Jump to content

8-simplex honeycomb

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
8-simplex honeycomb
(No image)
Type Uniform 8-honeycomb
Family Simplectic honeycomb
Schläfli symbol {3[9]}
Coxeter diagram
6-face types {37} , t1{37}
t2{37} , t3{37}
6-face types {36} , t1{36}
t2{36} , t3{36}
6-face types {35} , t1{35}
t2{35}
5-face types {34} , t1{34}
t2{34}
4-face types {33} , t1{33}
Cell types {3,3} , t1{3,3}
Face types {3}
Vertex figure t0,7{37}
Symmetry ×2, [[3[9]]]
Properties vertex-transitive

In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.

A8 lattice

This vertex arrangement is called the A8 lattice or 8-simplex lattice. The 72 vertices of the expanded 8-simplex vertex figure represent the 72 roots of the Coxeter group.[1] It is the 8-dimensional case of a simplectic honeycomb. Around each vertex figure are 510 facets: 9+9 8-simplex, 36+36 rectified 8-simplex, 84+84 birectified 8-simplex, 126+126 trirectified 8-simplex, with the count distribution from the 10th row of Pascal's triangle.

contains as a subgroup of index 5760.[2] Both and can be seen as affine extensions of from different nodes:

The A3
8
lattice is the union of three A8 lattices, and also identical to the E8 lattice.[3]

= .

The A*
8
lattice (also called A9
8
) is the union of nine A8 lattices, and has the vertex arrangement of the dual honeycomb to the omnitruncated 8-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 8-simplex

= dual of .

This honeycomb is one of 45 unique uniform honeycombs[4] constructed by the Coxeter group. The symmetry can be multiplied by the ring symmetry of the Coxeter diagrams:

A8 honeycombs
Enneagon
symmetry
Symmetry Extended
diagram
Extended
group
Honeycombs
a1 [3[9]]

i2 [[3[9]]] ×2

1 2

i6 [3[3[9]]] ×6
r18 [9[3[9]]] ×18 3

Projection by folding

The 8-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

See also

Notes

  1. ^ "The Lattice A8".
  2. ^ N.W. Johnson: Geometries and Transformations, (2018) Chapter 12: Euclidean symmetry groups, p.294
  3. ^ Kaleidoscopes: Selected Writings of H. S. M. Coxeter, Paper 18, "Extreme forms" (1950)
  4. ^ * Weisstein, Eric W. "Necklace". MathWorld., OEIS sequence A000029 46-1 cases, skipping one with zero marks

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21