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Abstract. In the face of large-scale automated social engineering at-
tacks to large online services, fast detection and remediation of com-
promised accounts are crucial to limit the spread of the attack and to
mitigate the overall damage to users, companies, and the public at large.
We advocate a fully automated approach based on machine learning: we
develop an early warning system that harnesses account activity traces
to predict which accounts are likely to be compromised in the future. We
demonstrate the feasibility and applicability of the system through an
experiment at a large-scale online service provider using four months of
real-world production data encompassing hundreds of millions of users.
We show that—even limiting ourselves to login data only in order to
derive features with low computational cost, and a basic model selec-
tion approach—our classifier can be tuned to achieve good classification
precision when used for forecasting. Our system correctly identifies up
to one month in advance the accounts later flagged as suspicious with
precision, recall, and false positive rates that indicate the mechanism
is likely to prove valuable in operational settings to support additional
layers of defense.

Keywords: Forecasting - Machine Learning for Security - Big Data An-
alytics for Security - Large-Scale Cyberattacks - Cloud Security.

1 Introduction

Online services are an integral part of our personal and professional lives. To
support widespread adoption and improve usability, large-scale online service
providers (LSOSPs) have made it simple for users to access any of the provided
services using a single credential. Such “single sign-on” systems make it much
easier for users to manage their interactions through a single account and sign-
in interface. As users become more invested in the platform, the single login

* This work was done when Baris Coskun was with Yahoo! Research.



2 Hassan Halawa et al.

credential becomes a valuable key to a whole set of services, as well as the ‘key’
to their digital identity and the personal information stored on the platform. As
a consequence, these credentials are highly attractive targets to attackers.

As LSOSPs improve their defense systems to protect their user base, at-
tackers have shifted their efforts to social engineering attacks: e.g, attacks that
exploit incorrect decisions made by individual users to trick them into disclos-
ing their login credentials [14]. Once an account is compromised, the attackers
hijack the account from its legitimate owner and, typically, use it for their own
purposes [19]: for example, to evade detection while perpetuating an attack (e.g.,
multi-stage phishing, or malware distribution campaigns) or to carry out other
fraudulent activity (e.g., sending out spam email).

Thus, detecting compromised accounts early and giving back control to their
legitimate owners quickly, as well as designing defense mechanisms that add
additional layers of defense to protect users likely to fall prey to social engineering
attacks, is crucial. Doing so can mitigate the damage an attacker can do while in
control of a compromised account, protect the account owner’s digital identity,
and reduce the damage inflicted by an automated large-scale social-engineering
attack to a LSOSP and its user community. It should be noted that, detecting
compromised accounts is much more challenging than just identifying fake ones
(i.e., those created by an attacker) since, in the former case, suspicious activity
is typically interleaved with the account owner’s legitimate activity [g].

This paper tests the hypothesis that it is feasible to identify likely future vic-
tims of mass-scale social-engineering attacks. In a nutshell, we postulate that
the behavioral patterns of the users that have little incentives or low ability to
fend off social-engineering attacks can be learned. To this end we propose an
early warning system based on a completely automated pipeline using machine
learning (ML) to identify the accounts with similar behavioral patterns to those
that have been flagged as suspicious in the past.

Predicting accounts that are more likely to be compromised in the future can
be used to develop new defenses, to fine-tune and better target existing defense
mechanisms, as well as to better protect vulnerable users [10]. While we briefly
discuss the intuition behind some of these defense mechanisms in the discussion
section (7 their design and evaluation, however, is beyond the scope of this
paper and we focus here solely on evaluating our conjecture that predicting which
accounts are more likely to be compromised is feasible.

We have tested our hypothesis using real-world data from a large LSOSP
(i.e., at the scale of Amazon, Facebook, Google, or Yahoo). Throughout this
paper we will refer to it as a LSOSP (in italics, the non-italicized LSOSP refers
to a generic Large-Scale Online Service Provider). Our experiments were carried
out over four months of production data covering hundreds of millions of users
generating hundreds of billions of login events to LSOSP’s platform. Due to
space constraints we omit some relevant in-depth descriptions from this paper,
and we refer interested readers to our more exhaustive technical report [11] for
more information.

This paper makes the following contributions:
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m We formulate the hypothesis that it is feasible to identify the users more likely
to fall prey to mass-scale social-engineering attacks (, propose an approach
to identify their accounts, and design an early warning system (§3).

m We demonstrate the feasibility and applicability of the proposed approach on
real-world production data ( We show that, even using low-cost features
extracted from two basic datasets ( and a simple model selection approach
( leading to acceptable training runtime, the proposed classifier can be
tuned to achieve good classification quality based on the recall, precision, and
false positive rate metrics (§5). For example (CE¢ in §5)), using only one
week of login event history and predicting one month in advance, our classifier
predicts more than half of the accounts later flagged as having suspicious
behaviour (i.e., achieves a recall of 50.62%) and, at the same time, around one
in five of the predicted accounts is actually labeled as suspicious at LSOSP
within a 30-day prediction horizon (i.e., precision of 18.33%, with a low false
positive rate of 0.49%). While, overall, our results indicate that it is feasible
to achieve good classification quality, we stress two important points: first, it
is important to note that our results should be seen as a lower bound of the
achievable classification performance: this can likely be further improved by
using richer data or additional computational resources (e.g., to support more
sophisticated learning methods). Second, efficient defense mechanisms can be
developed based on future victim predictors as, for example, Boshmaf et al. 5]
demonstrate in the context of a social-bot infiltration attack. We expand on
these points in the discussion section 7]

2 Problem Formulation

We present an overview of our problem ( by abstracting away from all
company- and experiment-specific details which we describe in detail in
and Here, we go over the assumptions and objectives that influenced our
approach, we elaborate on the datasets required to carry out the classification
task (, and we introduce our classification exercises (CEs), which are the

means by which we organize our experiments (§2.3).

2.1 Overview

Our goal is to develop an early warning system that can be used by LSOSPs to
harness observable user behavior to identify accounts likely to be compromised
in the future. Our intuition is the following: over the course of everyday use, the
history of user interactions encapsulates information from which one can infer
whether an account is more likely to be compromised in the future (e.g., because
the user does not have the interest or the ability to fend off social-engineering
attacks); eventually (some of) these accounts are compromised, generate suspi-
cious activity, and are later flagged. In other words, to forecast future suspicious
activity, we aim for features that approximate user behavioral patterns to infer
similarity to accounts that are later flagged as suspicious and develop a binary
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classifier to act as an early warning system. We chose a supervised learning ap-
proach as, over the past few years, it has been shown to achieve good performance
for a variety of classification tasks [3}/6,/16,21}22].

2.2 Assumptions, Objectives, and Datasets

Assumptions. We treat the prediction of suspicious accounts as a binary clas-
sification problem (suspicious vs. non-suspicious). We assume that only a small
subset of the overall population is likely to exhibit suspicious activity. We believe
that this is true for large providers that offer services to a large number of users
around the world (up to billions of users) and dedicate resources to maintain
a “healthy” user population. The direct implication is that the ML techniques
used, the data selection for the training of the classifiers, and the success metrics
used are all tuned for imbalanced data.

Objectives. We aim to meet the following objectives when designing and tuning
the binary classifier. First, a low rate of false positives: accounts incorrectly
predicted as suspicious (i.e., false positives) should be minimized even at the
cost of decreasing the number of correctly predicted suspicious accounts (i.e., true
positives). This trade-off can be controlled by tuning the classifier’s prediction
threshold when generating the final binary classification. We also discuss tuning
for a low rate of false negatives in (§7).

Second, and crucially for deployment at a LSOSP, with hundreds of mil-

lions of users and tens of billions of user activity events per day (or more!),
the classifier should be optimized for runtime efficiency during both training
(feature extraction and model building) and testing/use (prediction and clas-
sification). This can be accomplished by employing features that can be easily
extracted/computed from the raw data, and by choosing ML models that offer a
good trade-off between the quality of prediction and performance. Balancing this
trade-off is crucial for timely forecasting of suspicious activity and thus faster
remediation (as well as adoption in realistic settings).
Required Datasets. We assume that the LSOSP has access to at least two
types of data. First, data that can be mined to extract behavioral patterns.
Second, a sample of accounts previously flagged as suspicious that can be used
as ground truth. We detail the data we use from LSOSP in §4

2.3 Experiment Organization

Here we establish the terminology we use for the rest of this paper. We define
the means by which we organize our experiments (Classification Ezercises), and
we detail the categories of accounts that can be observed in the datasets and
how we use them.

Classification Exercises (CEs) are our way of grouping together all param-
eters of a binary classification experiment (e.g., training time interval, testing
time interval, ML model hyperparameters) and the associated results. As with
any typical supervised ML approach, a CE is divided into two distinct phases:
training and testing (Figure. |l| provides an overview). During training, our goal
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is to fit a model that learns user behavioral patterns that can be used as early
predictors of suspicious account activity. During testing, the fitted model is ap-
plied to new data not seen during training and the classifier’s performance is
evaluated against a labeled ground truth.

Categories of Accounts. We consider U as the set of all accounts registered
with the LSOSP. Depending on the scale and popularity of the LSOSP, U can
be extremely large potentially exceeding a billion users. We use days as a coarse-
grain measure of time. We consider Ly as the set of users with login activity on
day d. For the set Ly, we extract easy-to-compute low-cost features representing
the users’ login behavior on day d. We aim to learn the behavioral patterns of
legitimate accounts prior to them being flagged as suspicious. We denote with Sy
the set of user accounts flagged as suspicious on day d. Existence of an account in
set Sg on day d is a clear indication that the account exhibited some suspicious
activity prior to or on day d. However, it is important to note that the opposite
is not true: if an account is absent from the set Sy on day d that does not imply
that it did not exhibit any irregular activity prior to or on day d. The reason for
this is that the pipeline used for detecting suspicious accounts at the LSOSP is
expected to have some lag. In other words, it takes time for an account to be
flagged as suspicious after it first starts exhibiting irregular behavior.
Avoiding Attacker-Controlled Accounts. The set L, contains not only le-
gitimate user accounts but also those that are under the control of an attacker
(the set Ag). These include fake as well as compromised accounts (considered
as sets Fy and Cy respectively). We implement several heuristics to prune such
accounts and avoid learning user behavioral patterns from accounts that may be
under attacker control. Thus, we do not use the sets Ly and Sy directly. In-
stead, to avoid learning the behavior of accounts under attacker control (Ag),
we prune both L; and Sy in order to eliminate accounts that may be under
attacker control. We discuss this preprocessing step in detail in §3.3]

3 Proposed Approach

This section outlines our proposed approach: the details of our classification
exercises (, the proposed supervised ML pipeline (, and the heuristics
we implement to avoid learning from accounts under the control of an attacker
and to reduce bias when evaluating our approach (§3.3)). The following sections
describe our datasets ( and the evaluation result

3.1 Classification Exercise Composition

We organize our classification exercises (CEs) as outlined in Figure [1} During
training, we attempt to fit a model (M) that learns which behavioral patterns
during the training Data Window (training—DWED correlated to the account be-
ing labeled as suspicious later in the Label Window (LW). We introduce a Buffer

4 Where the context makes the notation unambiguous, we skip the prefix and use DW
only for training-DW or testing-DW. Similarly for LW.
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Window (BW) between the DW and LW, to account for any lag (delay) in the
suspicious account flagging pipeline used to generate the ground truth of suspi-
cious accounts. The reason is that, in the absence of the BW, a lag in the pipeline
will cause the fitted model to learn user behavioral patterns from accounts that
are already under the control of an attacker. In we present our heuristics
to estimate the width of the Buffer Window (BW).

During testing, the fitted model (M) obtained during training, is applied dur-
ing the testing-DW to forecast the set of accounts that are likely to have suspi-
cious behaviour (Pog). The quality of those predictions is then evaluated against
the ground truth of labeled suspicious accounts extracted from the testing-LW.

Training Interval Testing Interval

Data Window (DW) Buffer Window (BW) Label Window (LW) Data Window (DW) Label Window (LW)

| >

Fig. 1. Overview of a Classification Exercise (CE). Each exercise is divided into two broad
phases: training, during which the classifier is fitted, and testing, during which the classifier
predictions are evaluated. Each phase is subdivided into smaller non-overlapping time windows:
Data Window (DW), Buffer Window (BW) and Label Window (LW). The DW is the period
of time over which behavioural features are mined. The BW is a period of time introduced to
avoid learning from accounts that may already be compromised but not yet labeled as such.
The LW is the period over which labels are extracted.

3.2 The Early Warning Pipeline

Our system is composed of a pipeline that can be easily integrated into existing
systems. We note that our pipeline design stresses efficiency, scalability, and,
ultimately, achieving a practical training runtime sometimes even to the detri-
ment of the learned classifiers (e.g., using simple low-cost features as opposed
to sophisticated feature extraction). With production data, similar in scale to
what we have access to at LSOSP, our pipeline is designed to extract behavioral
patterns and to train in reasonable time on log traces from hundreds of millions
of accounts leading to hundreds of billions of log entries over the duration of
each CE. We developed our pipeline in Scala 2.11, employed SparkML for all
our developed classifiers, and ran our CEs on Spark 2.0.2 [2§].

Data Preprocessing. We preprocess the datasets from which we extract the
user behavioral patterns (e.g., login activity dataset) as well as the ground truth
(e.g., accounts flagged as suspicious). Importantly, we also carry out a series of
pruning operations in order to exclude accounts that may bias either learning or
evaluation as discussed in During this stage, for each account, we extract
features at the day level and aggregate them for the intervals associated with
the classification exercise. There is an inherent trade-off here: extracting and
computing a large number of features over a long duration of time could po-
tentially include more behavioral information thereby increasing the prediction
accuracy. However, this comes at the cost of longer runtime and might affect pre-
diction timeliness. At LSOSP, we find that extracting only a relatively small set
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of low-cost features that are both simple and quick enough to compute is both
sufficient and also more practical from a performance perspective in a production
environment (details in §4)).

Preprocessing Imbalanced Data. Typically at LSOSPs, suspicious accounts
(the positive class) are a minority compared to the overall population. Naively
training an ML classifier on such imbalanced data will typically result in a clas-
sifier that always predicts the dominant class (the negative class in our case)
to achieve the highest accuracy [20]. Approaches to mitigate this problem in-
clude simple preprocessing techniques such as undersampling the majority class
or oversampling the minority class [12], or Cost-Sensitive Learning [17] that at-
tempts to minimize the cost of misclassifications by assigning asymmetrical costs
during the training process. At LSOSP, given the scale of the data and our focus
on building a practical pipeline with good balance between runtime and classifi-
cation performance, we use undersampling during training (however, we test on
the whole set of labeled data in the test set).

Classifier Tuning. Second, during the hyperparameter optimization stage,
model selection is carried out in order to find the best model (or set of pa-
rameters) for the classification task. This only needs to be done once during
training (or periodically, with low frequency and offline, to learn new user be-
havioral patterns) and is not carried out during inference using the fitted model
in production. We use a Random Forest (RF) classifier considering the good
trade-off it offers between runtime and classification accuracy [9]. We carry out
the hyperparameter optimization on an independent dataset extracted from the
available history and specifically reserved for this purpose (CE4 in §5)). The
extracted model parameters are then fixed for all the subsequent CEs.

Model Fitting and Inference. Third, after data preprocessing and hyperpa-
rameter tuning, a ML model M is fitted and later applied to make predictions
on new data (i.e., inference). On the one hand, this data could be one for which
there already exists labeled ground truth. In that case, the goal is to evaluate
the performance of the developed classifier. On the other hand, this could be
new data from production for which no ground truth exists (i.e., during the
real-world deployment) and in this case, the goal is to put the classifier into
practice to predict accounts likely to generate suspicious activity in the future
based on their recent behavioral patterns.

Model Fvaluation. Finally, we obtain the confusion matrix based on the re-
sulting predictions and collect statistical measures of the classifier’s performance.

3.3 Heuristics

Our goal is to learn behaviour from legitimate accounts (i.e., that are not
attacker-controlled: fake and compromised accounts — Ay { d | d € Training
Interval }) and predict which legitimate accounts may later get compromised
and get labeled as suspicious. To this end we use a number of heuristics. We also
implement additional heuristics to increase the confidence in our evaluation.

Heuristics to increase the chance that we capture only the behaviour
of accounts under the control of legitimate users. During training, we
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attempt to exclude all accounts that are potentially under the control of an
attacker. In practice the set of accounts Ay is unknown, even for historical data
for which there is collected ground truth, as this set may include not-yet-detected
fakes and compromised accounts. We take advantage of having an extremely
large dataset to carry out aggressive exclusions that reduce the chance that we
capture behaviour from attacker-controlled accounts. We use three heuristics:

m First, we exclude any account flagged as suspicious during the training DW
or at a later point of time within the Buffer Window (BW). By excluding
these accounts, we reduce the likelihood that our classifier learns behavioral
patterns stemming from detected compromised accounts.

m Second, to the same end, for the classification exercises where there is available
data before the start of the training interval (CE¢ in , we exclude accounts
flagged as suspicious before the start of training (as they are more likely to
be compromised in the future).

m Finally, to eliminate fakes, one of our classification exercises (CE¢c in §5))
attempts to eliminate all recently-created or dormant fakes by selecting for
training only accounts that are older than two months and have at least one
month of activity (our assumption is that once fakes generate enough activity
the LSOSP can detect them through existing techniques [2527] as detecting
fakes is easier than detecting compromised accounts [8]).

Heuristics to reduce bias during classifier evaluation. Our preliminary
experiments suggest that user accounts that have been flagged as suspicious in
the past are more likely to be flagged again in the future (a possible indication
that their users are more vulnerable to attacks than the general user population).
To provide a conservative (lower-bound) evaluation of the developed classifier’s
performance, we exclude all accounts that have been previously labeled as sus-
picious during training (i.e., flagged at any point during the training-LW or
before). Moreover, one of our classification exercises (CE¢ in ), also excludes
any accounts flagged as suspicious during the first month of the data collection.
As a result, the classifier is evaluated on never seen before true positives.
Heuristics to size the buffer window (BW). It is expected that, at any
LSOSP, detection of suspicious activity is not instantaneous, thus accounts may
be under the control of an attacker for a while before they are flagged. We devel-
oped an experiment to estimate how aggressive is LSOSP’s suspicious activity
flagging pipeline. For this experiment, we only rely on two types of events: flag-
ging events for accounts marked as suspicious on day d (extracted from set Sy)
and login events for these accounts (extracted from set Lg4). We include only
user accounts that have at least one login event and at least one flagging event
within the period of time over which we run the experiment. We define the lag
per flagged user as the number of days between the first time that account is
flagged and the most recent previous login event. Over a period of 30 days, the
results showed that 90% of accounts flagged within that period have a lag of at
most one week and 98.6% have a lag of less than three weeks. As such, we decided
on a 1-week buffer window (BW) for most of our CEs, yet we also experimented
with a 3-week BW (CEp in .
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Table 1. Summary of Low-Cost Features. (from login traces)

Brief Description Type
# Login Attempts
# Unique Login Sources (e.g., Web Login, Mobile Login, etc.)

# Unique Login Types (e.g., Password Login, Account Switch, etc.)

# Unique Login Statuses (e.g., Success, Session Extension, etc.)

# Unique Password Login Statuses (e.g., Success, Invalid Password, etc.)

# Unique Actions (e.g., Login/Logout, Device Authentication, etc.)

# Unique Login Geographical Locations Numeric

# Unique Login Geographical Location Statuses
(e.g., Neutral Location, White-listed Location, etc.)

# Unique Login Autonomous Systems (ASNs)

# Unique Login User Agents (e.g., Browser, Mobile App, etc.)

# Successful Logins

# Unsuccessful Logins

User has a “verified” mobile number 2-Categorical

4 Datasets

Overall, we had access to 118 days (=4 months or ~16 weeks) worth of produc-
tion data collected from September 1st, 2016 to the December 27th, 2016 across
two datasets which were updated daily. Overall, these datasets are representative
of any LSOSP with a global user base, an extensive set of offered online services,
as well as the latest techniques to identify potentially compromised accounts.

4.1 Extracting Features

The first dataset includes features associated with all login events. Whenever a
user logs-in to a service offered by LSOSP or has their session re-authenticated,
a login event is recorded into this dataset with all relevant features that can be
associated with the event at that time. We use this dataset to extract a minimal
set of 13 basic and easy to compute features that reflect users’ login behavioral
patterns (summarized in Table [I]) from login traces at a day-level granularity,
and then aggregate them for each user account as a way of characterizing its be-
havioral pattern over the DW. It is important to note that we do not have access
to any fine-grained account features such as account/user details. Importantly,
we do not have access to any personally identifiable information. Moreover, given
the diversity of the login methods as well as the services offered at LSOSP, the
features extracted for each login event are not uniform and the set of features
extracted for each user is sparse.

4.2 Groundtruth: Suspicious Account Flagging

The second dataset includes events from which we extract our groundtruth. At
LSOSP, a list of accounts flagged as suspicious is generated daily by combin-
ing information from various sources that include human content moderators,
manual reports from internal teams, user reporting, in addition to automated
systems employing heuristics (which include clustering techniques to identify
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anomalies, and regression models to identify spammers). We used this daily list
of accounts flagged as suspicious as our ground truth.

For this study, we had access to this daily list of accounts flagged as suspicious
and a high-level description of the system. The detailed internals of the flagging
pipeline were not available. As a consequence, we are neither able to distinguish
between the different classes of suspicious accounts nor to identify the reason why
a particular account had been flagged. We believe that, the lack of such fine-
grained information poses only limited threats to the validity of our findings: on
the one side we have developed heuristics to exclude attacker-controlled accounts
from training (see §3.3)), and, on the other side, at this point our machine learning
model aims to provide only predictive power (will an account be flagged as
suspicious?) rather than explanatory power (why will the account be flagged?).
We extend this discussion in §7]

5 Evaluation Results

The Objectives of our Classification Exercises. We present four of the
classification exercises (CEs) carried out at LSOSP labeled CE4, CEgR, CE¢,
and CEp in Table The table outlines the Training and Testing intervals
assigned to each CE and their respective Data Window (DW), Buffer Window
(BW), and Label Window (LW). For each CE, we have a specific objective:

m CFE4: evaluating the feasibility of our proposed pipeline, its applicability at
LSOSP, and optimizing hyperparameters.

m CFEp: testing the tuned model on new data to ensure that no overfitting
occurred in CE 4.

m CFE¢: investigating how the performance of our classifier changes when ex-
cluding accounts previously flagged as suspicious (higher chance to be flagged
again) or accounts that have little previous activity (lower chance to include
fakes).

B CFEp: evaluating the impact of more training data (longer data and label win-
dows) and more aggressive exclusion of potentially not-yet-flagged attacker-
controlled accounts (longer buffer window).

Summary of Results. Tables[3|and [4] summarize the results for all CEs carried
out (their setup is outlined in Table . For conciseness, we focus here only on
the most relevant metrics we collected. The two tables highlight how several
metrics are impacted by the selected operating threshold T of the classifier as
well as by the duration of the prediction horizon (presented as Test-LW and
Extended-Test-LW in Table 2] and whose combined size in days is denoted as
the prediction horizon: H). The tables present results for operating thresholds
of T'=10.5 and T = 0.9 and prediction horizons of H = 7,21, 30, 34,90 days, in
separate columns. Note that the minimum and maximum values of H depend
on the CE.

In summary, these results show:

m High accuracy (ACC) x99.9% and low false positive rate (FPR) <0.01% for
an operating threshold 7' = 0.9,
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Good evidence for the absence of overfiting (CEp),
Good balance between precision (PRE) and recall (REC): ~18.33% and ~50.62%

11

respectively, when forecasting with a Horizon H = 30 days and Operating
Threshold T = 0.5 (CE¢),

A small improvement after excluding recent/no activity accounts (more likely

to be fakes) and those flagged as suspicious before training (Comparing CEp
and CEc),

constant (We expand on this in ,

High AUC as shown in Figure 2| (=0.947% for CEp), and

As the Horizon (H) increases, precision increases while recall stays roughly

Table 2. Timeline of the Four Classification Exercises (CEs) Performed CE 4, CEg, CE¢c,
and CEp. Notation: DW - Data Window, BW - Buffer Window, LW - Label Window, H -
Prediction Horizon.

CE ‘Week
1 [ 2 [3]a[5]6[7][8] 9 Jwo[11[12]13[14]15] 16
A Train Test Extended Test
DW [ BW [ LW | DW [ IW Extended LW (H = [7, 90] days)
B Unused Train Test Extended Test
Unused DW ] BW ] LW | DW [ LW Extended LW
C Preprocess Unused Train Test Extended Test
Preprocess Unused DW ] BW ] LW | DW ‘ LW Extended LW
D Train Test Ext. Test
DW [  BW LW DW [ W Ext. LW

Table 3. Summary of Results using an Operating Threshold (T) = 0.5 for Different Prediction
Horizons (H days). Notation used: AUC-Area Under Receiver Operating Characteristic Curve,
BTR-%-tile better than a random classifier, PRE-Precision, REC-Recall, ACC-Accuracy, FPR-
False Positive Rate. Values in bold represent the best result for that performance metric.

Performance Evaluation Metrics
CE H=Hpsin H="7 H=21 H=30 H=Hpqx
HyrinHMax
AUC| BTR | PRE | REC | ACC | FPR | PRE | REC | PRE | REC | PRE | REC
A| 7 90 [0.928|85.61% |6.38%|46.87%| 99.43% | 0.52% [19.79%| 45.81% |20.14%| 43.81% |24.99%| 31.02%
B| 7 30 [0.910(82.14% |3.78% | 41.26% |99.50%|0.46%| 18.18% | 46.82% | 19.98% | 42.28% | 19.98% | 42.28%
Cc| 7 30 [0.922|84.42% |3.18% | 42.96% | 99.38% | 0.58% | 16.58% | 57.32% | 18.33% [50.62%| 18.33% |50.62%
D| 21 34 10.947/89.41% H < Hprin 10.64% |57.42%| 11.68% | 48.96% | 12.34% | 48.13%
Table 4. Summary of Results using an Operating Threshold (T) = 0.9 for Different Prediction
Horizons (H days). Notation used: AUC-Area Under Receiver Operating Characteristic Curve,
BTR-%-tile better than a random classifier, PRE-Precision, REC-Recall, ACC-Accuracy, FPR-
False Positive Rate. Values in bold represent the best result for that performance metric.
Performance Evaluation Metrics
CEH i Hysun H=Hnsin H=Hpsin H=Hpaz
AUC| BTR | PRE REC | ACC FPR PRE | REC | ACC FPR

Al 7 90 [0.928|85.61% | 12.92% | 0.47% |99.92%]|0.0024%| 33.99% | 0.20% | 99.54% |0.0018%

B 7 30 |0.910|82.14% | 7.11% | 13.15% | 99.88% | 0.0760% |35.96%| 12.90% | 99.74% | 0.0520%

c| 7 30 |0.922|84.42% | 6.91% |15.57%)| 99.86% | 0.0940% | 35.33% |16.29%| 99.75% | 0.0650%

D| 21 34 0.947|89.41%|26.19%| 14.45% | 99.86% | 0.0430% | 28.47% | 11.36% |99.82% | 0.0420%
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Fig. 3. Impact of the Prediction Horizon on

Fig. 2. ROCs for all Classification Exer- Precision (left) and Recall (right) at operat-

cises. ing threshold 7' = 0.5

m More training data and a more aggressive exclusion of not-yet-flagged attacker-
controlled accounts do not significantly impact classification performance (CEp).

5.1 The Impact of the Prediction Horizon

Our classifier’s precision markedly improves with the depth of the prediction
horizon H (Figure . Some of the accounts that are false positives for a small
precision window then become true positives as the prediction window increases.
We speculate that those accounts are owned by users that do not have the
ability or the interest to fend off social engineering attacks, and thus a longer
horizon increases the chance that they fall victim to an attack, and then generate
suspicious activity which gets them flagged during the longer prediction horizon.

6 Related Work

Statistical methods (including ML) have achieved widespread adoption within
LSOSPs not only to provide rich business features (e.g., product recommenda-
tions) but also for cybersecurity purposes. For instance, such approaches have
been used for detecting compromised accounts, fake accounts, spam, and phish-
ing. None of these approaches has focused on evaluating the feasibility of predict-
ing which legitimate accounts are more vulnerable and likely to be compromised
in the future (our long term aim). In this section each paragraph focuses on a
specific area, surveys related approaches, and outlines the statistical methods
and features used.

Compromised Accounts. Egele et al. [§] combined statistical modeling
and anomaly detection techniques in order to detect compromised accounts on
Online Social Networks (OSNs). Their approach was based on identifying sud-
den changes in user behavioral patterns in addition to observing whether those
changes are common to a large group of accounts therefore potentially a result of
a malicious campaign. Thomas et al. [24] employed clustering and classification
(via logistic regression) in order to detect account hijacking on Twitter. Their
approach was based on the observation that legitimate account owners frequently
delete tweets posted via their accounts after recognizing the compromise. Those
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deletions are thus used as a feature to retroactively identify hijacked accounts
and clustering is then used to detect similarly compromised accounts. Zhang
et al. [29] made use of a ML-based approach to automatically detect compro-
mised accounts at a large academic institution. Their approach employed logistic
regression on features extracted from web login and VPN authentication logs.

Fake Accounts. Yang et al. [27] proposed approaches to identify Sybil (i.e.,
fake) accounts on the Renren OSN. One approach was based on ML and em-
ployed Support Vector Machines (SVMs) on basic user-level features (e.g., the
frequency of friendship requests and the fraction of accepted incoming friendship
requests). Wang el al. [25] instead used clustering to identify fake accounts on
Renren. Their approach clustered users with similar behavior based on features
extracted from their clickstreams (e.g., the average session length, the average
number of clicks per session).

Spam. Benevenuto et al. [2] developed an ML-based approach to identify
spammers on Twitter. Their approach was based on a non-linear Support Vector
Machine (SVM) classifier with the Radial Basis Function (RBF) kernel and made
use of both content- and user-level features (e.g., the age of the user account, the
number of followers, the average number of URLs per tweet). Castillo et al. [7]
developed a ML-based approach using cost-sensitive decision trees to detect spam
pages on the Web. Their approach makes use of content- and link-based features
extracted from the Web graph (e.g., the ratio between the average degree of
a page and that of its neighbours, number of words in the page/title). In the
context of email spam, Blanzieri et al. [4] carried out a survey of many of the
approaches to detect email spam proposed in the literature based on statistical
methods (including ML).

Phishing. Ludl et al. [18] developed a ML-based approach to identify phish-
ing web pages. Their approach was based on the C4.5 decision tree algorithm and
made use of features extracted from a page’s content as well as its URL (e.g.,
the number of forms/fields tags on the page, whether the page is served over
HTTPS, whether the URL’s domain appears on a Google whitelist). Whittaker
et al. [26] developed a scalable ML-based approach to detect phishing websites
that is used to maintain Google’s phishing blacklist automatically. Their ap-
proach is based on a Random Forest (RF) classifier and employed both content-,
host- and URL-based features (e.g., PageRank, the host geolocation/ASN).

7 Summary and Discussion

Summary. We explore the feasibility of predicting the legitimate (i.e., not
attacker-controlled) accounts more likely to generate suspicious activity in the
future, a likely indication that they have fallen for a mass-scale social engi-
neering attack. To this end, we propose an early warning system that employs
supervised machine learning to identify the accounts whose behavioral patterns
indicate that they are similar to other accounts that have been eventually la-
beled as suspicious in the past. We implement this early warning system at a
Large-Scale Online Service Platform (LSOSP) and evaluate it on four months
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of real-world production data covering hundreds of millions of users. Our evalu-
ation demonstrates that our approach is not only feasible but that it also offers
promising classification performance based on which further defense mechanisms
can be developed as we discuss below.

Discussion. We continue by exploring several interrelated topics:

How can a defense system use information about which users are likely to be com-
promised in the future, and thus more “vulnerable”, to enhance its robustness?
User vulnerability can be thought of as an additional “signal” that can inform a
number of defense mechanisms. For example, it can: (i) serve as an indicator to
prioritize the allocation of limited defense resources (e.g., use of human analyst
time [13], or compute-intensive filters [23]), (i) support differentiated defenses
that take into account user vulnerability (e.g., additional CAPTCHAs [1] on
login attempts into vulnerable accounts, or imposing rate limits on the out-
bound messages of vulnerable users to slow-down the spread of multi-stage —
and potentially epidemic — phishing attacks), (4ii) enable faster remediation
of compromised accounts (e.g., by enabling more efficient inspection campaigns
that focus on the accounts of vulnerable users instead of the entire user popula-
tion [15]), (iv) facilitate the detection of the origin of an attack (as, in effect, the
differentiated response between vulnerable and robust users to similar interac-
tions initiated by the same source can be used as a weak yet effective signal [5]);
and (v) even facilitate the detection of new attacks (as, in effect, the differen-
tiated response between vulnerable and robust — yet otherwise similar — user
groups to the same “stimuli” is an indication of an attack). We explore the use
of such information for several cybersecurity domains in [10].

Is the prediction quality good enough? Even if defense mechanisms based on
vulnerability predictions can be imagined, an immediate subsequent question is
whether the classification quality implied by our results (e.g., PRE ~ 15— 25%,
REC =~ 40 — 50%, and FPR ~ 0.1 — 0.5%) is good enough to support such
mechanisms. While we have not yet extensively studied such mechanisms, our
intuition is that this signal, although noisy, is useful. Consider, for example, de-
fense resource prioritization - it is evident that a heuristic that uses this signal,
as weak as it is, to prioritize those resources is better than randomly allocat-
ing them (the only alternative when capacity is constrained). Others have also
experimented with a heuristic that harnesses the different responses to similar
requests between vulnerable and robust users [5] to infer attack source(s) (al-
though in the context of a social network). In this case, even a vulnerability
predictor significantly weaker than the one we have obtained here has proven
useful, leading to a technique that improves over the state-of-the-art. While the
above indicates that even low quality predictions can still be used to improve
defenses, we believe that the prediction quality threshold above which these
mechanisms become valuable is context specific and we are studying this issue
in a related project [10].

Why do we focus on minimizing the false positive rate (FPR)? What if the fo-
cus were on mazimizing recall instead? We envisage that the predictions made
by our early warning system will be used to better target existing defenses. As



Forecasting Suspicious Account Activity at LSOSPs 15

many of these defenses are not lightweight and may lead to increased friction for
users (e.g., rate-limiting outbound emails of vulnerable users to prevent an at-
tack outbreak, delaying incoming suspicious email addressed to vulnerable users
to give enough time for more robust users to report mass-phishing emails), or
allocating costly resources (e.g., human analyst time), the resulting cost of false
positives is high: thus, we have focused on minimizing the FPR at the expense
of lower recall. Other situations, however, offer a different cost/benefit balance
between the false positive rate and recall. For these situations, our classifier can
be tuned by either using lower threshold values (T' as highlighted by the ROC
across all CEs available in Figure 7 or by specifically optimizing for recall.

What are the threats to validity? Our study indicates that it is feasible to har-
ness account behaviour to predict the accounts that are more likely to generate
suspicious traffic in the future (an indicator that they may be compromised).
There are two main concerns regarding the validity of our conclusions. The first
one relates to the quality of the ground truth we use — this is a threat to validity
common to any study using a methodology based on machine learning.

The second one relates to the accuracy of the heuristics used to avoid learning
behavioural patterns from accounts that may be controlled by an attacker (i.e.,
compromised or fake accounts) detailed in We prune: (i) all accounts flagged
for suspicious activity in the data window (DW) - as they are highly likely to be
compromised, (i) all accounts flagged as suspicious in the buffer window (BW) -
as these accounts are more likely to have been compromised but not yet flagged
as such (thus contaminating our training data), (iii) all accounts which have
been labeled as suspicious at any point before the training data window - as our
experience shows that these accounts are more likely to be compromised again
(in experiment C'E¢); and, finally (iv) new / low activity accounts (for which
the system may not have enough history to determine whether the accounts are
fakes). We run various experiments that compare the impact of these heuristics
- even the most conservative experiments appear to support our conclusions.

It is worth discussing, however, the alternative: assume that our heuristics
fail to eliminate a large portion of attacker controlled accounts. Even in this
case, we believe that our pipeline provides value through forecasting. Assume,
for example, that these accounts are predominantly (dormant) fakes that mimic
legitimate user behaviour. In this case, our pipeline predicts the fakes that will
likely be “awakened” by the attacker and start generating suspicious activity.
Assume, on the other side, that these are compromised accounts not yet exploited
by the attacker, then our pipeline predicts which compromised accounts are
under the control of the attacker but not yet exploited. In this case as well the
forecasting pipeline can give an early sign of the attacker resources and strategy.

A final concern may be that our proposed approach may be learning the
heuristics by which some accounts are flagged as suspicious in the ground truth
(other accounts in the ground truth are flagged by humans). We believe that
this represents a limited threat due to the way we formulated our forecasting
problem (i.e., making future predictions) as opposed to the underlying heuristics
which operate in real-time by design.
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Why are the presented results positioned as lower-bounds? Our goal was to test
the feasibility of our proposed approach within constraints related to:

Access to Data (i.e., login traces only). Datasets with additional information
that characterizes user behaviour (e.g., email or browsing traces) would likely
improve classification performance.

Limited Computational Resources (i.e, runtime feasibility for processing bil-
lions of events). More resources enabling additional data preprocessing (e.g.,
to extract complex aggregate features), model optimization, or sophisticated
learning methods (e.g., deep neural networks) would likely improve classifica-
tion performance.

m Imperfect Ground Truth (i.e., detection lag as well as the presence of false
positives and false negatives). This impairs the learned models during training,
and impacts the evaluation during testing.

m Aggressive Pruning Heuristics (i.e., extensive pruning of accounts during train-
ing as described in . This reduces bias during the evaluation of the clas-
sifier but leads to more conservative results.
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