
Designed to be Broken: A Reverse Engineering
Study of the 3D Secure 2.0 Payment Protocol

Abstract. 3 Domain Secure 2.0 (3DS 2.0) is the most prominent user
authentication protocol for online payment using credit cards. 3DS 2.0
relies on risk assessment to decide whether to challenge the payment ini-
tiator for second factor authentication information (e.g., a passcode). The
3DS 2.0 standard itself does not specify how to implement transaction
risk assessment. The research questions addressed in this paper therefore
are: how is transaction risk assessment implemented for current credit
cards and are there practical exploits against the 3DS 2.0 risk assessment
approach. We conduct a detailed reverse engineering study of 3DS 2.0.
for payment using a browser, the first study of this kind. We identify
the data and decision making process that card issuers use in transac-
tion risk assessment, for a number of different cards. We will see that
different card issuers decide differently when to challenge payments. We
will also demonstrate a practical impersonation attack against 3DS 2.0
that avoids being challenged for second factor authentication informa-
tion, requiring no more data than obtained with the reverse engineering
approach presented in this paper.
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1 Introduction

In 2001 payment networks (Visa, MasterCard and Amex) introduced the 3 Do-
main Secure 1.0 (3DS 1.0) protocol [35]. 3DS 1.0 introduced user authentica-
tion, requiring payment initiators (customers) to prove their identity with static
passwords. For instance, ‘Verified by Visa’ asked three characters of a registered
password. 3DS 1.0 received criticisms for both security and usability reasons.
Security was impaired because registering the password could not be guaranteed
to have been done by the card owner, and phishing attacks on card data and
passwords could also not be ruled out. However, the deciding drawback of 3DS
1.0 for merchants was ‘lost sales’, that is, customers who failed to complete the
purchase because they cannot recall or refuse to go through the trouble of finding
and entering the password [3, 23, 20, 16].

The European Commission proposed in 2015 the Payment Services Directive
2015/2366 (PSD II), a regulatory standard that asks card issuers within Europe
to provide Strong Customer Authentication for each online payment transaction
[13], very much like 3DS 1.0 would provide. The industry (card issuing banks,
payment processors and online merchants) expressed concerns that the meth-
ods proposed in PSD II ignored the objectives of user-friendliness and argued
that Strong Customer Authentication should be applied only to transactions
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deemed ‘high risk’ in a Transaction Risk Assessment (TRA). After a six-month
negotiation including over 200 payment industry stakeholders, Strong Customer
Authentication in PSD II was augmented with Transaction Risk Assessment.

In October 2016, EMVCo (a consortium of card payment networks), revised
3DS 1.0 to include TRA, resulting in the current 3D Secure 2.0 protocol suite
[10]. 3DS 2.0 provides two options: challenged and frictionless authentication.
Challenged authentication is for purchases with a high risk and prompts an au-
thentication challenge to the payment initiator. Frictionless authentication re-
quires no additional authentication information and is meant for low-risk trans-
actions. TRA sacrifices strict security requirements for usability–from a security
perspective, it is ‘designed to be broken’.

The 3DS 2.0 protocol does not specify how TRA should be implemented,
apart from some generic guidance. Therefore, we present in this paper an in-
depth investigation in existing 3DS 2.0 implementations, the first of its kind. We
will show that transaction risk is determined from data collected through the
payment initiator’s browser, combined with transaction or network information
(such as the transaction amount or IP address). The browser data acts as a
‘fingerprint’ of the user (see Section 2). In Section 4 we conduct an additional
set of experiments with different transactions and from different locations to
learn when the authenticator allows frictionless authentication. We will see that
different card issuers implement TRA differently, with different issuers exhibiting
considerably different risk appetite.

Our reverse engineering exercise uses five credit cards, from Visa as well
as Mastercard, used at a number of different web sites. Experimental research
with credit cards is challenging, for instance because of the possibility of blocked
cards. It is therefore probably not surprising that the experimental research
literature for online payment is relatively light, and that no studies on the scale
of this paper exist. The five cards are representative for cards in general, in
that the experiments generated similar fingerprint information. We note that all
cards belonged to the authors, and ethics approval was obtained through regular
processes of the authors’ institution. Responsible disclosure through informing
selected partners has taken place through our network of partners.

The design of 3DS 2.0 also suggests an obvious vulnerability, in that the
authentication service may decide incorrectly not to challenge a payment. We
will demonstrate an impersonation attack, in which a perpetrator impersonates
a payment initiator, thus ‘tricking’ the authentication service into allowing a
transaction to complete without being challenged for second factor authentica-
tion information, even for high transaction amounts. We will demonstrate two
versions, one copying the fingerprint info to another machine that is configured
arbitrarily, and one creating the same fingerprint on another machine with an
identical configuration as the original machine. The impersonation exploit can
be made into a practical attack if one manages to install malware that transports
the fingerprint to the attacker, who can use it for a purchase impersonating the
card holder (see Section 3 for details). This paper shows that such exploits can
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Fig. 1: Reverse engineering set-up, intercepting 3DS 2.0 transactions through a
proxy.

be conducted by anyone who reverse engineers TRA in the manner of this paper,
without requiring any additional knowledge about TRA.

2 Reverse Engineering Transaction Risk Assessment:
Fingerprinting

3DS 2.0 specifies very little about how card issuers should implement Transaction
Risk Assessment. To understand how merchants and card issuers assess the risk
of consumer payments we therefore reverse engineer existing implementations.

2.1 Reverse Engineering System Set-up

Figure 1 shows the reverse engineering set-up. Within 3DS 2.0, a number of
services and stakeholders are involved: the payment initiator using a browser, the
merchant providing the check-out page at every purchase, and a set of services
and servers for the authentication, termed the Access Control Server (ACS). The
ACS maintains payment initiator’s data which can be used to authenticate the
cardholder during a purchase.

To intercept communication, we use the Fiddler proxy, which is available
as open-source [32]. The proxy runs on the machine of the payment initiator
(i.e., our own machine). We configure the machine’s web browser (WB) to send
HTTP(S) requests to Fiddler, which then forwards the traffic to the merchant
or ACS. The responses are returned to Fiddler, which passes the traffic back to
WB. When HTTPS decryption is enabled, the Fiddler proxy generates a self-
signed root certificate and a matching private key. The root certificate is used to
generate HTTPS server certificates for each secure site that is visited from WB.

Apart from intercepting the browser communication, we use two other tech-
niques. First, using Fiddler, we challenge WB as if we were the merchant or the
card issuer. Secondly, from Fiddler, we challenge the merchant as if the chal-
lenge was originating from WB. To handle (‘tamper’ in Fiddler terminology)
a challenge, Fiddler provides a breakpoint function, which invokes a pause to
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the communication. Once paused, we can tamper or edit the changes to the
communication data.

In total, we used five test cards for our experiments, three Visa cards (C1-C3)
and two MasterCard cards (C4, C5). To make sure that 3DS 2.0 does not have
any machine identifiers pre-installed on the machine, we had a fresh installation
of Windows 10 operating system and Chrome 59.x web browser.

The merchant web sites we used were all enabled with 3DS 2.0 checkout and
were selected from the Alexa list of merchant web sites [2]. The ‘Verified by
(payment-network)’ icon on the merchant web site indicates that it is 3D Secure
enabled. To ensure that we have a representative sample of merchant web sites,
we kept track of the ACS URL’s to which our transaction were redirected. All
‘Verified by (payment-network)’ websites redirected us to the same ACS URL
indicating that the implementation of 3DS is issuer based. For each test card, we
made several legitimate transactions and recorded the complete checkout session
for each transaction with Fiddler. We decided to stop making further transac-
tions once authenticated by ACS using frictionless authentication. This ensures
that the ACS trusts WB enough for frictionless authentication. We decoded the
3DS 2.0 transaction data as necessary and analysed the outcomes in detail.

2.2 3DS 2.0 Authentication Protocol

Figure 2 shows the transaction sequence for frictionless authentication over 3DS
2.0, collating 3DS 2.0 specification with transaction information extracted from
Fiddler. The box labelled ‘Tunnel (Customer,ACS)’ represents the reverse engi-
neered part of transaction visible from WB, while the transaction sequence steps
for the rest of the parties are derived from 3DS 2.0 specifications.

In Figure 2 the customer initiates the payment in step 1 and in step 2 the
merchant decides to trigger user authentication through 3DS 2.0. Step 3 and 4
set up the connection between payment initiator and ACS

Message 5 through 11 detail the interaction between browser and ACS, where
the ACS retrieves the data from the browser used to assess the transaction risk.
In step 6, the ACS sends JavaScript dfp.js to the browser and posts the results
back in step 8. Note that dfp stands for device finger print, it aims at identifying
the device by fingerprinting it, so that subsequent payment can be traced back
to the same machine (and, therefore, more likely to the same payment initiator).
If this is the first time the browser uploads the JavaScript, the ACS repeats the
process in steps 9-11 to install persistent cookies (IDCookie) at the browser.

Hereafter, the transaction is processed according to the rules specified in
EMV 3DS 2.0 specifications that states the 3DS Server to submit an Authenti-
cation Request (AReq) to the ACS. Transaction Risk Assessment is then com-
pleted in step 13, here resulting in frictionless authorization as indicated by No
Challenge. The merchant can now submit an Authorization request (message
15).
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:Payment Initiator :Merchant :3DS Server :ACS :Authorization

1. Pay / https

2. Enable 3DS 2.0

activate3ds()
3. Request (Tr.Num,3DS URL)

4. Response (Tr.Num, 3DS URL)

4. Connect ACS+POST[Tr.Num]

5. Connect ACS+POST[Transaction Number]

6. Load dfp.js+add(SessionCookie)

7. dfp.js

8. POST[3DS Server Transaction ID, dfp.js (data)+SessionCookie]

9.Load [dfp.js,SessionCookie]+add(IDCookie)

10. dfp.js

11. POST[3DS Server Transaction ID, dfp.js (data)+SessionCookie+IDCookie]

Tunnel(Customer,ACS)Tunnel(Customer,ACS) Frictionless Authentication Method

12(a). AReq

12(b).AReq

13. No Challenge

14(a). AResp

14(b). AResp

15. Authorization

...X. Accept

Fig. 2: Frictionless transaction sequence diagram.

2.3 3DS 2.0 Transaction Risk Assessment Data

The reverse engineering exercise shows how the ACS builds up a fingerprint of
the payment initiator’s machine. The ACS uses three pieces of information to
establish a fingerprint, as discussed in this section:
1. the fingerprint information extracted from the browser using JavaScript
2. the 3DS 2.0 ID cookies fetched from the browser
3. the HTTP headers from payment initiator’s browser forwarded by the mer-

chant to the ACS

Fingerprint Data using JavaScript. The JavaScript fingerprinting scripts
that we analysed contain functions to (i) collect browser-supplied information
from the end-user device, and (ii) forward the collected data to the 3DS 2.0 server
as a single Base-64 encoded string (the 3DS 2.0 specifications [10] requires all
the data messages to be in Base-64 format). Table 2 in Appendix A shows an
exhaustive list of device attributes from card C1 to C5 that are passed from WB
to the ACS. The loading and execution of dfp.js by the ACS as a part of the
checkout process is similar for all test cards that we used.

The data obtained is quite diverse, from browser and operating system infor-
mation, to display, time, geo-location and some plug-in software information. The
fingerprinting script obtains information that is part of HTTP headers through
the nav.userAgent() and test() methods (see Table 2). The main method is
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deviceprint browser(), which gathers information about the browser and the
operating system. With respect to geolocation, to the best of our knowledge,
ACSs only use whether geolocation is enabled and the time zone of the ma-
chine (through deviceprint timez()). It is likely that the ACS also uses URL
and/or IP information as an indicator of location, but this is captured differ-
ently. Information about the hardware is obtained from deviceprint display()

and window information(). Browser settings about tracking and advertisement
preferences are provided by DoNotTrack and Useofadblock. Finally, deviceprint
software() and flashscript() provide information about specific hardware. In
our experiments, only one ACS requested Flash information using flashscript().
To exchange the fingerprint information, dfp.js provides two more methods:
– encode deviceprint() combines the collected data into a single string. It

formats the string by removing whitespace, add delimiters and other char-
acters as requires by the ACS.

– asyncpost deviceprint(url) posts the data to the ACS URL. The data is
converted to base-64 before being sent as a form element to the ACS.

An example of resulting encoded device fingerprint is displayed in Figure 5 of
Appendix A.

Cookies. We found three types of cookies installed by the ACS on our ma-
chines. These are also described in Table 2, bottom rows. Full cookies are dis-
played in Figure 6 of Appendix A.
– Session cookie. Session cookie. The cookie is deleted after a user closes the

session.
– Test cookie. A test cookie with a name TESTCOOKIE and a value of Y

was observed in exchanges during the transaction. This is set by the ACS
server to determine if the user browser settings allowed cookies to be set.

– IDcookie. When the cardholder first enrolls into the 3DS 2.0 system, a token
in the form of ID Cookie(s) is placed on the cardholder browser. The number
of cookies installed varied from one to three. In all instances we found that
these cookies have a validity of three years from the date of installation
and also have an HTTP-only security tag. The HTTP-only tag on a cookie
protects it from being accessed by cross-domain websites.

Data Passed from Merchant to ACS. Data passed by the merchant in
AReq message (step 12 of Figure 2) contains elements that identify payment
initiator browser configuration. For instance, Table A.1 in the EMV 3DS 2.0
specifications [10], suggests merchants to pass browser accept headers, language,
screen details and user agent in the AReq message. The browser configuration
helps the ACS to render a correct iframe for the cardholder device and may be
used by the ACS to compare the information passed with dfp.js. To inspect the
methods by which the merchant collects data to frame the AReq message, we
referred to the merchant developer guides from payment networks Visa [36] and
MasterCard [22] and payment service providers like PayPal [26], which suggest
to use the HTTP headers passed on by the merchants during checkout as a part
of WB’s authentication data.
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2.4 Discussion of 3DS 2.0 Implementations.

There exist a number of notable differences between different implementations
of 3DS 2.0. These differences can be categorized as follows:
1. difference in the use of 3DS protocol version
2. difference in transporting the device fingerprint: obfuscated versus plain-text
3. difference in amount of data collected as a fingerprint: JavaScript based

versus HTTP headers and cookies only.

Difference in the use of 3DS protocol version. We observed that the
ACS associated with card C2 adds a layer of frictionless authentication over the
3DS 1.0 protocol. As opposed to 3DS 2.0, the browser collects and submits the
AReq message with the transaction identifier, following the 3DS 1.0 specification.
The ACS installs and collects the fingerprint data from the browser. Similar
to 3DS 2.0 frictionless authentication, if this is the first 3DS 1.0 transaction
from the machine, the ACS repeats messages to install IDCookie. Hereafter the
transaction is processed according to the 3DS 1.0 specification. The ACS decision
(to not challenge) is added to the ARes which is then forwarded to the merchant
via the browser. Comparing the frictionless authentication of 3DS 1.0 and 3DS
2.0, both of these protocols capture static fingerprint data in base-64 encoded
format and use HTTP-only IDCookies for TRA.

Difference in device fingerprint implementation. In two cases (C2 and C5)
we noticed that code obfuscation techniques were applied to make the JavaScript
difficult to read and analyse. However, obfuscated codes has certain general
limitations, in that, it is an encoding technique (not encryption) and needs to
make sure that the code does not loose its functionality when executed over
the system. The 3DS 2.0 device fingerprint JavaScript can still be run to obtain
base-64 device fingerprint values.

Additionally, code obfuscation is a technique that has long been used by
malware writers to hide their malicious code. Therefore there are plethora of
security tutorials and freely available security tools designed to de-obfuscate
JavaScript. The most reliable de-obfuscater that we discovered for our research
is available as open source from Intelligent Systems Lab, Zurich [18].

Difference in amount of machine data collected. Although Table 2 shows
an exhaustive list of all the data elements collected by the fingerprinting scripts
and HTTP headers, the amount of data collected by each implementation of
the JavaScript varies substantially. Some of the card issuers have no device fin-
gerprinting JavaScript implemented at all. For example the card issuer of C3

implements frictionless authentication over 3DS 1.0 and only relies on the data
received in the AReq message.

As a final note, the 3DS 2.0 protocol also defines an enrolment phase during
which the card issuer collects the fingerprints from the card issuer computer
and signs the fingerprint data to create ID cookies. The card holder computer is
then ‘tagged’ through the usual cookie mechanism with these ID cookies. This



8

enrolment phase is imperfect, in that it cannot be determined if the payment
initiator who enrols a certain card is a legitimate user of the card.

3 Impersonation Attack

In this section we device a realistic impersonation attack, where an attacker uses
obtained data described in the previous section and avoids being challenged for a
second factor of authentication information. We first describe the precise attack
model in Section 3.1, and then explain in Section 3.2 how the attack can be
implemented, particularly related to obtaining the data. We carried out a number
of experiments with different machines to demonstrate that the impersonation
attack indeed succeeds, as we will describe in Section 3.3.

3.1 Attack Model

The objective of the attack is to use the credit card of another party to suc-
cessfully complete an online purchase, despite the fact that the merchant uses
3DS 2.0. We assume that the attacker has no manner in which it could respond
successfully to a challenge for a second factor of authentication information.
Therefore, the objective of the attacker is to avoid a challenge and be allowed to
complete a frictionless transaction. We consider the attack successful if an at-
tacker avoids being challenged in situations the ACS actually should challenge.

To succeed, the attacker needs to obtain the credit card details, the cookies
and the fingerprint data used for Transaction Risk Assessment, as described
in the previous section. We do not assume any insider administrative access
privileges of the attacker, neither at the payment initiator’s machine nor at any
of the 3DS 2.0 services. The attack assumes a perpetrator manages to install
malware or plug-in that collects the necessary data from the payment initiator’s
machine, which includes running the JavaScript fingerprinting scripts–we will
argue in the next section that that is not far-fetched. Shipping this data to the
attacker allows the attacker to impersonate the cardholder’s identity by crafting
its 3DS 2.0 authentication data to be identical to that of the payment initiator.

3.2 Attack Implementation

The attack implementation needs to complete two stages: (1) obtaining the card
and transaction risk assessment data, and (2) using the card and transaction
risk assessment data.

Obtaining Card and Transaction Risk Assessment Data. In this
stage, the attacker needs to obtain credit card details and machine fingerprint
data (including cookies). There is a variety of reasons why this can only be done
through a Man in the Browser.

A challenge is that the ID cookies (see Section 2.3) are http-only protected,
that is, they cannot be read by any cross-domain web pages or through JavaScript.
Browsers allow access to http-only cookies to extensions (including malware) be-
cause extensions are considered “trusted” once installed, whereas regular JavaScript
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is not. Cross-site scripting (XSS) [5, 4, 33], in which a script from a web site dif-
ferent than the merchant or 3DS 2.0 server attempts to access information such
as cookies, is therefore not possible.

The most basic approach to obtain the required data is a browser plug-in that
can sniff the browser communication to steal http-only cookies, record keystrokes
to steal user payment data and execute device fingerprint JavaScript to capture
the device fingerprints. More advanced malwares have such features, and are
commonly available at [21][38], see for instance the ZeUS, SpyEye, Dridex and
Tinba malwares. Once such malware is installed, it has an ability to obtain card
transaction data for a purchase, the associated transaction risk assessment data
described in the previous section, as well as the http-only cookies [12, 19, 34].
Malware SpyEye, for example, gets into a browser by prompting them to install
a pdf reader or a flash player plug-in. Once into the browser, it updates itself
as needed to configure fake entity certificates into the browser storage, record
keystrokes, sniff the browser communication, records browser sessions and even
capture screen shots [31, 15].

Using the Obtained Card and Transaction Risk Assessment Data.
The task in exploiting the obtained data is to impersonate the card holder in the
attacker’s browser. The attacker copies the cookies to their own browser, and
initiates a transaction with the merchant of choice, even if the merchant uses
3DS 2.0. It also receives credit card details and machine fingerprint data, per
the above. At payment, the attacker creates or replays the correct responses in
the protocol of Figure 2. Since there is no randomness in the fingerprint data,
the same string of dfp.js data and HTTP headers obtained from the payment
initiator’s machine can be replayed on the attacker’s machine using Fiddler (if
required). To tamper the data, fiddler breakpoints are added whenever the mer-
chant and the ACS connect to the attacker’s browser.

3.3 Attack Demonstration
The demonstration of the attack aims to identify if it indeed is possible to imper-
sonate from a different machine a legitimate payment initiator. In this demon-
stration we use the data obtained from machine M1, using the experiment set-up
from Figure 1. We randomly selected a merchant with 3DS 2.0 enabled check-
out and repeated transactions using all test cards C1 to C5 until M1 was trusted
enough for frictionless authentication. The payment sessions made from M1 were
recorded by the Fiddler proxy and were reused on a differently configured ma-
chine M2. We also show how a different machine M3 that is identically configured
generates the same fingerprint. We note that M2 and M3 were on networks differ-
ent from M1, so that the IP source address is different.

The approach behind our experiments is as follows. We conduct the experi-
ment for the five credit cards mentioned. First, we ran an experiment to verify
that transactions from the differently configured machine M2 are indeed chal-
lenged if one only enters card information (and does not impersonate the card
holder with the risk assessment data). This verification was successful in all of
the cases except for card C1 where lower value transactions below £10 were ap-
proved (we will get back to this in the next section). Then, we ran an experiment
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in which we used the obtained transaction risk assessment data to impersonate
the card holder, to see if we were allowed to complete the purchase unchallenged,
i.e., in frictionless mode. We initiated transactions where we selected products
with values ranging between a £1 to £300, on an online merchant that uses 3D
Secure 2.0 at checkout.

We were successfully able to execute the attack for all our test cards (C1-C5),
in that the transactions were approved without any challenge by the card issuing
bank’s ACS. Interestingly, only for test card C5, the card issuer ACS issued chal-
lenges when the value of transaction reached above £200 (a typical transaction
threshold set for frictionless authentication).

We ran a second experiment, using a different but identically configured
machine M3, with the same hardware and software as M1. In so doing, we wanted
to see if different machines that are configured identically generate identical
Fingerprint data. This is to simulate a scenario where an attacker is unable to
obtain the device fingerprint data but was able to get the ID cookies. In all
cases, the transactions were allowed to go on without being challenged. Close
inspection of the data that M3 sent to the merchant and ACS revealed that the
transaction risk data was essentially identical for M1 and M3.

Reflection. For consumers it would be important to know how merchants
and card issuers respond if the above attack took place. To that end, we commu-
nicated with the card issuing banks to understand how it would react if we were
to report the fraudulent transactions that were made from the attacker machine.
The card issuer for C3 asks cardholders to identify some previous transactions
made from the victim’s machine and would not register the transactions made
from attacker machine as fraud. The card issuer for C3 also blocks and re-issues
a new payment card to the card holder. However, in two cases (C4 and C5),
the card issuer argued that the transactions must have originated from the ac-
tual card holder’s machine. They argued the card holder is trying to perform
a ‘friendly fraud’, and so is denied a refund of any reported losses. This paper
shows that this conclusion is not necessarily correct.

4 Reverse Engineering Transaction Risk Assessment:
Decision-Making

Section 2 established which data 3DS 2.0 implementations used in their transac-
tion risk assessment, and we showed that with that data alone, one can execute
an impersonation attack. However, this does not yet provide us with full under-
standing of the way risks are being assessed by the ACS. First, the ACS may
use additional sources of data, for example, it may use header info from the
protocol stack such as the IP source address or some other data about the card
holder available from the card issuer. Secondly, the ACS will set certain rules
about when to invoke a challenge. These rules will stipulate which fingerprint
data to consider, and specifies bounds on data outside which the transaction will
be challenged (e.g., a limit for the transaction amount).

There are number of questions of interest motivating further re-engineering of
the risk assessment approach. First, it provides information about which variants
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Table 1: Experiments with and results for cards C1 and C2
Transaction Scenario Machine Cookie Value Region Website Card Challenged? Transaction Blocked

number data ID (£) status
T1

S1 X X 10 X
W1 C1 5 Approved 5

T2 C2 5 Approved 5

T3 W2 C1 5 Approved 5

T4 C2 5 Approved 5

T5

S2 X X 309 X
W1 C1 5 Approved 5

T6 C2 5 Approved 5

T7 W2 C1 5 Approved 5

T8 C2 5 Approved 5

T9

S3 X X 10 5

W1 C1 5 Approved 5

T10 C2 X Declined 5

T11 W2 C1 5 Approved 5

T12 C2 5 Approved 5

T13

S4 X X 309 5

W1 C1 5 Approved 5

T14 C2 X Declined X

T15 W2 C1 5 Declined 5

T16 C2 X Declined X

T17

S5 5 5 10 X
W1 C1 5 Approved 5

T18 C2 5 Approved 5

T19 W2 C1 5 Approved 5

T20 C2 X Declined 5

T21

S6 5 5 309 X
W1 C1 X Declined 5

T22 C2 X Declined X

T23 W2 C1 X Declined 5

T24 C2 X Declined X

T25

S7 5 5 10 5

W1 C1 5 Approved 5

T26 C2 X Declined 5

T27 W2 C1 5 Approved 5

T28 C2 X Declined 5

T29

S8 5 5 309 5

W1 C1 X Declined 5

T30 C2 X Declined X

T31 W2 C1 5 Declined X

T32 C2 X Declined X

of the impersonation attack would succeed and thus allows us to assess the
security and risks behind online payment. Secondly, it serves as a suggestion
for a possible methodology to assess consumer implications of Transaction Risk
Assessment. TRA shifts liability to the card issuer but nevertheless still exposes
consumers to possible distress when an impersonation attack is carried out.
Arguably, it would be in the interest of the public if there is visibility in the
implementation of Transaction Risk Assessment. The re-engineering experiments
in this section demonstrates how to provide such visibility.

The experiments in this section obtain responses from the ACS for trans-
actions in 8 different scenarios. These scenarios provide all combinations of the
following three features:
1. submitting the machine data and IDCookie or not (from Section 2.3 and 2.3)
2. submitting different transaction values
3. submitting transactions from different regions

Table 1 shows selected results from our experiments on two test cards C1 and
C2. Our set-up was identical to Section 3, with data obtained from machine M1

used on an alternative machine M2. Payments were initiated on two merchant
websites (W1 and W2) that enforce 3DS user authentication. W1 is a web mer-
chant local to the country where the victim card is issued and W2 is an overseas
merchant for a victim’s card.

The rows give the various scenarios. For instance, Scenario S1 copies the
machine data and the ID Cookie, for a low value transaction, within the region.
With respect to the region, experiments for C1 and C2 were made from UK and
Germany. Region (X) indicates the transaction attempts were made from same
country.

We see from Table 1 that different card issuers make different risk trade-
offs. In particular, the card issuer of C1 allows more frictionless authentication,
whereas the card issuing bank for C2 challenges the payment initiator more
often. Comparing transaction T4 and T10 for C2 we see that C2’s card issuer
challenges every transaction if the web merchant is in a different country. Table
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(a) C1 on W1 (b) C1 on W2

Fig. 3: Summarising C1’s risk assessment outcomes over merchants W1 and W2

(a) C2 on w1 (b) C2 on W2

Fig. 4: Summarising C2’s risk assessment outcomes over merchants W1 and W2

1 also shows that cards are generally treated more harshly, when transactions
are made from different regions. For instance, when transactions were made
from different country and machine data is corrupted there is more likelihood
of being challenged and transaction being declined (as opposed to transactions
when initiated from the country local to the card issuer).

Figure 3 and Figure 4 summarize the findings of Table 1. The ‘states’ are
phases in the 3DS 2.0 transaction, where Pay indicates initiating payment, while
the other refer to possible outcomes, either approved, challenged/declined or
blocked. Note that for our purposes we do not have to differentiate between chal-
lenge and declined, they both imply that the transaction has not gone through
as frictionless. The arcs are labelled with the scenario given in the second column
of Table 1. CAC stands for challenge limit counter, which counts down from the
limit to zero. Here, the limit is 4, and at the fifth attempt the card is blocked.
For an impersonator, Figure 3 and Figure 4 serves as a reference map in case
where more card details are stolen belonging to C1 and C2 card issuer.

5 Discussion of Card Payment Systems Security

The problem of authenticating cardholders in the online payment system is ex-
acerbated by the desire to cause minimal friction during the checkout. The intro-
duction of 3DS 2.0 addresses this security/usability challenge through the use of
Transaction Risk Assessment, and it is clear that the industry strongly favours
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such risk based approaches, given that in the US about 75% of the card issuers
have adopted risk-based authentication [7]. However, as we have seen in this
paper, the remaining security bottleneck is the secure storage and transfer of
machine authentication data and http-only cookies from the customer machine
to the authentication service.

Once 3DS 2.0 is common and authorization-only transactions can no longer
be exploited, the impersonation attack presented in this paper is potentially
attractive for perpetrators. Its net effect would be that perpetrators can use
stolen 3DS 2.0 frictionless authentication data in online shops without the card-
holder being negligent, exactly as was the case with authorization-only systems
before the introduction of 3D Secure. The attack does not require to synchro-
nize fraudulent purchase with that of an unwitting customer (as a relay attack
would). Malware could easily be designed to sniff the 3DS 2.0 transaction data
and later forward it to the attacker server. In fact, there are a number of such
open source browser extension available and installed be thousands of browsers,
e.g., HTTPWatch [17] and LiveHTTPHeaders [11]. Other developments, such as
FraudFox [37], are also cause of concern. FraudFox aims to make it faster and
easier to change a browser’s fingerprint to one that matches that of a victim, for
instance through profile generator scripts.

Attempts to complicate executing the attack through JavaScript obfuscation,
as some implementations do, cannot be expected to be of much help. There exist
several tools and tutorials on the Internet which can be useful to re-establish the
original data and script obfuscation is therefore far from sufficient. More help-
ful is the manner in which cookies are stored in the observed implementations.
All ID cookies we discovered were secure enabled, which means the cookies are
only passed on secure connections (HTTPS). Secondly, the cookies were tagged
http-only, which implies that the cookie is not readable to JavaScript. This
prevents the cookies from being accessed by the cross-domain websites, i.e., pre-
vents cross-site scripting attacks (XSS). Nevertheless, cookie storage in browsers
remains non-secure unless the machine uses secure storage.

Technologically, an obvious solution for secure transfer would be to use pri-
vate/public key approaches to encrypt and sign messages between the payment
initiator and the 3DS Server. However, for such a solution to gain acceptance
would require a separate trusted secure storage environment for cryptographic
keys and certificates. The payment industry standards [27, 28] require payment
credentials, including keys and certificates to be stored in ‘Tamper-Resistant Se-
curity Module,’ which is defined as the set of hardware, software, firmware, or
some combination thereof that implements cryptographic logic or process (in-
cluding cryptographic algorithms and key generation) and is contained within
the cryptographic boundary. Today’s computer systems and their software sys-
tems are not provably secure enough. This issue has come up before, when Google
first introduced Android pay with the concept of Host Card Emulation with An-
droid KitKat 4.4 [14] in 2014. The key storage security model for Host Card
Emulation was software controlled and contained the threat that an attacker
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may compromise the mobile OS to steal the credentials. This approach was
therefore not found suitable to host EMV payment applications [1].

6 Related Work

This section details the comparison of card payment protocols and the security
technologies they utilize. The section also highlights reported attacks on card
payments that are made possible when any security feature is not included in
the protocol. It would go too far to discuss the technologies and protocols in all
detail, but we provide a summary discussion of the salient points.

Solutions for Card Present. This category corresponds to payments when
the card is physically present. With magnetic stripe cards, data integrity and
card authentication (confirming the identity of the card) features were not placed
on the actual card itself. The data stored in a magnetic stripe is static and is
kept in plain text which made magnetic stripe cards vulnerable to identity theft
attacks [23], cardholder impersonation attacks [24] and card cloning attacks [6].

EMV extended the features of smart cards which provided a secure, “tamper
proof”, storage for the card’s private cryptographic keys. The Chip and Pin
protocol defined by EMV makes use of RSA public key infrastructure in three
variants. The Static Data Authentication (SDA) card has a static signature
which is generated by the issuer signed by using the issuer’s private key, and
written to the SDA card during manufacture. However, static signatures are
used to approve every transaction, which makes SDA cards vulnerable to cloning
attacks [6][25]. Dynamic Data Authentication (DDA) payments on the other
hand generate a unique ‘challenge-response’ RSA signature (SDAD) for each
transaction, including a nonce. Combined Data Authenitcation (CDA) improves
upon DDA by encoding the Application Cryptogram into the signature rather
than the transaction data. This makes DDA and especially CDA highly robust
against any form of attack.

EMV contactless provides convenience to the customer by authenticating the
card instead of actually prompting the cardholder to approve the transactions
[9]. Fast DDA (fDDA) and CDA (fCDA) are enhanced versions of DDA and
CDA of EMV chip and PIN, excluding the cardholder authentication methods
from the protocol. Both DDA and SDA offer protection against known attacks on
the payment system, however, each DDA and SDA enabled transactions would
require the cardholders to prove their identity, thus adversely affecting usability.
This was further addressed with an enhanced versions of fDDA and fCDA in
EMV contactless [8].

Solutions for Card Not Present. If the card is not present, the situation is
very challenging, as we have seen in this paper. As discussed in the introduction,
the complications associated with the implementation of the 3DS 1.0 protocol
made it possible for attackers to bypass its security features and perform identity
theft attacks [23][16]. Chip Authentication Programme (CAP) and Transaction
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Authentication Numbers (TAN) [30][29] are two token generation technologies
that consumers use to produce the answer to a challenge from the authorization
system. Typically, this is done with a little machine that reads a credit card
and/or uses a PIN to generate a response to a challenge. These are increasingly
commonly provided by banks, but in many cases are limited to payments through
banking transactions.

In conclusion, different payment protocols have been developed for different
purposes. Satisfactory solutions find a successful combination of usability and
security, and also manage the exposure to risk were something to go wrong. For
instance, transaction limits on contactless cards as well as the frictionless 3DS
2.0 payment limit both manage the risk by limiting loss exposure of consumers.
Not surprisingly, sound approaches challenge for a second factor information,
through a PIN such as in Chip & PIN as well as Challenged Authentication in
3DS 2.0 or using token generators such as in CAP and TAN. However, these
do not satisfy the usability wishes of merchants, leaving consumer with systems
such as 3DS 2.0 that are designed to allow less secure payments and therefore
inherently (and by design) expose consumers and card issuers to fraud.

7 Conclusion

This paper presents the first sizeable experimental study of real-life implemen-
tations of 3DS 2.0. Through a reverse engineering study, we map out the trans-
action sequences for frictionless transactions. In most implementations we en-
countered, the payment initiator’s machine is fingerprinted through JavaScripts,
except for the implementation based on 3DS 1.0. In our experiments we obtained
further insights in the decision making of the authorization service, experiment-
ing with transaction amounts and the region from which payment was initiated.
We found that card issuers differ in terms of their risk appetite, with some issuers
considerable more liberal in allowing transaction to proceed unchallenged.

We also demonstrated an impersonation attack against 3DS 2.0, using only
data that is available from a reverse engineering exercise such as described in
this paper. This impersonation attack is practically feasible and exploits that
fingerprinting information from the payment initiator’s machine can be recreated
by malware or plug-ins, if installed on that machine. This exploit demonstrates
the vulnerability of credit card based payment using browsers, compared to the
more sophisticated security of mobile payment solutions.

A key question for the regulator is whether it was justified to allow risk
assessment based approach to online payment security as result of the PSD II
negotiations. A complete answer to that question would require insight in a
variety of factors, including technological feasibility and acceptance, ease-of-use,
liability, as well as vulnerabilities and threats. In addition, one would need deeper
insight into the specifics of the risk assessment carried out by the card issuer.
However, the reverse engineering approach introduced in this paper provides
an interesting set of tools to find out how risk assessment is implemented and
for the regulator to assess whether the resulting decisions are in the interest of
customers.
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encode deviceprint()
version%3D2%26pm%5Ffpua%3Dmozilla%2F5%2E0%20%28windows%20nt%2010%2E0%3B%20win64%3B%20x64%29%20applewebkit/537%2E36%20%28kht

ml%2C%20like%20gecko%29%20chrome62%2E0%2E3202%2E94%20safari/537%2E36%7C5%2E0%20%28Windows%20NT%2010%2E0%3B%20Win64%3B%20x64

%29%20AppleWebKit/537%2E36%20%28KHTML%2C%20like%20Gecko%29%20Chrome/62%2E0%2E3202%2E94%20Safari/537%2E36%7CWin32%7Cen%2DUS%

26pm%5Ffpsc%3D24%7C1280%7C720%7C680%26pm%5Ffpsw%3D%26pm%5Ffptz%3D5%2E5%26pm%5Ffpln%3Dlang%3Den%2DUS%7Csyslang%3D%7Cuserlang

%3D%26pm%5Ffpjv%3D0%26pm%5Ffpco%3D2

asyncpost deviceprint(url)
dmVyc2lvbiUzRDElMjZwbSU1RmZwdWElM0Rtb3ppbGxhJTJGNSUyRTAlMjAlMjh3aW5kb3dzJTIwbnQlMjAxMCUyRTAlM0IlMjB3aW42NCUzQiUyMHg2NCUyO

SUyMGFwcGxld2Via2l0LzUzNyUyRTM2JTIwJTI4a2h0bWwlMkMlMjBsaWtlJTIwZ2Vja28lMjklMjBjaHJvbWUvNjUlMkUwJTJFMzMyNSUyRTE4MSUyMHNhZm

FyaS81MzclMkUzNiU3QzUlMkUwJTIwJTI4V2luZG93cyUyME5UJTIwMTAlMkUwJTNCJTIwV2luNjQlM0IlMjB4NjQlMjklMjBBcHBsZVdlYktpdC81MzclMkU

zNiUyMCUyOEtIVE1MJTJDJTIwbGlrZSUyMEdlY2tvJTI5JTIwQ2hyb21lLzY1JTJFMCUyRTMzMjUlMkUxODElMjBTYWZhcmkvNTM3JTJFMzYlN0NXaW4zMiU3

Q2VuJTJER0IlMjZwbSU1RmZwc2MlM0QyNCU3QzEzNjAlN0M3NjglN0M3MjglMjZwbSU1RmZwc3clM0QlMjZwbSU1RmZwdHolM0QxJTI2cG0lNUZmcGxuJTNEb

GFuZyUzRGVuJTJER0IlN0NzeXNsYW5nJTNEJTdDdXNlcmxhbmclM0QlMjZwbSU1RmZwanYlM0QwJTI2cG0lNUZmcGNvJTNEMQ==

Fig. 5: Device fingerprint information encoded and sent to ACS.

3DS 2.0 Cookies
TESTCOOKIE=Y

ID Cookies
DMC=AiZVNMlzeO1ukqlXqlc7y%2BkM5Vi%2FGf%2Fa1DlCXYyox7%2F
XIr4kfbIlX04cU%2Bc%2BgWifX5WmJxQFY%2Fl8fH2ysgUzk3FUyhV
jlih3wcIxlG17uFJgBtWgMiZNjoRU6zut3NLLmlXPYLocrIlecsFsRW w%2B6D6JRuya4fb
Hmsww1DOogjzLL4ltobs%3D
cy track user=C.28474910.1603347569
3DSSTBIP=yHWvyRz68jCQRAI7zSC3a5YqJJYDrgbtKRs50bDYIkJTU
Xik3MMi6BYEz5zbiX0awTcVFYARXRLY

Fig. 6: Device fingerprint information encoded and sent to ACS.

A Data Used for Transaction Risk Assessment

Table 2 shows an exhaustive list of device attributes from card C1 to C5 that are
passed from WB to the ACS. The loading and execution of dfp.js by the ACS
as a part of the checkout process is similar for all our test cards that we used.
The ‘Method’ column indicates the functions implemented in the dfp.js that
extract information from WB (for readability, in some cases we have simplified
the method name). The details that are fetched in each function are shown in
‘Attribute description’ column of the table. The ‘Source’ column marks the origin
of each attribute (JavaScript or HTTP). Finally, the rightmost column shows an
example output value of each function.

Figure 5 and Figure 6 show the encoded devide fingerprint and the full cookie
content, respectively.
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Table 2: Data used for Transaction Risk Assessment extracted by javascript file
dfp.js.

Method
Attribute
description

Source Example values

nav.userAgent() User agent(UA), OS JavaScript

Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/60.0.3112.113 Safari/537.36

test()
Accepted MIME
types/ Documents

HTTP header

text/html, application/xhtml+xml, applica-
tion/xml;q=0.9, image/webp, image/apng,
*/*q=0.8

Accepted Charsets HTTP header utf-8, iso-8859-1;q=0.5
Accepted Encodings HTTP header gzip deflate
Accepted Lan-
guages HTTP header en-US, en; q=0.8

ActiveX, GeckoAc-
tiveX

HTTP header ?1:0

Adobe Reader and
components HTTP header ?1:0

XMLHttpReqest,
Serializer, Parser
support

HTTP header Yes/No

deviceprint
browser()

UA(Version, cpu-
Class, language)

JavaScript

5.0 (Windows NT 10.0; Win64; x64) Ap-
pleWebKit/537.36 (KHTML, like Gecko)
Chrome/60.0.3112.113 Safari/537.36; Win32;
en-US

navigator.appName JavaScript Netscape
navigator.appCode
Name

JavaScript Mozilla

navigator.appVersionJavaScript

5.0 (Windows NT 10.0; Win64; x64) Ap-
pleWebKit/537.36 (KHTML, like Gecko)
Chrome/61.0.3163.100 Safari/537.36

navigator.appMinor
Version

JavaScript 5.0

navigator.vendor JavaScript GoogleInc

navigator.userAgent JavaScript

Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36

navigator.oscpu JavaScript Windows NT 10.0
navigator.platform JavaScript Win32
navigator.security
Policy

JavaScript US & CA domestic policy or Export Policy

navigator.onLine JavaScript True
info browser.name JavaScript Chrome
info browser.version JavaScript 61.0.3163.100
info layout.name JavaScript Webkit
info layout.version JavaScript 536.36
info os.name JavaScript win
navigator.geoLocationJavaScript ?1:0

deviceprint dis-
play()

Screen’s (col-
orDepth,
width, height,
availHeight,
availWidth,
HDPI, VDPI,
Pixel Depth,
ColorDepth,
bufferDepth,
FontSmoothing,
Update interval)

JavaScript 2560*1440; 2560*1400; 24; 24

window infor-
mation()

innerWidth,
innerHeight,
outerWidth, out-
erHeight, length

JavaScript 675,473,1392,760,3

DoNotTrack
navigator.doNot
Track

JavaScript ?1:0

Useofadblock alert test javaScript ?1:0

deviceprint soft-
ware()

Plugins installed JavaScript
Adobe Acrobat, Macromedia Flash, Java, MS of-
fice, Cortana...

deviceprint
time()

TimeZone JavaScript -60

deviceprint
java()

Java enabled JavaScript ?1:0

Java Supported JavaScript ?1:0
Java Version JavaScript 1.6. 1.8
javaScript cookies
support

JavaScript ?1:0

Server cookies sup-
port

JavaScript ?1:0

HTTP only support JavaScript ?1:0
flashscript Flash Version FlashScript WIN 28,0,0,126

Flash Version JavaScript 28,0,0

Flash Details FlashScript

Platform, Major Version, Minor Version, Capabil-
ities (Audio, Accessibility, Audio support, MP3
support, Language, Manufacturer, OS, Pixel as-
pect, Color support, Dot per inch, Horizontal size,
Vertical size, Video

Number of Fonts FlashScript 226
List of Fonts FlashScript List of Fonts

deviceprint
cookie()

Cookie enabled JavaScript ?1:0

Session cookie HTTP header
!yEpKXp9eMDojNcc7zSC3a5YqJJYDrqVB23
H1Cy/yThmhX+omXVM933/...AIr8S7ldvbA==

Test cookie HTTP header TESTCOOKIE=Y

IDCookie HTTP header

35BWzcxFkUu1aDdY%2B%2FxvL3VrDuvgoXau%2FAgU
%2BJqzYvZZoWiGPKKeYruvsGaPTeecduMcSLa%2FU
lf1QGU07S89bddR3dVSFT2dwVeUOd%2FkXvaw7JknH
xjFlk4...GY4I7drTK0nT CNJ%2BhHYW8Y5Wis%3D


