Jump to content

Temozolomide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by AnomieBOT (talk | contribs) at 23:39, 22 December 2011 (Dating maintenance tags: {{Whom}}). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Temozolomide
Clinical data
AHFS/Drugs.comMonograph
MedlinePlusa601250
License data
Routes of
administration
Oral, intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
Protein binding15%
Metabolismspontaneously hydrolyzed at physiologic pH to the active species, 3-methyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) and to temozolomide acid metabolite.
Elimination half-life1.8 hours
Identifiers
  • 4-methyl-5-oxo- 2,3,4,6,8-pentazabicyclo [4.3.0] nona-2,7,9-triene- 9-carboxamide
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.158.652 Edit this at Wikidata
Chemical and physical data
FormulaC6H6N6O2
Molar mass194.151 g/mol g·mol−1
3D model (JSmol)
  • O=C(c1ncn2C(=O)N(\N=N/c12)C)N
  • InChI=1S/C6H6N6O2/c1-11-6(14)12-2-8-3(4(7)13)5(12)9-10-11/h2H,1H3,(H2,7,13) checkY
  • Key:BPEGJWRSRHCHSN-UHFFFAOYSA-N checkY
  (verify)

Temozolomide (brand names Temodar and Temodal) is an oral alkylating agent used for the treatment of Grade IV astrocytoma — an aggressive brain tumor, also known as glioblastoma multiforme — as well as for treating melanoma, a form of skin cancer. Temozolomide is also indicated for relapsed Grade III Anaplastic Astrocytoma and not indicated for, but as of 2011 used to treat oligodendroglioma brain tumors in some countries, replacing the older (and less well-tolerated) PCV (Procarbazine-Lomustine-Vincristine) regimen.

The agent was developed by Malcolm Stevens[2] and his team at Aston University in Birmingham,[3][4] A derivative of imidazotetrazine, temozolomide is the prodrug of MTIC (3-methyl-(triazen-1-yl)imidazole-4-carboxamide). It has been available in the US since August 1999, and in other countries since the early 2000s.

The therapeutic benefit of temozolomide depends on its ability to alkylate/methylate DNA, which most often occurs at the N-7 or O-6 positions of guanine residues. This methylation damages the DNA and triggers the death of tumor cells. However, some tumor cells are able to repair this type of DNA damage, and therefore diminish the therapeutic efficacy of temozolomide, by expressing an enzyme called O-6-methylguanine-DNA methyltransferase (MGMT) or O-6-alkylguanine-DNA alkyltransferase (AGT or AGAT).[5] In some tumors, epigenetic silencing of the MGMT/AGT gene prevents the synthesis of this enzyme, and as a consequence such tumors are more sensitive to killing by temozolomide.[6] Conversely, the presence of MGMT protein in brain tumors predicts poor response to temozolomide and these patients receive little benefit from chemotherapy with temozolomide.[7]

Indications

Nitrosourea- and procarbazine-refractory anaplastic astrocytoma

Newly-diagnosed glioblastoma multiforme

Malignant prolactinoma

Structure and mechanism

Temozolomide (sometimes referred to as TMZ) is an imidazotetrazine derivative of the alkylating agent dacarbazine. It undergoes rapid chemical conversion in the systemic circulation at physiological pH to the active compound, MTIC (monomethyl triazeno imidazole carboxamide). Temozolomide exhibits schedule-dependent antineoplastic activity by interfering with DNA replication. Temozolomide has demonstrated activity against recurrent glioma. In a recent randomized trial, concomitant and adjuvant temozolomide chemotherapy with radiation significantly improves, from 12.1 months to 14.6 months, progression free survival and overall survival in glioblastoma multiforme patients.

Side-effects

The most common non-hematological adverse effects associated with temozolomide - nausea and vomiting - are either self-limiting or readily controlled with standard antiemetic therapy. These effects are usually mild to moderate (grade 1 to 2). The incidence of severe nausea and vomiting is around 4% each. Patients who have pre-existing or a history of severe vomiting may require antiemetic therapy before initiating temozolomide treatment. Temozolomide should be administered in the fasting state, at least one hour before a meal. (Capsules must not be opened or chewed, but swallowed whole with a glass of water.) Antiemetic therapy may be administered prior to, or following, administration of temozolomide. Temozolomide is contraindicated in patients with hypersensitivity to its components or to dacarbazine. The use of temozolomide is not recommended in patients with severe myelosuppression.

Temozolomide is genotoxic, teratogenic and fetotoxic and should not be used in pregnancy. Lactating women should discontinue nursing while receiving the drug because of the risk of secretion into breast milk.

In male patients, temozolomide can have genotoxic effects. One study indicated that women that have taken temozolomide without concomitant fertility preservation measures achieve pregnancy to a lesser rate later in life, but the study was too small to show statistical significance in the hypothesis that temozolomide would confer a risk of female infertility.[8] Men are advised not to father a child during or up to six months after treatment and to seek advice on cryoconservation of sperm prior to treatment, because of the possibility of irreversible infertility due to temozolomide therapy.

Formulations

Temozolomide is available in the United States in 5 mg, 20 mg, 100 mg, 140 mg, 180 mg & 250 mg capsules. Now also available in an IV form for people who can not swallow capsules or who have insurance that does not cover oral cancer agents.

A generic version is available in the UK.

Further improvement of anticancer potency

Laboratory studies and clinical trials are investigating whether it might be possible to further increase the anticancer potency of temozolomide by combining it with other pharmacologic agents. For example, clinical trials have indicated that the addition of chloroquine might be beneficial for the treatment of glioma patients.[9] In laboratory studies, it was found that temozolomide killed brain tumor cells more efficiently when epigallocatechin gallate (EGCG), a component of green tea, was added; however, the efficacy of this effect has not yet been confirmed in brain tumor patients.[10]

Because tumor cells that synthesize the MGMT/AGT enzyme are more resistant to killing by temozolomide, it was investigated[according to whom?] whether the inclusion of O-6-benzylguanine (O6-BG), an inhibitor of MGMT, would be able to overcome this resistance and improve the drug's therapeutic effectiveness. In the laboratory, this combination indeed showed increased activity in tumor cell culture in vitro and in animal models in vivo.[11] However, a recently-completed phase-II clinical trial with brain tumor patients yielded mixed outcomes; while there was some improved therapeutic activity when O6-BG and temozolomide were given to patients with temozolomide-resistant anaplastic glioma, there seemed to be no significant restoration of temozolomide sensitivity in patients with temozolomide-resistant glioblastoma multiforme.[12]

There are also efforts to engineer hematopoietic stem cells to carry MGMT prior to transplanting them into brain tumor patients. This would allow for the patients to receive stronger doses of temozolomide, since the patient's hematopoietic cells would be resistant to the drug.[13]

High doses of temozolomide in high grade gliomas have low toxicity, but the results are comparable to the standard doses.[14]

See also

References

  1. ^ "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA. Retrieved 22 Oct 2023.
  2. ^ Malcolm Stevens - interview, Cancer Research UK impact & achievements page
  3. ^ Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C (1997). "Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials". Cancer Treat. Rev. 23 (1): 35–61. doi:10.1016/S0305-7372(97)90019-0. PMID 9189180. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ Stevens MF, Hickman JA, Langdon SP, Chubb D, Vickers L, Stone R, Baig G, Goddard C, Gibson NW, Slack JA; et al. (1987). "Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine". Cancer Res. 47 (22): 5846–52. PMID 3664486. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ Jacinto, FV; Esteller, M (2007). "MGMT hypermethylation: a prognostic foe, a predictive friend". DNA Repair. 6 (8): 1155–60. doi:10.1016/j.dnarep.2007.03.013. PMID 17482895. {{cite journal}}: More than one of |author2= and |last2= specified (help); Unknown parameter |month= ignored (help)
  6. ^ Stupp, R; Hau; Mirimanoff; Cairncross (2005). "MGMT gene silencing and benefit from temozolomide in glioblastoma". N. Engl. J. Med. 352 (10): 997–1003. doi:10.1056/NEJMoa043331. PMID 15758010. {{cite journal}}: More than one of |author= and |last1= specified (help); Unknown parameter |month= ignored (help)
  7. ^ National Cancer Institute Of Canada Clinical Trials, Group; Hegi, ME; Mason, WP; Van Den Bent, MJ; Taphoorn, MJ; Janzer, RC; Ludwin, SK; Allgeier, A; Fisher, B (2009). "Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial". Lancet Oncology. 10 (5): 459–466. doi:10.1016/S1470-2045(09)70025-7. PMID 19269895. {{cite journal}}: |first1= has generic name (help); Unknown parameter |month= ignored (help)
  8. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 21030284, please use {{cite journal}} with |pmid=21030284 instead.
  9. ^ Gilbert MR (2006). "New treatments for malignant gliomas: careful evaluation and cautious optimism required". Ann. Intern. Med. 144 (5): 371–3. PMID 16520480. {{cite journal}}: Unknown parameter |month= ignored (help)
  10. ^ Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS (2007). "The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas". Cancer Res. 67 (20): 9809–16. doi:10.1158/0008-5472.CAN-07-0625. PMID 17942911. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Ueno T, Ko SH, Grubbs E; et al. (2006). "Modulation of chemotherapy resistance in regional therapy: a novel therapeutic approach to advanced extremity melanoma using intra-arterial temozolomide in combination with systemic O6-benzylguanine". Mol. Cancer Ther. 5 (3): 732–8. doi:10.1158/1535-7163.MCT-05-0098. PMID 16546988. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Friedman, HS; Jiang, SX; Reardon, DA; Desjardins, A; Vredenburgh, JJ; Rich, JN; Gururangan, S; Friedman, AH; Bigner, DD (2009). "Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma". J. Clin. Oncol. 27 (8): 1262–7. doi:10.1200/JCO.2008.18.8417. PMC 2667825. PMID 19204199. {{cite journal}}: Unknown parameter |month= ignored (help)
  13. ^ http://labs.fhcrc.org/kiem/Hans-Peter_Kiem.html
  14. ^ Dall'oglio S, D'Amico A, Pioli F, Gabbani M, Pasini F, Passarin MG, Talacchi A, Turazzi S, Maluta S (December 2008). "Dose-intensity temozolomide after concurrent chemoradiotherapy in operated high-grade gliomas". J Neurooncol. 90 (3): 315–9. doi:10.1007/s11060-008-9663-9. PMID 18688571.{{cite journal}}: CS1 maint: multiple names: authors list (link)