Jump to content

Robotic magnetic navigation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 08:54, 31 October 2019 (Alter: journal. | You can use this tool yourself. Report bugs here. | via #UCB_Gadget). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Robotic magnetic navigation (RMN) (also called remote magnetic navigation) uses robotic technology to direct magnetic fields which control the movement of magnetic-tipped endovascular catheters into and through the chambers of the heart during cardiac catheterization procedures.[1]

Devices

Because the human heart beats during ablation procedures, catheter stability can be affected by navigation technique. Magnetic fields created by RMN technology guide the tip of a catheter using a “pull” mechanism of action (as opposed to “push” with manual catheter navigation). Magnetic catheter navigation has been associated with greater catheter stability.[2]

Medical use

Atrial fibrilation

As of 2015 there were two robotic catherization systems on the market for atrial fibrilation; one of them used magnetic guidance.[3]

After long-term follow up, RMN navigation has been associated with better procedural and clinical outcomes for AF ablation when compared with manual catheter navigation for cardiac ablation.[4]

Ventricular tachyardia

RMN has been shown to be safe and effective for cardiac catheter ablation in various patient populations with ventricular tachycardia.[5][6]

References

  1. ^ Da Costa, A; Guichard, JB; Roméyer-Bouchard, C; Gerbay, A; Isaaz, K (2016). "Robotic magnetic navigation for ablation of human arrhythmias". Medical Devices: Evidence and Research. 9: 331–339. doi:10.2147/MDER.S96167. PMC 5034914. PMID 27698569.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ Davis, DR; Tang, AS; Gollob, MH; Lemery, R; Green, MS; Birnie, DH (July 2008). "Remote magnetic navigation-assisted catheter ablation enhances catheter stability and ablation success with lower catheter temperatures". Pacing and Clinical Electrophysiology. 31 (7): 893–8. doi:10.1111/j.1540-8159.2008.01105.x. PMID 18684288.
  3. ^ Gerstenfeld, EP; Duggirala, S (2015). "Atrial fibrillation ablation: indications, emerging techniques, and follow-up". Progress in Cardiovascular Diseases. 58 (2): 202–12. doi:10.1016/j.pcad.2015.07.008. PMID 26241304.
  4. ^ Yuan, S; Holmqvist, F; Kongstad, O; Jensen, SM; Wang, L; Ljungström, E; Hertervig, E; Borgquist, R (December 2017). "Long-term outcomes of the current remote magnetic catheter navigation technique for ablation of atrial fibrillation". Scandinavian Cardiovascular Journal. 51 (6): 308–315. doi:10.1080/14017431.2017.1384566. PMID 28958165.
  5. ^ Turagam, MK; Atkins, D; Tung, R; Mansour, M; Ruskin, J; Cheng, J; Di Biase, L; Natale, A; Lakkireddy, D (September 2017). "A meta-analysis of manual versus remote magnetic navigation for ventricular tachycardia ablation". Journal of Interventional Cardiac Electrophysiology. 49 (3): 227–235. doi:10.1007/s10840-017-0257-3. PMID 28624892.
  6. ^ Akca, F; Önsesveren, I; Jordaens, L; Szili-Torok, T (June 2012). "Safety and efficacy of the remote magnetic navigation for ablation of ventricular tachycardias--a systematic review". Journal of Interventional Cardiac Electrophysiology. 34 (1): 65–71. doi:10.1007/s10840-011-9645-2. PMC 3342497. PMID 22180126.