Jump to content

Timeline of condensed matter physics

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ReyHahn (talk | contribs) at 03:17, 10 October 2023 (→‎Early 1900s). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This article lists the main historical events in the history of condensed matter physics. This branch of physics focuses on understanding and studying the physical properties and transitions between phases of matter. Condensed matter refers to materials where particles (atoms, molecules, or ions) are closely packed together or under interaction, such as solids and liquids. This field explores a wide range of phenomena, including the electronic, magnetic, thermal, and mechanical properties of matter.

This timeline includes developments in subfields of condensed matter physics such as

Even if material properties were modeled before 1900, condensed matter topics were considered as part of physics since the development of quantum mechanics and microscopic theories of matter. According to Philip W. Anderson, the term "condensed matter" appeared about 1965.[1]

For history of fluid mechanics, see timeline of fluid and continuum mechanics.

Before quantum mechanics

Prehistory

Antiquity

A piece of magnetite with permanent magnetic properties were noticed already in Ancient Greece

Classical theories before 19th century

19th century

Schema of the classical Hall effect discovered in 1879, where a voltage is created perpendicular to the current in a circuit due to the influence of a magnetic field.

20th century

Paul Drude, author of the Drude model in 1900. He understood that thermal properties of metals could be understood as a gas of free electrons.

Early 1900s

Second half of the 20th century

The liquid helium is in the superfluid phase. Discovered by Pyotr Kapitsa in 1938. First theoretically model with Ginzburg–Landau theory in 1950.
Graphene: a single atomic layer of graphite first produced in 2004.

21st century

See also

References

  1. ^ a b "Philip Anderson". Department of Physics. Princeton University. Retrieved 27 March 2012.
  2. ^ Baigrie, Brian (2007), Electricity and Magnetism: A Historical Perspective, Greenwood Publishing Group, p. 1, ISBN 978-0-313-33358-3
  3. ^ Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 9-8102-4471-1
  4. ^ Pliny the Elder. "Dedication". The Natural History. Perseus Collection: Greek and Roman Materials. Department of the Classics, Tufts University. Retrieved 20 October 2015.
  5. ^ American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN 978-0-618-45504-1.
  6. ^ Gerald Küstler (2007). "Diamagnetic Levitation – Historical Milestones". Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. 52, 3: 265–282.
  7. ^ Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  8. ^ Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  9. ^ Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  10. ^ Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  11. ^ Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  12. ^ Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  13. ^ Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  14. ^ Franz, R.; Wiedemann, G. (1853). "Ueber die Wärme-Leitungsfähigkeit der Metalle". Annalen der Physik und Chemie (in German). 165 (8): 497–531. doi:10.1002/andp.18531650802.
  15. ^ Peacock 2008, pp. 175–183
  16. ^ Encyclopaedia of Physics (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3.
  17. ^ Lorenz, L. (1872). "Bestimmung der Wärmegrade in absolutem Maasse". Annalen der Physik und Chemie (in German). 223 (11): 429–452. doi:10.1002/andp.18722231107.
  18. ^ Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  19. ^ Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  20. ^ Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  21. ^ Peacock 2008, pp. 175–183
  22. ^ Dahl, Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. p. 10.
  23. ^ "Milestone 1 : Nature Milestones in Spin". www.nature.com. Retrieved 2018-09-09.
  24. ^ Dressel, Martin; Grüner, George (2002-01-17). Electrodynamics of Solids: Optical Properties of Electrons in Matter (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511606168.008.. ISBN 978-0-521-59253-6. {{cite book}}: Check |doi= value (help)
  25. ^ See J. Valasek (1920). "Piezoelectric and allied phenomena in Rochelle salt". Physical Review. 15 (6): 537. Bibcode:1920PhRv...15..505.. doi:10.1103/PhysRev.15.505. and J. Valasek (1921). "Piezo-Electric and Allied Phenomena in Rochelle Salt". Physical Review. 17 (4): 475. Bibcode:1921PhRv...17..475V. doi:10.1103/PhysRev.17.475. hdl:11299/179514.
  26. ^ "The Nobel Prize in Chemistry 1953". NobelPrize.org. Retrieved 2023-10-10.
  27. ^ Peacock 2008, pp. 175–183
  28. ^ Peacock 2008, pp. 175–183
  29. ^ Peacock 2008, pp. 175–183
  30. ^ Peacock 2008, pp. 175–183
  31. ^ Peacock 2008, pp. 175–183
  32. ^ Rjabinin, J. N. and Schubnikow, L.W. (1935) "Magnetic properties and critical currents of superconducting alloys", Physikalische Zeitschrift der Sowjetunion, vol. 7, no.1, pp. 122–125.
  33. ^ Rjabinin, J. N.; Shubnikow, L. W. (1935). "Magnetic Properties and Critical Currents of Supra-conducting Alloys". Nature. 135 (3415): 581. Bibcode:1935Natur.135..581R. doi:10.1038/135581a0. S2CID 4113840.
  34. ^ Casimir, H. B. G.; Polder, D. (1948-02-15). "The Influence of Retardation on the London–van der Waals Forces". Physical Review. 73 (4): 360–372. Bibcode:1948PhRv...73..360C. doi:10.1103/PhysRev.73.360. ISSN 0031-899X.
  35. ^ Casimir, H. B. G. (1948). "On the attraction between two perfectly conducting plates" (PDF). Proc. Kon. Ned. Akad. Wet. 51: 793. Archived (PDF) from the original on 2013-04-18.
  36. ^ Ehrenberg, W; Siday, RE (1949). "The Refractive Index in Electron Optics and the Principles of Dynamics". Proceedings of the Physical Society B. 62 (1): 8–21. Bibcode:1949PPSB...62....8E. CiteSeerX 10.1.1.205.6343. doi:10.1088/0370-1301/62/1/303.
  37. ^ J. C. Slater; G. F. Koster (1954). "Simplified LCAO method for the Periodic Potential Problem". Physical Review. 94 (6): 1498–1524. Bibcode:1954PhRv...94.1498S. doi:10.1103/PhysRev.94.1498.
  38. ^ Geballe, T. H.; Hulm, J. K. (1996). Bernd Theodor Matthias 1918–1990 (PDF). National Academy of Science.
  39. ^ a b "December 1958: Invention of the Laser". www.aps.org. Retrieved 2023-09-12.
  40. ^ Dresselhaus, G. (1955-10-15). "Spin–Orbit Coupling Effects in Zinc Blende Structures". Physical Review. 100 (2): 580–586. Bibcode:1955PhRv..100..580D. doi:10.1103/PhysRev.100.580.
  41. ^ Kubo, Ryogo (1957). "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems". J. Phys. Soc. Jpn. 12 (6): 570–586. doi:10.1143/JPSJ.12.570.
  42. ^ Kubo, Ryogo; Yokota, Mario; Nakajima, Sadao (1957). "Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance". J. Phys. Soc. Jpn. 12 (11): 1203–1211. Bibcode:1957JPSJ...12.1203K. doi:10.1143/JPSJ.12.1203.
  43. ^ Rostky, George. "Micromodules: the ultimate package". EE Times. Archived from the original on 2010-01-07. Retrieved 2018-04-23.
  44. ^ E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
  45. ^ Kamenev, Alex (2011). Field theory of non-equilibrium systems. Cambridge: Cambridge University Press. ISBN 9780521760829. OCLC 721888724.
  46. ^ W. A. Little and R. D. Parks, “Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder”, Physical Review Letters 9, 9 (1962), doi:10.1103/PhysRevLett.9.9
  47. ^ Josephson, Paul R. (2010). Lenin's Laureate: Zhores Alferov's Life in Communist Science. MIT Press. ISBN 978-0-262-29150-7.
  48. ^ Slyusar, V.I. (October 6–9, 2009). Metamaterials on antenna solutions (PDF). 7th International Conference on Antenna Theory and Techniques ICATT’09. Lviv, Ukraine. pp. 19–24.
  49. ^ "Soft matter physics". Institute of Physics. Retrieved October 10, 2023.
  50. ^ Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". Journal of Physics C: Solid State Physics. 6 (22): L422. Bibcode:1973JPhC....6L.422M. doi:10.1088/0022-3719/6/22/007. S2CID 4992859.
  51. ^ Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". Journal of Physics C: Solid State Physics. 7 (24): L457. Bibcode:1974JPhC....7L.457G. doi:10.1088/0022-3719/7/24/006. S2CID 4981940.
  52. ^ Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". British Journal of Radiology. 50 (591): 188–94. doi:10.1259/0007-1285-50-591-188. PMID 849520. S2CID 26374556.
  53. ^ Mansfield, P (1977). "Multi-planar image formation using NMR spin echoes". Journal of Physics C: Solid State Physics. 10 (3): L55–L58. Bibcode:1977JPhC...10L..55M. doi:10.1088/0022-3719/10/3/004. S2CID 121696469.
  54. ^ Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce (2016-12-23). "Observation of the topological soliton state in the Su–Schrieffer–Heeger model". Nature Communications. 7 (1): 13986. arXiv:1607.02811. Bibcode:2016NatCo...713986M. doi:10.1038/ncomms13986. ISSN 2041-1723. PMC 5196433. PMID 28008924.
  55. ^ Su, W. P.; Schrieffer, J. R.; Heeger, A. J. (1979-06-18). "Solitons in Polyacetylene". Physical Review Letters. 42 (25): 1698–1701. Bibcode:1979PhRvL..42.1698S. doi:10.1103/PhysRevLett.42.1698. ISSN 0031-9007.
  56. ^ Linke, Heiner (2023). "Quantum dots — seeds of nanoscience" (PDF). Swedish Academy of Science.
  57. ^ Schwab, K.; E. A. Henriksen; J. M. Worlock; M. L. Roukes (2000). "Measurement of the quantum of thermal conductance". Nature. 404 (6781): 974–7. Bibcode:2000Natur.404..974S. doi:10.1038/35010065. PMID 10801121. S2CID 4415638.
  58. ^ Castelvecchi, Davide; Sanderson, Katharine (2023-10-03). "Physicists who built ultrafast 'attosecond' lasers win Nobel Prize". Nature. doi:10.1038/d41586-023-03047-w.
  59. ^ "A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates". Science News. Nasa Science. February 12, 2004.