751-8121/ab0588. ISSN 1751-8113. S2CID 85508362.
  8. ^ a b Brauchart, Johann S.; Grabner, Peter J.; Kusner, Wöden; Ziefle, Jonas (2020). "Hyperuniform point sets on the sphere: probabilistic aspects". Monatshefte für Mathematik. 192 (4): 763–781. arXiv:1809.02645. doi:10.1007/s00605-020-01439-y. ISSN 0026-9255. S2CID 119179807.
  9. ^ a b Baake, Michael; Grimm, Uwe (1 September 2020). "Inflation versus projection sets in aperiodic systems: The role of the window in averaging and diffraction". Acta Crystallographica Section A. 76 (5): 559–570. arXiv:2004.03256. doi:10.1107/S2053273320007421. ISSN 2053-2733. PMC 7459767. PMID 32869753. S2CID 220404667.
  10. ^ a b Klatt, Michael Andreas; Last, Günter; Yogeshwaran, D. (2020). "Hyperuniform and rigid stable matchings". Random Structures & Algorithms. 57 (2): 439–473. arXiv:1810.00265. doi:10.1002/rsa.20923. ISSN 1098-2418. S2CID 119678948.
  11. ^ a b c d e f Jiao; et al. (2014). "Avian Photoreceptor Patterns Represent a Disordered Hyperuniform Solution to a Multiscale Packing Problem". Physical Review E. 89 (2): 022721. arXiv:1402.6058. Bibcode:2014PhRvE..89b2721J. doi:10.1103/PhysRevE.89.022721. PMC 5836809. PMID 25353522.
  12. ^ Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry; Walczak, Aleksandra M. (12 May 2015). "How a well-adapted immune system is organized". Proceedings of the National Academy of Sciences. 112 (19): 5950–5955. arXiv:1407.6888. Bibcode:2015PNAS..112.5950M. doi:10.1073/pnas.1421827112. ISSN 0027-8424. PMC 4434741. PMID 25918407.
  13. ^ a b Florescu, M.; Torquato, S.; Steinhardt, P.J. (8 December 2009). "Designer disordered materials with large, complete photonic band gaps". Proceedings of the National Academy of Sciences. 106 (49): 20658–20663. arXiv:1007.3554. Bibcode:2009PNAS..10620658F. doi:10.1073/pnas.0907744106. ISSN 0027-8424. PMC 2777962. PMID 19918087.
  14. ^ a b Muller, Nicolas; Haberko, Jakub; Marichy, Catherine; Scheffold, Frank (2014). "Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared" (PDF). Advanced Optical Materials. 2 (2): 115–119. doi:10.1002/adom.201300415.
  15. ^ Gabrielli, Andrea; Joyce, Michael; Sylos Labini, Francesco (11 April 2002). "Glass-like universe: Real-space correlation properties of standard cosmological models". Physical Review D. 65 (4): 083523. arXiv:astro-ph/0110451. Bibcode:2002PhRvD..65h3523G. doi:10.1103/PhysRevD.65.083523. PMID 14682929. S2CID 9162488.
  16. ^ Torquato, Salvatore (15 August 2016). "Hyperuniformity and its generalizations". Physical Review E. 94 (2): 022122. arXiv:1607.08814. Bibcode:2016PhRvE..94b2122T. doi:10.1103/PhysRevE.94.022122. ISSN 2470-0045. PMID 27627261. S2CID 30459937.
  17. ^ a b Torquato, S.; Zhang, G.; Stillinger, F.H. (29 May 2015). "Ensemble theory for stealthy hyperuniform disordered ground states". Physical Review X. 5 (2): 021020. arXiv:1503.06436. Bibcode:2015PhRvX...5b1020T. doi:10.1103/PhysRevX.5.021020. ISSN 2160-3308. S2CID 17275490.
  18. ^ a b Donev, Aleksandar; Stillinger, Frank H.; Torquato, Salvatore (26 August 2005). "Unexpected density fluctuations in jammed disordered sphere packings". Physical Review Letters. 95 (9): 090604. arXiv:cond-mat/0506406. Bibcode:2005PhRvL..95i0604D. doi:10.1103/PhysRevLett.95.090604. ISSN 0031-9007. PMID 16197201. S2CID 7887194.
  19. ^ Zachary, Chase E.; Jiao, Yang; Torquato, Salvatore (29 April 2011). "Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings". Physical Review Letters. 106 (17): 178001. arXiv:1008.2548. Bibcode:2011PhRvL.106q8001Z. doi:10.1103/PhysRevLett.106.178001. ISSN 0031-9007. PMID 21635063. S2CID 15587068.
  20. ^ a b Weijs, Joost H.; Jeanneret, Raphaël; Dreyfus, Rémi; Bartolo, Denis (3 September 2015). "Emergent Hyperuniformity in Periodically Driven Emulsions". Physical Review Letters. 115 (10): 108301. arXiv:1504.04638. Bibcode:2015PhRvL.115j8301W. doi:10.1103/PhysRevLett.115.108301. ISSN 0031-9007. PMID 26382706. S2CID 10340709.
  21. ^ a b Jack, Robert L.; Thompson, Ian R.; Sollich, Peter (9 February 2015). "Hyperuniformity and Phase Separation in Biased Ensembles of Trajectories for Diffusive Systems". Physical Review Letters. 114 (6): 060601. arXiv:1409.3986. Bibcode:2015PhRvL.114f0601J. doi:10.1103/PhysRevLett.114.060601. ISSN 0031-9007. PMID 25723197. S2CID 3132460.
  22. ^ a b Weijs, Joost H.; Bartolo, Denis (27 July 2017). "Mixing by Unstirring: Hyperuniform Dispersion of Interacting Particles upon Chaotic Advection". Physical Review Letters. 119 (4): 048002. arXiv:1702.02395. Bibcode:2017PhRvL.119d8002W. doi:10.1103/PhysRevLett.119.048002. ISSN 0031-9007. PMID 29341775. S2CID 12229553.
  23. ^ a b Ricouvier, Joshua; Pierrat, Romain; Carminati, Rémi; Tabeling, Patrick; Yazhgur, Pavel (15 November 2017). "Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions". Physical Review Letters. 119 (20): 208001. arXiv:1711.00719. doi:10.1103/PhysRevLett.119.208001. ISSN 0031-9007. PMID 29219379. S2CID 28177098.
  24. ^ Chieco, A. T.; Zu, M.; Liu, A. J.; Xu, N.; Durian, D. J. (17 October 2018). "Spectrum of structure for jammed and unjammed soft disks". Physical Review E. 98 (4): 042606. arXiv:1806.10118. Bibcode:2018PhRvE..98d2606C. doi:10.1103/PhysRevE.98.042606. ISSN 2470-0045. S2CID 119448635.
  25. ^ a b Di Battista, Diego; Ancora, Daniele; Zacharakis, Giannis; Ruocco, Giancarlo; Leonetti, Marco (11 June 2018). "Hyperuniformity in amorphous speckle patterns". Optics Express. 26 (12): 15594–15608. arXiv:1803.09550. Bibcode:2018OExpr..2615594D. doi:10.1364/OE.26.015594. hdl:11311/1142259. ISSN 1094-4087. PMID 30114818. S2CID 52031100.
  26. ^ Torquato, Salvatore; Scardicchio, A; Zachary, Chase E (27 November 2008). "Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory". Journal of Statistical Mechanics: Theory and Experiment. 2008 (11): P11019. arXiv:0809.0449. Bibcode:2008JSMTE..11..019T. doi:10.1088/1742-5468/2008/11/P11019. ISSN 1742-5468. S2CID 6252369.
  27. ^ a b Hexner, Daniel; Levine, Dov (20 March 2015). "Hyperuniformity of Critical Absorbing States". Physical Review Letters. 114 (11): 110602. arXiv:1407.0146. Bibcode:2015PhRvL.114k0602H. doi:10.1103/PhysRevLett.114.110602. ISSN 0031-9007. PMID 25839254. S2CID 23951607.
  28. ^ a b Hexner, Daniel; Chaikin, Paul M.; Levine, Dov (25 April 2017). "Enhanced hyperuniformity from random reorganization". Proceedings of the National Academy of Sciences. 114 (17): 4294–4299. Bibcode:2017PNAS..114.4294H. doi:10.1073/pnas.1619260114. ISSN 0027-8424. PMC 5410804. PMID 28396393.
  29. ^ a b Garcia-Millan, R.; Pruessner, G.; Pickering, L.; Christensen, K. (17 July 2018). "Correlations and hyperuniformity in the avalanche size of the Oslo model". EPL (Europhysics Letters). 122 (5): 50003. arXiv:1710.00179. Bibcode:2018EL....12250003G. doi:10.1209/0295-5075/122/50003. ISSN 1286-4854. S2CID 52440880.
  30. ^ a b Ness, Christopher; Cates, Michael E. (27 February 2020). "Absorbing-State Transitions in Granular Materials Close to Jamming". Physical Review Letters. 124 (8): 088004. arXiv:2001.10228. Bibcode:2020PhRvL.124h8004N. doi:10.1103/PhysRevLett.124.088004. ISSN 0031-9007. PMID 32167320. S2CID 210932396.
  31. ^ a b Wilken, Sam; Guerra, Rodrigo E.; Pine, David J.; Chaikin, Paul M. (11 February 2020). "Hyperuniform Structures Formed by Shearing Colloidal Suspensions". Physical Review Letters. 125 (14): 148001. arXiv:2002.04499. Bibcode:2020PhRvL.125n8001W. doi:10.1103/PhysRevLett.125.148001. PMID 33064537. S2CID 211075881.
  32. ^ a b Gabrielli, Andrea; Joyce, Michael; Sylos Labini, Francesco (11 April 2002). "Glass-like universe: Real-space correlation properties of standard cosmological models". Physical Review D. 65 (8): 083523. arXiv:astro-ph/0110451. Bibcode:2002PhRvD..65h3523G. doi:10.1103/PhysRevD.65.083523. ISSN 0556-2821. S2CID 119442907.
  33. ^ a b Gabrielli, Andrea (2004). "Point processes and stochastic displacement fields". Physical Review E. 70 (6): 066131. arXiv:cond-mat/0409594. Bibcode:2004PhRvE..70f6131G. doi:10.1103/PhysRevE.70.066131. ISSN 1539-3755. PMID 15697458. S2CID 33621420.
  34. ^ Le Thien, Q.; McDermott, D.; Reichhardt, C.J.O.; Reichhardt, C. (15 September 2017). "Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder". Physical Review B. 96 (9): 094516. Bibcode:2017PhRvB..96i4516L. doi:10.1103/PhysRevB.96.094516. ISSN 2469-9950. S2CID 18031713.
  35. ^ a b Klatt, Michael A.; Kim, Jaeuk; Torquato, Salvatore (13 March 2020). "Cloaking the underlying long-range order of randomly perturbed lattices". Physical Review E. 101 (3): 032118. arXiv:2001.08161. Bibcode:2020PhRvE.101c2118K. doi:10.1103/PhysRevE.101.032118. ISSN 2470-0045. PMID 32289999. S2CID 210859161.
  36. ^ Ghosh, Subhro; Lebowitz, Joel (2017). "Number Rigidity in Superhomogeneous Random Point Fields". Journal of Statistical Physics. 166 (3–4): 1016–1027. arXiv:1601.04216. Bibcode:2017JSP...166.1016G. doi:10.1007/s10955-016-1633-6. ISSN 0022-4715. S2CID 19675015.
  37. ^ Baake, Michael; Coons, Michael (2021). "Scaling of the Diffraction Measure of $k$ -Free Integers Near the Origin". Michigan Mathematical Journal. 70: 213–221. arXiv:1904.00279. doi:10.1307/mmj/1592877613. ISSN 0026-2285. S2CID 90260746.
  38. ^ Casini, Emanuele; Le Caër, Gérard; Martinelli, Andrea (2015). "Short Hyperuniform Random Walks" (PDF). Journal of Statistical Physics. 160 (1): 254–273. Bibcode:2015JSP...160..254C. doi:10.1007/s10955-015-1244-7. ISSN 0022-4715. S2CID 45170541.
  39. ^ Chieco, A.T.; Zu, M.; Liu, A.J.; Xu, N.; Durian, D.J. (17 October 2018). "Spectrum of structure for jammed and unjammed soft disks". Physical Review E. 98 (4): 042606. arXiv:1806.10118. Bibcode:2018PhRvE..98d2606C. doi:10.1103/PhysRevE.98.042606. ISSN 2470-0045. S2CID 119448635.
  40. ^ Torquato, Salvatore; Scardicchio, A; Zachary, Chase E. (27 November 2008). "Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory". Journal of Statistical Mechanics: Theory and Experiment. 2008 (11): P11019. arXiv:0809.0449. Bibcode:2008JSMTE..11..019T. doi:10.1088/1742-5468/2008/11/P11019. ISSN 1742-5468. S2CID 6252369.
  41. ^ Le Thien, Q.; McDermott, D.; Reichhardt, C. J. O.; Reichhardt, C. (15 September 2017). "Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder". Physical Review B. 96 (9): 094516. Bibcode:2017PhRvB..96i4516L. doi:10.1103/PhysRevB.96.094516. ISSN 2469-9950. S2CID 18031713.
  42. ^ Kim, Jaeuk; Torquato, Salvatore (12 February 2018). "Effect of imperfections on the hyperuniformity of many-body systems". Physical Review B. 97 (5): 054105. Bibcode:2018PhRvB..97e4105K. doi:10.1103/PhysRevB.97.054105. ISSN 2469-9950.
  43. ^ Lin, C.; Steinhardt, P.J.; Torquato, S. (13 April 2017). "Hyperuniformity variation with quasicrystal local isomorphism class". Journal of Physics: Condensed Matter. 29 (20): 204003. Bibcode:2017JPCM...29t4003L. doi:10.1088/1361-648x/aa6944. ISSN 0953-8984. PMID 28345537.
  44. ^ Baake, Michael; Grimm, Uwe (23 May 2019). "Scaling of diffraction intensities near the origin: Some rigorous results". Journal of Statistical Mechanics: Theory and Experiment. 2019 (5): 054003. arXiv:1905.04177. Bibcode:2019JSMTE..05.4003B. doi:10.1088/1742-5468/ab02f2. ISSN 1742-5468.
  45. ^ Gerasimenko; et al. (2019). "Quantum jamming transition to a correlated electron glass in 1T-TaS2". Nature Materials. 317 (10): 1078–1083. arXiv:1803.00255. Bibcode:2019NatMa..18.1078G. doi:10.1038/s41563-019-0423-3. PMID 31308513. S2CID 196810837.
  46. ^ a b c Kelly, Morgan (24 February 2014). "In the eye of a chicken, a new state of matter comes into view" (Press release). Princeton, NJ: Princeton University. Retrieved 8 March 2021.
  47. ^ Atkinson, Steven; Stillinger, Frank H.; Torquato, Salvatore (30 December 2014). "Existence of isostatic, maximally random jammed monodisperse hard-disk packings". Proceedings of the National Academy of Sciences. 111 (52): 18436–18441. Bibcode:2014PNAS..11118436A. doi:10.1073/pnas.1408371112. ISSN 0027-8424. PMC 4284597. PMID 25512529.
  48. ^ Froufe-Pérez, Luis S.; Engel, Michael; Sáenz, Juan José; Scheffold, Frank (5 September 2017). "Band gap formation and Anderson localization in disordered photonic materials with structural correlations". Proceedings of the National Academy of Sciences. 114 (36): 9570–9574. arXiv:1702.03883. Bibcode:2017PNAS..114.9570F. doi:10.1073/pnas.1705130114. ISSN 0027-8424. PMC 5594660. PMID 28831009.
  49. ^ Milošević, Milan M.; Man, Weining; Nahal, Geev; Steinhardt, Paul J.; Torquato, Salvatore; Chaikin, Paul M.; Amoah, Timothy; Yu, Bowen; Mullen, Ruth Ann; Florescu, Marian (2019). "Hyperuniform disordered waveguides and devices for near infrared silicon photonics". Scientific Reports. 9 (1): 20338. Bibcode:2019NatSR...920338M. doi:10.1038/s41598-019-56692-5. ISSN 2045-2322. PMC 6937303. PMID 31889165.
  50. ^ a b Leseur, O.; Pierrat, R.; Carminati, R. (2016). "High-density hyperuniform materials can be transparent". Optica. 3 (7): 763. arXiv:1510.05807. Bibcode:2016Optic...3..763L. doi:10.1364/OPTICA.3.000763. S2CID 118443561.
  51. ^ Gorsky, S.; Britton, W. A.; Chen, Y.; Montaner, J.; Lenef, A.; Raukas, M.; Dal Negro, L. (1 November 2019). "Engineered hyperuniformity for directional light extraction". APL Photonics. 4 (11): 110801. Bibcode:2019APLP....4k0801G. doi:10.1063/1.5124302. ISSN 2378-0967.
  52. ^ Melissa (21 March 2014). "Disordered hyperuniformity: A weird new state of matter in chicken eyes". TodayIFoundOut.com. Gawker Media – via Gizmodo.
  53. ^ David Freeman (26 February 2014). "Scientists Look In Chicken's Eye And Discover Weird New State Of Matter". The Huffington Post. Retrieved 20 December 2015.
  54. ^ Yu; et al. (2020). "Disordered hyperuniformity in two-dimensional amorphous silica". Science Advances. 6 (16): eaba0826. Bibcode:2020SciA....6A.826Z. doi:10.1126/sciadv.aba0826. PMC 7164937. PMID 32494625. S2CID 218844271.
  55. ^ "Dragons, aliens, bugs? Scientists may have solved the mystery of the desert's 'fairy circles'". The Washington Post. 18 January 2017. The thing that immediately caught my eye about what they had was it seemed to fall into an exotic type of patterning I call hyperuniformity. — Salvatore Torquato
  56. ^ Getzin, Stephan; et al. (2016). "Discovery of fairy circles in Australia supports self-organization theory1". Proceedings of the National Academy of Sciences. 113 (13): 3551–3556. Bibcode:2016PNAS..113.3551G. doi:10.1073/pnas.1522130113. PMC 4822591. PMID 26976567 – via researchgate.net.
  57. ^ a b Chremos, Alexandros; Douglas, Douglas F. (21 December 2018). "Hidden hyperuniformity in soft polymeric materials". Physical Review Letters. 121 (25): 258002. Bibcode:2018PhRvL.121y8002C. doi:10.1103/PhysRevLett.121.258002. PMID 30608782.
  58. ^ a b Chremos, Alexandros (7 August 2020). "Design of nearly perfect hyperuniform polymeric materials". The Journal of Chemical Physics. 153 (5): 054902. Bibcode:2020JChPh.153e4902C. doi:10.1063/5.0017861. ISSN 0021-9606. PMC 7530914. PMID 32770903.
  59. ^ Atkinson, Steven; Zhang, Ge; Hopkins, Adam B.; Torquato, Salvatore (8 July 2016). "Critical slowing down and hyperuniformity on approach to jamming". Physical Review E. 94 (1): 012902. arXiv:1606.05227. Bibcode:2016PhRvE..94a2902A. doi:10.1103/PhysRevE.94.012902. ISSN 2470-0045. PMID 27575201. S2CID 12103288.
  60. ^ Lei, Qunli; Pica Ciamarra, Massimo; Ni, Ran (25 January 2019). "Non-Equilibrium Strongly Hyperuniform Fluids of Circle Active Particles with Large Local Density Fluctuations". Science Advances. 5 (1): eaau7423. arXiv:1802.03682. Bibcode:2019SciA....5.7423L. doi:10.1126/sciadv.aau7423. PMC 6357732. PMID 30746459.
  61. ^ Zhang, Bo; Snezhko, Alexey (27 May 2022). "Hyperuniform Active Chiral Fluids with Tunable Internal Structure". Physical Review Letters. 128: 218002. doi:10.1103/PhysRevLett.128.218002.
  62. ^ a b Lei, Qunli; Ni, Ran (12 November 2019). "Hydrodynamics of random-organizing hyperuniform fluids". Proceedings of the National Academy of Sciences of the United States of America. 116 (46): 22983–22989. arXiv:1904.07514. Bibcode:2019PNAS..11622983L. doi:10.1073/pnas.1911596116. PMC 6859356. PMID 31666326.