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Abstract. Proof-of-stake (PoS) is a promising approach for designing
efficient blockchains, where block proposers are randomly chosen with
probability proportional to their stake. A primary concern in PoS systems
is the “rich getting richer” effect, whereby wealthier nodes are more
likely to get elected, and hence reap the block reward, making them
even wealthier. In this paper, we introduce the notion of equitability,
which quantifies how much a proposer can amplify her stake compared to
her initial investment. Even with everyone following protocol (i.e., honest
behavior), we show that existing methods of allocating block rewards lead
to poor equitability, as does initializing systems with small stake pools
and/or large rewards relative to the stake pool. We identify a geometric
reward function, which we prove is maximally equitable over all choices
of reward functions under honest behavior and bound the deviation for
strategic actions; the proofs involve the study of optimization problems
and stochastic dominances of Pólya urn processes. These results allow
us to provide a systematic framework to choose the parameters of a
practical incentive system for PoS cryptocurrencies.

1 Introduction

A central problem in blockchain systems is that of block proposal: how to choose
which block should be appended to the global blockchain next. Many blockchains
use a proposal mechanism by which one node is randomly selected as leader (or
block proposer). This leader gets to propose the next block in exchange for a
token reward—typically a combination of transaction fees and a freshly-minted
block reward, which is chosen by the system designers. Early cryptocurrencies,
including Bitcoin, mainly used a leader election mechanism called proof of work
(PoW). Under PoW, all nodes execute a computational puzzle. The node who
solves the puzzle first is elected leader. PoW is quite robust to security threats,
but also energy-inefficient, consuming more energy than developed nations [1].

An appealing alternative to PoW is called proof-of-stake (PoS). In PoS, pro-
posers are not chosen according to their computational power, but according to
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the stake they hold in the cryptocurrency. For example, if Alice has 30% of the
tokens, she is selected as the next proposer with probability 0.3. Although the
idea of PoS is both natural and energy-efficient, the research community is still
grappling with how to design a PoS system that provides security while also
incentivizing nodes to act as network validators. Part of incentivizing validators
is simply providing enough reward (in expectation) to compensate their resource
usage. However, it is also important to ensure that validators are treated fairly
compared to their peers. In other words, they cannot only be compensated ad-
equately on average; the variance also matters.

This observation is complicated in PoS systems by a key issue that does
not arise in PoW systems: compounding. Compounding means that whenever
a node (Alice) earns a proposal reward, that reward is added to her account,
which increases her chances of being elected leader in the future, and increases
her chances of reaping even more rewards. This leads to a rich-get-richer effect,
causing dramatic concentration of wealth.
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Fig. 1: Fractional stake distribution of a
party that starts with 1/3 of the stake in
a system initialized with Bitcoin’s finan-
cial parameters. Results of geometric re-
ward PoS and constant reward PoW are
shown after T = 1, 000 blocks.

To see this, consider what would
happen if Bitcoin were a PoS system.
Bitcoin started with an initial stake
pool of 50 BTC, and the block re-
ward was fixed at 50 BTC/block for
several years. Under these conditions,
suppose a party A starts with 1

3 of
the stake. Using a basic PoS model de-
scribed in Section 2, A’s stake would
evolve according to a standard Pólya
urn process [14], converging almost
surely to a random variable with dis-
tribution Beta( 1

3 ,
2
3 ) [17], (blue solid

line in Figure 1). In this example,
compounding gives A a high proba-
bility of accumulating a stake fraction
near 0 or 1. This is highly undesirable
because the proposal incentive mech-
anism should not unduly amplify or
shrink one party’s fraction of stake.
Notice that this is not caused by an

adversarial or strategic behavior, but by the randomness in the PoS protocol,
combined with compounding.

In PoW, on the other hand, the analogue would be for party A to hold 1/3
of the computational power. In that case, A’s stake after T blocks would be
instead binomially distributed with mean 50T/3 (black dashed line in Figure
1). Notice that the binomial (PoW) stake distribution concentrates around 1/3
as T → ∞, so if A contributes 1/3 of stake at the beginning, she also reaps
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1/3 of the rewards in the long term.1 Among randomized protocols that choose
proposers independently at each time slot, the binomial distribution is the best
we can hope for; it represents the setting where party A wins each block with
probability equal to its initial stake. A natural question is whether we can achieve
this PoW baseline distribution in a PoS system with compounding.

We study this question from the perspective of the block reward function.
Most cryptocurrencies today use a constant block reward function like Bitcoin’s,
which remains fixed over a long timespan (e.g., years). We ask how a PoS system’s
choice of block reward function can affect concentration of wealth, and whether
one can achieve the PoW baseline stake distribution simply by changing the
block reward function. This paper has five main contributions:

(1) We define the equitability of a block reward function, which intuitively cap-
tures how much the fraction of total stake belonging to a node can grow or shrink
(under that block reward function), compared to the node’s initial investment.

(2) We introduce an alternative block reward function called the geometric re-
ward function, whose rewards increase geometrically over time. We show that
it is the most equitable PoS block reward function, by showing that it is the
unique solution to an optimization problem on the second moment of a time-
varying urn process; this optimization may be of independent interest. We note
that despite optimizing equitability, geometric rewards do not achieve the PoW
baseline stake distribution—this is the inherent price we pay for the efficiency
of PoS compared to PoW. The green histogram in Figure 1 illustrates the em-
pirical, simulated stake distribution when geometric rewards are used for 1 000
blocks, with total rewards as in the PoW example (50× 1 000 units).

(3) Borrowing ideas from mining pools in PoW systems, a natural strategy is for
participants in a PoS system to form stake pools. We quantify the exact gains
of stake pool formation in terms of equitability, which proves that participating
in a stake pool can significantly reduce the compounding effect of a PoS system.

(4) We study the effects of strategic behavior (e.g. selfish mining) on the rich-get-
richer phenomenon. We find that in general, compounding can exacerbate the
efficacy of strategic behavior compared to PoW systems. However, these effects
can be partially mitigated by carefully choosing the amount of block reward
dispensed over some time period relative to the initial stake pool size.

(5) Our analyses of the equitability of various reward functions provide guidelines
for choosing system parameters—including the initial token pool size and the
total rewards to dispense in a given time interval—to ensure equitability. We
show that cryptocurrencies that start with large initial stake pools (relative to
the block rewards being disseminated) can mitigate the concentration of wealth,
both for constant and geometric reward schemes.

The remainder of this paper is organized as follows. In Section 2, we present
our model. In Section 3, we study equitability under honest behavior. We use
Section 4 to study the effects of strategic behavior on equitability.

1 Compounding can also happen in PoW if miners use their profits to purchase more
mining equipment. However, this feedback loop is much slower and less direct than
PoS compounding, so we approximate PoW by a system with no compounding.
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1.1 Related work

The compounding of wealth in PoS systems has been widely discussed in forum
and blog posts [25,20,30], with recent work on stake-bleeding attacks exploiting
exactly this property [11]. In this work, we quantify concentration of wealth
through a new metric called equitability, which enables us to mathematically
compare PoS to PoW, and different block reward schemes. As we discuss in
Section 2, equitability is closely tied to the variance of a block reward scheme.
Thus far, researchers and practitioners have reduced variance in block rewards
through two main approaches: pooling resources (e.g., mining or stake pools)
and proposing new protocols for disseminating block rewards.

Resource pooling is common in cryptocurrencies, e.g. in mining pools [28,10].
In PoS systems, the analogous concept is stake pooling, where nodes aggregate
their stake under a single node; block rewards are shared across the pool. In
Section 3, we show that the proposed geometric reward function is still the most
equitable even if some parties are forming stake pools. Recent work by Brunjes
et al. also studies stake pools and how to incentivize their formation through the
design of reward mechanisms [6]. Our work differs in that we aim to optimize
equitability, whereas [6] aims to incentivize the formation of a target number of
mining pools. Also, [6] does not consider the effects of compounding in PoS.

A second variance reduction approach changes the block reward allocation
protocol; our work falls in this category. Two examples are Fruitchains [23], which
spread block rewards evenly across a sequence of block proposers, and Ouroboros
[16], which rewards nodes for being part of a block formation committee, even
if they do not contribute to block proposal. Both of these approaches were pro-
posed in order to provide incentive-compatibility for block proposers; they do
not explicitly aim to reduce the variance of rewards. However, they implicitly
reduce variance by spreading rewards across multiple nodes, thereby preventing
the randomized accumulation of wealth. In our work, instead of changing how
block rewards are disseminated, we change the block reward function itself.

2 Models and Notation

We provide a probabilistic model for the evolution of the stakes under a PoS
system, and introduce a measure of fairness, we call equitability. We begin with a
model of a chain-based proof-of-stake system with m parties: A = {A1, . . . , Am}.
We assume that all parties keep all of their stake in the proposal stake pool,
which is a pool of tokens that is used to choose the next proposer. We consider
a discrete-time system, n = 1, 2, . . . , T , where each time slot corresponds to the
addition of one block to the blockchain. In reality, new blocks may not arrive at
perfectly-synchronized time intervals, but we index the system by block arrivals.
For any integer x, we use the notation [x] := {1, 2, . . . , x}. For all i ∈ [m], let
SAi

(n) denote the total stake held by party Ai in the proposal stake pool at
time n. We let S(n) =

∑m
i=1 SAi(n) denote the total stake in the proposer stake
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pool at time n, and vAi
(n) denotes the fractional stake of node Ai at time n:

vAi
(n) =

SAi(n)

S(n)
.

For simplicity, we normalize the initial stake pool size to S(0) = 1; this is without
loss of generality as the random process is homogeneous in scaling both the
rewards and the initial stake by a constant. Each party starts with SAi

(0) =
vAi

(0) fraction of the original stake. At each time n ∈ [T ], the system chooses a
proposer node W (n) ∈ A so that

W (n) =


A1 w.p. vA1

(n)

. . .

Am w.p. vAm
(n).

(1)

Upon being selected as a proposer, W (n) appends a block, or set of transactions,
to the blockchain, which is a sequential list of blocks held by all nodes in the
system. As compensation for this service, W (n) receives a block reward of r(n)
stake, which is immediately added to its allocation in the proposer pool. I.e.,

SW (n)(n+ 1) = SW (n)(n) + r(n).

The reward r(n) is freshly-minted, so it increases the total token pool size.
We assume the total reward dispensed in time period T is fixed, such that∑T
n=1 r(n) = R.

Modeling Assumptions. Our model implicitly makes several assumptions,
such as a single proposer per time slot. Many cryptocurrencies have proposer
election protocols that allow more than one proposer to be chosen per time
slot (Bitcoin [21], PoSv3 [9], Snow White [5]). If two proposers are elected at
time n, for example, then each can append its block to one block at height
n− 1; here the height of a block is its index in the blockchain. However, in these
systems, only one leader can win the block reward since only one fork of the
blockchain is ultimately adopted. Assuming the winner is chosen uniformly at
random from the set of selected proposers, the dynamics of our Markov process
remain unchanged.

Some cryptocurrencies (e.g., Qtum, Particl) choose proposer(s) as a function
of the time slot and the preceding block. This does not affect our results in the
honest setting (for the same reason as above), but it does increase the efficacy
of strategic behavior like grinding [32] and selfish mining [10]. We discuss these
implications in Section 4. Although we do not consider BFT-based PoS protocols
in this paper [31,12], such protocols provide robustness to strategic behavior by
forcing consensus on each block. Such protocols may also provide robustness to
compounding, since block rewards can be shared among many nodes.

We have also assumed in this work that users instantly re-invest rewards into
the proposer stake pool, for two reasons. (1) In PoS systems where users explic-
itly deposit stake, existing implementations automatically deposit rewards back
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into the stake pool. For example, the reference implementation of Casper the
Friendly Finality Gadget (a PoS finalization mechanism proposed for Ethereum)
automatically re-allocates all rewards back into the deposited stake pool [26]. (2)
In other PoS systems, the stake pool is simply the set of all stake in the system,
and is not separate from the pool of tokens used for transactions [9]. Hence as
soon as a proposer earns a reward, that reward is used to calculate the next pro-
poser (modulo some maturity period); the user is not actively re-investing block
rewards—it just happens naturally. In practice, there may be a delay (maturity
period) before the reward is counted; we do not model this effect.

Block reward choices. Many cryptocurrencies use Bitcoin’s block reward
schedule, which fixes the total supply of coins at about 21 million coins, and
halves the reward every 210,000 blocks (≈ 4 years) [2]. Figure 2 illustrates this;
if we let Ti and Ri denote the ith block interval and total reward, respectively,
we can take Ti = 210, 000 blocks, and Ri = 50 · 1

2i−1 · 210, 000. Several systems
have adopted similar block rewards that are constant over long periods of time
(e.g., Ethereum [3], ZCash [13], Dash [8], Particl [15]).
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function of block height. The area
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Fig. 3: Geometric block rewards as
a function of block height, using
Bitcoin-based Ti and Ri values from
Figure 2.

In this paper, we revisit the question of how to choose r(n). A key observation
is that r(n) must compensate nodes for the cost of proposing blocks. Many
cryptocurrencies implicitly adopt the following maxim:

On short timescales, each block should yield the same block reward.

Notice that this maxim does not specify whether the value of a block reward is
measured in tokens or in fiat. As illustrated earlier, most cryptocurrencies today
measure value in tokens. We call this approach the constant block reward :

rc(n) :=
R

T
. (2)
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A natural alternative is to measure the block reward’s value in fiat currency.
This depends on the cryptocurrency’s valuation over time interval [T ]; if we as-
sume it to be constant, then the resulting reward function should give a constant
fraction of the total stake at each time slot. We call this the geometric reward:

rg(n) := (1 +R)
n
T − (1 +R)

n−1
T . (3)

Figure 3 shows geometric block rewards as a function of time if we use the same
Ti’s and Ri’s as in Figure 2, reflecting Bitcoin’s block reward schedule.

Equitability. To compare reward functions, we define a metric called equitabil-
ity. Consider the stochastic dynamic of the fractional stake of a party A that
starts with vA(0) fraction of the initial total stake of S(0) = 1. We denote the
fractional stake at time n by vA,r(n), to make the dependence on the reward
function explicit. A straw-man metric for measuring fairness is the expected
fractional stake at time T : i.e., if A contributes 10% of the proposal stake pool
at the beginning of the time, then A should reap 10% of the total disseminated
rewards on average. This metric is poor because PoS systems elect a proposer (in
Eq (1)) with probability proportional to the fractional stake; this ensures that
each party’s expected fractional reward is equal to its initial stake fraction, for
any block reward function. That is, ∀n ∈ [T ], E[vA,r(n)] = vA(0). This follows
from the law of total expectation and the fact that

E[vA,r(n) | vA,r(n− 1) = v]

= v
v S(n− 1) + r(n− 1)

S(n)
+
(
1− v

)v S(n− 1)

S(n)
= v.

Although all reward functions yield the same expected fractional stake, the
choice of reward function can nonetheless dramatically change the distribution
of the final stake, as seen in Figure 1. We therefore instead propose using the
variance of the final fractional stake, Var(vA,r(T )), as an equitability metric.
Intuitively, smaller variance implies less uncertainty and higher equitability:

Definition 1. For a positive vector ε ∈ Rm, we say a reward function r : [T ]→
R+ over T time steps is ε-equitable for ε = [ε1, . . . , εm] where εi > 0, if

Var(vAi,r(T ))

vAi
(0)(1− vAi

(0))
≤ εi (4)

for all i ∈ [m]. For two reward functions r1 : [T ]→ R+ and r2 : [T ]→ R+ with

the same total reward,
∑T
n=1 r1(n) =

∑T
n=1 r2(n), we say r1 is more equitable

than r2 for player i ∈ [m] if

Var
(
vAi,r1(T )

)
≤ Var

(
vAi,r2(T )

)
, (5)

when both random processes start with the same initial fraction of vAi
(0).
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The normalization in Eq. (4) ensures the left-hand side is at most one, as
we show in Remark 1. It also cancels out the dependence on the initial fraction
vA(0) such that the left-hand side only depends on the reward function r and
the time T , as shown in Lemma 1.

Remark 1. When starting with an initial fractional stake vA(0), the maximum
achievable variance is

sup
T∈Z+

sup
r

Var(vA,r(T )) = vA(0)(1− vA(0)) , (6)

where the supremum is taken over all positive integers T and reward function
r : [T ]→ R+. (Proof in Appendix C.1)

From the analysis of a time-dependent Pólya’s urn model, we know the vari-
ance satisfies the following formula (see proof in Appendix C.2 and also [24]).

Lemma 1. Let eθn , S(n)/S(n− 1), then

Var(vA,r(T )) =
(
vA,r(0)− vA,r(0)2

)(
1− S(0)2

S(T )2

T∏
n=1

(2eθn − 1)
)
. (7)

(Proof in Appendix C.2)

Although Definition 1 applies to an arbitrary number of parties, Lemma 1
implies that it is sufficient to consider a single party’s stake. More precisely:

Remark 2. If reward function r : [T ] → R+ over T time steps is ε-equitable for
vector ε = [ε1, . . . , εm] where εi > 0, then r is also ε̃-equitable, where

ε̃ , 1 · min
i∈[m]

εi,

with 1 denoting the vector of all ones.

As such, the remainder of this paper will study equitability from the perspec-
tive of a single (arbitrary) party A. We will also describe reward functions as
ε-equitable as shorthand for ε-equitable, where ε = 1 · ε. Note that even if the
total reward R is fixed, equitability can differ dramatically across reward func-
tions. In the example of Figure 1, the constant reward function is 0.5-equitable.
On the other hand, the geometric rewards of (3) have a smaller chance of los-
ing all its fractional stake (i.e. vA,rg (T ) ≈ 0) or taking over the whole stake
(i.e. vA,rg (T ) ≈ 1). It is 0.05-equitable in this example.

3 Equitability under Honest Behavior

In this section, we analyze the equitability of different block reward functions,
assuming that every party is honest, i.e. follows protocol, and the PoS system is
closed, so no stake is removed or added to the proposal stake pool over a fixed
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time period T . Each party’s stake changes only because of the block rewards it
earns and compounding effects. We discuss the effects of strategic behavior in
Section 4, and open systems in Appendix A.3.

The metric of equitability leads to a core optimization problem for PoS sys-
tem designers: given a fixed total reward R to be dispensed, how do we distribute
it over the time T to achieve the highest equitability? Perhaps surprisingly, we
show that this optimization has a simple, closed-form solution.

Theorem 1. For all R ∈ R+ and T ∈ Z+, the geometric reward rg defined in
(3) is the most equitable among functions that dispense R tokens over time T ,
jointly over all parties Ai, for i ∈ [m]. (Proof in Appendix C.3)

Intuitively, geometric rewards optimize equitability because they dispense
small rewards in the beginning when the stake pool is small, so a single block
reward cannot substantially change the stake distribution. The rewards subse-
quently grow proportionally to the size of the total stake pool, so the effect
of a single block remains bounded throughout the time period. We emphasize
that the geometric reward function does not depend on the initial stake of the
party A, and hence is universally most equitable for all parties in the system
simultaneously.

Composition. The geometric reward function does not only optimize equi-
tability for a single time interval. Consider a sequence (T1, R1), . . . , (Tk, Rk) of
checkpoints, where Ti is increasing in i, and Ri denotes the amount of reward to
be disbursed between time Ti−1 + 1 and Ti (inclusive). These checkpoints could
represent target inflation rates on a monthly or yearly basis, for instance. A natu-
ral question is how to choose a block reward function that optimizes equitability
over all the checkpoints jointly. The solution is to iteratively and independently
apply geometric rewards over each time interval, giving a block reward function
like the one shown in Figure 3.

Theorem 2. Consider a sequence of checkpoints {(Ti, Ri)}i∈[k]. Let R̃j :=
∑j
i=1Ri.

The most equitable reward function is

r(n) = (1 + R̃i−1)

( 1 + R̃i

1 + R̃i−1

) n−Ti−1
Ti−Ti−1

−

(
1 + R̃i

1 + R̃i−1

)n−1−Ti−1
Ti−Ti−1

 (8)

for n ∈ [Ti−1 + 1, Ti]. (Proof in Appendix C.4)

When there is only one checkpoint, Theorem 2 simplifies to Theorem 1. This
implies that checkpoints can be chosen adaptively, i.e., they do not need to be
fixed upfront to optimize equitability. Because of composition, we assume a single
checkpoint for the remainder of this paper. In practice, the abrupt change in
geometric block rewards at a checkpoint (Figure 3) may lead to miner/validator
attrition [4]. Liquidity limits may slow down this attrition, but cannot stop it [5].
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One option is that a PoS system need not choose its block reward function based
on equitability alone; it could also consider smoothness and/or monotonicity
constraints. Another is that PoS blockchains could use geometric rewards only for
the first epoch (when compounding poses the greatest risk), and then transition
to a smoother block reward schedule of their choosing. We leave such exploration
to future work.

Stake Pools. Participants also have the freedom to form stake pools, as ex-
plored in [28,10,6]. We show that stake pools reduce the variances of the frac-
tional stake of all pool members, and quantify this gain. Consider a single party
that owns vA(0) fraction of the stake at time t = 0. We know from Lemma 1 that

the variance at time T is Var(vA,r(T )) =
(
vA(0)−vA(0)2

)(
1− S(0)2

S(T )2

∏T
n=1(2eθn−

1)
)
. Consider a case where the same party now participates in a stake pool,

where the pool P has vP (0) of the initial stake (including the contribution from
party A), and every time the stake pool is awarded a reward for block proposal,
the reward is evenly shared among the participants of the pool according to
their stakes. The stake of party A under this pooling is denoted by vÃ(T ), and
it follows from Lemma 1 immediately that

Var(vÃ,r(T )) =
(vA(0)

vP (0)

)2(
vP (0)− vP (0)2

)(
1− S(0)2

S(T )2

T∏
n=1

(2eθn − 1)
)

=
1− vP (0)

vP (0)

vA(0)

1− vA(0)
Var(vA,r(T )) . (9)

Thus party A’s variance reduces by a factor of (vP (0)/vA(0))((1 − vA(0))/(1 −
vP (0))) by joining a stake pool of size vP (0). Note that the variance is mono-
tonically decreasing under stake pooling. In practice, stake pools can organically
form as long as this gain in equitability exceeds the cost of pool formation. Ap-
plying the definition 1 to a single party A, an ε-equitable party A will achieve

εvA(0)(1−vP (0))
vP (0)(1−vA(0)) -equitability by forming a stake pool. Further, geometric rewards

are still the most equitable reward function in the presence of stake pools. This
follows from the fact that the effect of pooling is isolated from the effect of the
choice of the reward function in Eq. (9),

Practical parameter selection. The equitability of a system is determined
by four factors: the number of block proposals T , choice of reward function r,
initial stake of a party vA(0), and the total reward R. We saw that geometric
rewards optimize equitability; in this section, we study its dependence on T ,
S(0), and R. Recall that without loss of generality, we normalized the initial
stake S(0) to be one. For general choices of S(0), the total reward R should be
rescaled by 1/S(0). The evolution of the fractional stakes is exactly the same for
one system with S(0) = 2 and R = 200 and another with S(0) = 1 and R = 100.
We assume here that the system designer can choose the total reward R, either
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by setting the initial stake size S(0) and/or the total reward during T . We study
how equitability trades off with the total reward R for different choices of the
reward function.

Geometric rewards. For rg(n), we have eθn = (1 + R)1/T . It follows from
Lemma 1 that

Var(vA,rg (T ))

vA(0)− vA(0)2
= 1− (2(1 +R)1/T − 1)T

(1 +R)2
, (10)

When R is fixed and we increase T , we can distribute small amounts of rewards
across T and achieve vanishing variance. On the other hand, if R increases much
faster than T , then we are giving out increasing amounts of rewards per time
slot and the uncertainty grows. This follows from the above variance formula,
which we make precise in the following.

Remark 3. For a closed PoS system with a total reward R(T ) chosen as a func-
tion of T and a geometric reward function rg(n) = (1 + R(T ))n/T − (1 +
R(T ))(n−1)/T , it is sufficient and necessary to set

R(T ) =


 1

1−
√

log(1/(1−ε))
T

T

− 1

 (
1 + o(1)

)
, (11)

in order to ensure ε-equitability asymptotically, i.e. limT→∞
V ar(vA,rg (T ))

vA(0)(1−vA(0)) = ε .

Remark 3 follows from substituting the choice of R(T ) in the variance in
Eq. (10), which gives

lim
T→∞

Var(vA,rg (T ))

vA(0)− vA(0)2
= lim
T→∞

1−
(

1− log(1/(1− ε))
T

)T
(1 + o(1)).

= ε , (12)

The limiting variance is monotonically non-decreasing in R and non-increasing
in T , as expected from our intuition. For example, if R is fixed, one can have
the initial stake S(0) as small as exp(−

√
T/(log T )) and still achieve a vanish-

ing variance. As the geometric reward function achieves the smallest variance
(Theorem 1), the above R(T ) is the largest reward that can be dispensed while
achieving a desired normalized variance of ε in time T (with initial stake of one).

This scales as R(T ) ' (1 + 1/
√
T )T ' e

√
T . We need more initial stake or less

total reward, if we choose to use other reward functions.
Constant rewards. In comparison, consider the constant reward function of

Eq. (2). As eθn = (1 + nR/T )/(1 + (n− 1)R/T ), it follows from Lemma 1 that

Var(vA,rc(T ))

vA(0)− vA(0)2
= 1−

1 +R+ R
T

1 +R+ R
T + R2

T

=
R2

(T +R)(1 +R)
. (13)
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Again, this is monotonically non-decreasing in R and non-increasing in T , as
expected. The following condition immediately follows from Eq. (13).

Remark 4. For a closed PoS system with a total reward R(T ) chosen as a func-
tion of T and a constant reward function rc(n) = R(T )/T , it is sufficient and
necessary to set

R(T ) =
ε T

1− ε
(1 + o(1)) , (14)

in order to ensure ε-equitability asymptotically as T grows.

By choosing a constant reward function, the cost we pay is in the size of the

total reward, which can now only increase as O(T ). Compared to R(T ) ' e
√
T

of the geometric reward, there is a significant gap. Similarly, in terms of how
small initial stake can be with fixed total reward R, constant reward requires at
least S(0) ' R/T . This trend gets even more extreme for a decreasing reward
function, which we describe in Appendix A.2.
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Comparison of Rewards. For S(0) = 1 and R = 10, Figure 4 illustrates
the normalized variance of the three reward functions as a function of T , the
total number of blocks. As expected, variance decays with T and geometric
rewards exhibit the lowest normalized variance. Similarly, for a fixed desired
(normalized) variance level of ε = 0.1, Figure 5 shows how the total reward
grows as a function of time T . Notice that under constant rewards, the reward
allocation grows linearly in T , whereas geometric rewards grow subexponentially
while still satisfying the same equitability constraint. These observations add
nuance to the ongoing conversation about how to initialize PoS cryptocurrencies.
A recent lawsuit against Ripple highlighted that the large initial stake pool could
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put disproportionate power in the hands of the system designers [29]. While
Ripple itself is not PoS, our results suggest that in standard PoS systems, a
large initial stake pool can actually help to ensure equitability.

4 Strategic Behavior

In practice, proposers can behave strategically to maximize their rewards (e.g.,
selfish mining [10,27,22]). In selfish mining, miners who discover blocks do not
immediately publish them, but build a private side chain of blocks. By eventually
releasing a side chain that is longer than the main chain, the adversary can
invalidate honest blocks. This gives the adversary a greater fraction of main
chain blocks and wastes honest parties’ effort. In this section, we show that
such strategic attacks are exacerbated by the compounding effects of PoS, and
geometric rewards do not provide adequate protection.

Modeling the space of strategic behaviors in PoS requires more nuance than
the corresponding problem in PoW [27]. We include a full model in Appendix B.1,
which includes all the notation required to prove the theorems in this section.
Due to space limitations, we summarize the model here. We consider two parties:
A, which is adversarial, and H, which is honest. At any time, both parties can
see the main chain, which is built upon by the honest party. We denote the
length of this chain at time t by `t. In parallel, A can maintain as many private
side chains as it wants, as long as the sequence of block proposers in each side
chain respects the global leader election sequence. Since each block is associated
with a time slot, A must have been the elected leader for each block in a side
chain. I.e., if a side chain block is associated with time slot n, then W (n) = A.

At each time slot, the adversary has three options: (1) It can wait, or continue
to build upon its side chains without releasing them. (2) It can match the main
chain by releasing enough blocks from a single side chain to equal the height of
the main chain, `t. After a match, there will be two publicly-visible chains of
length `t in the system; we assume the honest party adopts the adversarial side
chain with probability γ, a parameter that captures the adversary’s connectivity.
(3) The adversary can override the main chain by releasing a side chain up of
length `t+1. If the side chain is longer than `t+1, it only releases the first `t+1
blocks. Since the released side chain is longer than the main chain, it is always
adopted by the honest party. Given this action space, the adversary’s goal is to
maximize the fraction of main chain blocks that belong to the adversary.

4.1 Strategic selfish mining

We show that adversarial gains from strategic behavior are exacerbated by com-
pounding. In practice, the adversary needs a strategy that balances the gains of
keeping a long side chain to potentially overtake a long main chain, with the loss
in intermediate leader elections due to withheld rewards. We propose a family
of schemes called Match-Override-k (MO-k). Under MO-k, the adversary only
keeps side chains whose tip is at most k blocks ahead of the main chain. The
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strategy is as follows: Every time a new honest block is generated, it is appended
to the main chain. Next, if there is a side chain that (a) is longer than `t, and (b)
does not already include the entire honest chain, the adversary matches the main
chain. Now there are two chains of equal length in the system; with probability
γ, the newly-released side chain becomes the new main chain. Otherwise, the
previous honest main chain continues to be the main chain, and the failed side
chain is discarded. If there is no such side chain to match, then the adversary
waits. Any side chains shorter than `t are discarded.

Every time a new adversarial block is generated, the adversary appends it
to every side chain she is managing currently. She also starts a new side chain
branching from the tip of the main chain, if there is not a side chain there already.
The adversary now checks every side chain. If there is a side chain that branches
at the tip of the main chain and is at least k blocks ahead of the main chain, the
adversary overrides with this side chain, thereby incrementing the main chain
length by one. Otherwise, the main chain remains as is, and the adversary waits.
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Fig. 6: Average fractional stake of an adversary can increase significantly as the
total reward R increases. We fix initial fraction vA(0) = 1/3, S(0) = 1, and
T = 10, 000 time steps, and show for two values of network connectivity of the
adversary γ ∈ {0.5, 1.0} and varying total reward R.

Figure 6 simulates how much the adversary can gain in average fractional
stake by using MO-k strategies. As the total reward R increases, the relative
fractional stake approaches 3, which is the maximum achievable value, since the
expected fractional stake is normalized by vA(0) = 1/3. The simulations were run
for T = 10, 000 time steps, with S(0) = 1. When the adversary is well-connected,
i.e., γ = 1.0, such attacks are effective even with short side chains, such as
k = 3 or 4. Further, there is no distinguishable difference in the reward function
used. On the other hand, when the adversary has 0.5 probability of matching
honest chains, γ = 0.5, it is more effective to keep longer side chains. Figure
6 demonstrates dramatic gains in fractional stake due to strategic behavior. A
natural question is how large these gains can be. The following theorem gives an
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upper bound on stake amplification due to strategic behavior. Given the time-
varying nature of the underlying random process and the optimization over a
large space of strategic actions, the proof is mathematically sophisticated. This
proof, discussed in Appendix C.10 and B.2, involves stochastic dominance results
of time-varying Pólya urn processes, and may be of independent interest.

Theorem 3. Let vA(t) denote the fractional stake of the adversary under selfish
mining (mathematically defined in Appendix B.1), when the total initial stake
is S(0), initial fractional stake of the adversary is vA(0), and the total reward
dispensed over time T is R = cT . If R ≤ S(0)(1− vA(0)), then

E[vA(T )] = (1 + η) vA(0) , (15)

where η , R/(S(0) + c). (Proof in Appendix C.10)

We find empirically in Appendix B.2 that this upper bound is tight when
S(0)+R
S(0) is small. Under the assumption that R is less than the stake of the

honest party, the gain of strategic behavior over honest behavior is bounded by
E[vA(T )]−E[vA(0)] ≤ η vA(0), since under honest behavior the mean fractional
stake is vA(0) for all t. This implies that having a small initial stake S(0) relative
to the total reward R makes the system vulnerable to strategic behavior. This
justifies the common practice of starting a PoS system with large initial stake.

5 Conclusion

This work measures the concentration of wealth in PoS systems, showing that
existing block reward functions (e.g., constant, decreasing rewards) have poor
equitability. We introduce a maximally-equitable geometric reward function. The
negative effects of compounding can be further mitigated by choosing the total
block rewards for each epoch to be small compared to the initial stake pool size.

Several open questions remain. First, our results do not account for proposers
add or removing stake during an epoch. Another challenge, discussed in Section
A.3, is that geometric rewards may not be desirable in practice because of the
sharp changes in block rewards between epochs. A natural solution is to impose
smoothness constraints on the class of reward functions—an interesting direc-
tion for future work. Finally, although strategic players are not specific to PoS
systems, we show that geometric rewards alone do not protect against them.
Designing incentive-compatible consensus protocols is a major open question.
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Appendix

A Additional Discussions

A.1 Modeling Assumptions

Our model implicitly makes several assumptions. The first is that we assign a
single leader (proposer) per time slot. Many cryptocurrencies have leader election
protocols that allow more than one proposer to be chosen per time slot (e.g.,
Bitcoin, PoSv3, Snow White). If two leaders are elected at time n, for example,
then each leader can append its block to one block at height n−1; here the height
of a block is its index in the blockchain. However, in these systems, only one
leader can win the block reward since only one fork of the blockchain ultimately
gets adopted. Assuming the final winner is chosen uniformly at random from the
set of selected leaders, the dynamics of our Markov process remain unperturbed.

Other cryptocurrencies (e.g., Qtum, Particl) choose the next proposer(s) as
a function of the time slot and the preceding block. Again, this can lead to
multiple proposers per time slot. This does not affect our results in the honest
setting (for the same reason as above), but it does impact strategic behavior.
In most blockchain systems, honest proposers always build on the head of the
blockchain. However, in systems where the proposer’s identity depends on the
previous block, a strategic node can increase its chance of being a leader by
appending to a block that is not at the head of the blockchain. If done repeatedly,
the strategic player may eventually produce a chain that is longer than the honest
chain (causing the honest nodes to switch over), which also contains mostly
blocks belonging to the strategic player. This increases the player’s reward, and
is called a grinding attack. Such PoS systems are more vulnerable to strategic
behavior than the system we analyze, where proposer election is a function of
only the time slot. Despite this, we find that our model is drastically vulnerable
to strategic behavior. Hence, the problem can only be worse in blockchains that
use block contents to choose the next leader. We discuss the implications of this
in Section A.3.

We have also assumed that users always re-invest their rewards into the
proposer stake pool. We maintain that this is a reasonable assumption for two
reasons: (1) In PoS systems where users explicitly deposit stake, existing im-
plementations automatically deposit rewards back into the stake pool. For ex-
ample, the reference implementation of Casper the Friendly Finality Gadget (a
PoS finalization mechanism proposed for Ethereum) automatically re-allocates
all rewards back into the deposited stake pool [26]. (2) In other PoS systems, the
stake pool is simply the set of all stake in the system, and is not separate from
the pool of tokens used for transactions [9]. Hence as soon as a proposer earns a
reward, that reward is used to calculate the next proposer (modulo some matu-
rity period); the user is not actively re-investing block rewards—it just happens
naturally.

Finally, we have chosen not to explicitly model node unavailability, e.g. due
to hardware or network failures; in our context, node unavailability means that
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a selected proposer may forfeit its chance to propose, even though it was chosen.
Assuming such node failures occur i.i.d. across draws from the proposer pool,
such events do not alter our model dynamics. If a proposer is offline, the selection
process is simply re-run; the slot in question is given to the next node, which is
again chosen proportionally to the stake allocation in the proposer pool.

A.2 Decreasing reward function

Some cryptocurrencies use continuously decreasing reward functions. For in-
stance, Monero dispenses block rewards as per

rM (n) = max
(
c0 ,
b(M − S(n))/c1c

c2

)
, (16)

for some constants c0, c1, c2, and M . In practice, c0 = 0.6, c1 = 219, c2 =
1012 and M = 264 [19]. Monero itself is not a PoS cryptocurrency, but if this
decreasing reward were applied to the PoS setting, it would have even higher
variance than constant rewards. Consider a simpler choices of the constants such
that

rM (n) = α(M − S(n− 1)− S(0)) , (17)

for all n ∈ [T ], for a choice of α = 1/T and M = R(T )/(1 − (1 − α)T ). Recall

that S(n − 1) − S(0) =
∑n−1
i=1 rM (i). As we assume S(0) = 1, it follows after

some calculations that rM (n) = α(1−α)n−1M and S(n) = (1− (1−α)n)M + 1.
It follows from Lemma 1 that

Var(vA,rM (T ))

(vA(0)− vA(0)2)
= 1− S(0)2

S(T )2

T∏
n=1

1 +M(1− (1− α)n−1(1− 2α))

1 +M(1− (1− α)n−1)
. (18)

A.3 Practical Considerations

There are three main issues that relate to actually building a chain-based PoS
system with geometric rewards. The first is how to choose the relevant parame-
ters T and R, which has been discussed at length in Section 3. The second is how
to deal with changing stake fractions that arise due to user-initiated transactions,
e.g., selling their stake. The third discusses how to handle strategic behavior by
block proposers in practice.

Dynamic Proposer Stake One challenge in the analysis of PoS systems is
the fact that stake can move rapidly between parties, e.g. if nodes choose to sell
their stake. Computing the objective function in the optimization of equitability
is tedious when accounting for the dynamic addition and removal of stake, and
it is not clear that geometric rewards are robust to rapid stake transactions.
However, in practice, PoS systems often restrict the timescale over which stake
can be added or removed, precisely to add robustness. For example, Casper FFG
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constrains users to keep their stake in a validation pool for at least 4 months in
order to participate [7,26].

In our system, an analogous stability constraint would be to impose that
stake ratios should not change during each time interval of T blocks. If this
constraint is met, then geometric rewards can be recalculated at each block
interval T to account for dynamically changing Theorem 2 implies that this
strategy optimizes the overall equitability of the reward scheme, even if the
stake transactions are not known a priori. Moreover, if we choose T on the order
of days as suggested in Section 3, this constraint is relatively mild from a user’s
perspective. It is important to note that users need not explicitly deposit their
funds into a common pot in order to enforce the proposed stability constraints.
This can be enforced implicitly by programming the selection mechanism to
only consider stake that has been associated with the same public key for some
minimum time interval. Such a strategy has been suggested in several proposed
PoS systems, including Ouroboros [16], Algorand [18], Casper [7,26].

Control selfish mining Strategic behavior is a significant concern in PoW
cryptocurrencies [10,22,27], and even more so in PoS systems. In Section 4 we
demonstrate the efficacy of a strategic attack through which a rational user can
artificially boost her proportion of the block rewards. In a sense, the results
from Section 4 are negative. Choosing a small reward (with respect to the initial
fraction) at each time step does not fully solve the problem, and there may be
economic reasons to give out larger block rewards within a given time period.

Ultimately, we expect that this problem cannot be solved solely by changing
the block reward function. Rather, it may be more effective to control the effects
of strategic behavior than to identify a scheme under which strategic behavior is
equivalent to honest behavior. For instance, the proposer selection protocol could
choose only proposers whose fraction of proposed blocks in the last K blocks is
commensurate with the proposer’s stake (within some statistical error). Such a
policy would detect nodes who produce more than their fair share of blocks, and
limit their ability to propose more blocks.

B Strategic Behavior

B.1 Model

We restrict ourselves in this section to two parties: A, which is adversarial, and
H, which is honest. Note that this is without loss of generality, as H represent
the collective set of multiple honest parties as their behavior is independent of
how many parties are involved in H. The adversarial party A can also represent
the collective set of multiple adversarial parties, as having a single adversary A
is the worst case when all adversaries are colluding. Throughout this section, we
use the terms adversarial and strategic interchangeably.

Since A does not always publish its blocks on schedule, we distinguish the
notion of a block slot (indexed by n ∈ [T ]) and wall-clock time (indexed by
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t ∈ [T ]). It will still be the case that each block slot n has a single leader W (n)—
in practice, this is determined by a distributed protocol—and a new block slot
leader is elected at every tick of the wall clock (i.e., at a given time t, W (n) is
only defined for n ≤ t). However, due to strategic behavior (i.e., the adversary
can withhold its own blocks and override honest ones), it can happen that no
block occupies slot n, even at time t ≥ n; moreover, the occupancy of block
slot n can change over time. Thus, unlike our previous setting, if we wait T
time slots, the resulting chain may have fewer than T blocks. This is consistent
with the adversarial model considered in PoS systems (e.g., Ouroboros [16]) that
elect a single leader per block slot. Other PoS systems, like PoSv3 [9], choose an
independent leader to succeed each block; such a PoS model can lead to even
worse attacks, which we do not consider in this work.

The honest party and the adversary have two different views of the blockchain,
illustrated in Figure 7. Both honest and adversarial parties see the main chain
Bt; we let Bt(n) denote the block (i.e., leader) of the nth slot, as perceived by
the honest nodes at time t. If a block slot n does not have an associated block
at time t (either because the nth block was withheld or overridden, or because
n > t), we say that Bt(n) = ∅. Notice that due to adversarial manipulations, it
is possible for Bt(n) = ∅ and Bt−1(n) 6= ∅, and vice versa.

In addition to the main chain, the adversary maintains arbitrarily many
private side chains, B̃1

t , . . . , B̃
s
t , where s denotes the number of side chains. The

blocks in each side chain must respect the global leader sequence W (n). An
adversary can choose at any time to publish a side chain, but we also assume
that the adversary’s attacks are covert : it never publishes a side chain that
conclusively proves that it is keeping side chains. For example, if the main chain
contains a block B created by the adversary for block slot n, the adversary will
never publish a side chain containing block B̃ 6= B, where B̃ is also associated
with block slot n.

Each side chain B̃it with i ∈ [s] overlaps with the honest chain in at least
one block (the genesis block), and may diverge from the main chain after some
f it ∈ N+ (Figure 7). That is,

f it := max{n ∈ N+ : Bt(n) = B̃it(n)}.

Different side chains can also share blocks; in reality, the union of side chains is a
tree. However, for simplicity of notation, we consider each path from the genesis
block to a leaf of this forest as a separate side chain, instead of considering side
trees. We use `t and ˜̀i

t to denote the chain length of Bt and B̃it, respectively, at
time t:

`t = |{n ∈ [T ] : Bt(n) 6= ∅}| , and ˜̀i
t = |{n ∈ [T ] : B̃it(n) 6= ∅}|,

and we use the heights ht and h̃it to denote the block indices of the `tth and ˜̀i
tth

blocks, respectively:

ht = max{n ∈ [T ] : Bt(n) 6= ∅} , and h̃it = max{n ∈ [T ] : B̃it(n) 6= ∅}.

If f it = ht, then the adversary is building its ith side chain from the tip of the
current main chain.
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Fig. 7: In PoS, the adversary can keep
arbitrarily many side chains at negligible
cost, and release (part of) a side chain
whenever it chooses.

State space. The state space for the
system consists of three pieces of data:
(1) The current time t ∈ [T ]; (2) The
main chain Bt; and (3) The set of all
side chains {B̃it}i∈[s]. Notice in partic-
ular that the set of side chains grows
exponentially in t. In practice, most
systems prevent the main chain from
being overtaken by a longer side chain
that branches more than ∆ blocks
prior to ht; this is called a long-range
attack. Hence we can upper bound the
size of the side chain set by impos-
ing the condition that for all i ∈ [s],
ht − f it ≤ ∆. Regardless, the size of
the state space is considerably larger
than it is in prior work on selfish min-
ing in PoW [27], where the computa-

tional cost of creating a block forces the adversary to keep a single side chain.

Objective. The adversary A’s goal is to maximize its fraction of the total stake
in the main chain by the end of the experiment,

vA(t) =
|{n ∈ [T ] : (W (n) = A) ∧ (BT (n) 6= ∅)}|

`T
.

This objective is closely related to the metric of prior work [27], except for the
finite time duration.

Strategy space. The adversary has two primary mechanisms for achieving its
objective: choosing where to append its blocks, and choosing when to release a
side chain. If the honest party H is elected at time t, by the protocol, it always
builds on the longest chain visible to it; since we assume small enough network
latency, H appends to block Bt−1(ht−1). However, if A is elected at time t, A
can append to any known block in Bt−1 ∪ {B̃it−1}i∈[s]. The system must allow
such a behavior for robustness reasons: even an honest proposer may not have
received a block Bt−1(ht−1) or its predecessors due to network latency.

The adversary can also choose when to release blocks. In our model, H always
releases its block immediately when elected. However, an adversarial proposer
elected at time t can choose to release its block at any time ≥ t; it can also
choose not to release a given block. Late block announcements are also tolerated
because of network latency; it is impossible to distinguish between a node that
releases their blocks late and a node whose blocks arrive late because of a poor
network connection.

Notice that if A is elected at time t and chooses to withhold its block, the
system advances to time t + 1 without appending A’s block to the main chain.
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This means that the next proposer W (t+1) is selected based on the stake ratios
at time t − 1. So the adversary may have incurred a selfish mining gain from
withholding its block, but it lost the opportunity to compound the tth block
reward. This tradeoff is the main difference between our analysis and prior work
on selfish mining attacks in PoW systems.

Drawing from [10,27], at each time slot t, the adversary has three classes of
actions available to it: match, override, and wait.
(1) The adversary matches by choosing a side chain B̃it and releasing the first ht
blocks. This means the released chain has the same height as the honest chain.
In accordance with [10,27], we assume that after a match, the honest chain will
choose to build on the adversarial chain with probability γ, which captures how
connected the adversarial party is to the rest of the nodes.
(2) The adversary overrides by choosing a side chain B̃it and releasing the first
h = ht + 1 blocks. The released chain becomes the new honest chain.
(3) If the adversary chooses to wait, it does not publish anything, and continues
to build on all of its side chains.

Unlike [10,27], we do not explicitly include an action wherein the adversary
adopts the main chain. Because our model allows the adversary to keep an un-
bounded number of side chains, adopting the main chain is always a suboptimal
strategy; it forces the adversary to throw away chains that could eventually over-
take the main chain. The primary nuance in the adversary’s strategy is choosing
when to match or override (rather than waiting), and which side chain to choose.
Identifying an optimal mining strategy through MDP solvers as in [27] is com-
putationally intractable due to the substantially larger state space in this PoS
problem.

B.2 Upper Bounds

We begin by showing upper bounds on the adversary’s ability to amplify its
expected fractional stake by using strategic behavior. We assume a constant
reward function where a reward of c is dispensed to a proposer whose block
is appended to the main chain. We begin with an upper bound on vA(t), the
fraction of stake that can be achieved by the adversary.

Always-Match-1 (AM-1): To show our upper bound, we analyze a random pro-
cess called always-match-1 (AM-1). AM-1 is an urn process with state

X(t) =

[
XA(t)
XH(t)

]
, X(0) =

[
SA(0)
SH(0)

]
,

where as before, SA(t) denotes the number of tokens held by party A at time
t. XH and XA can be thought of as the honest and adversarial stake, respec-
tively; compared to SA and SH , they evolve under different dynamics, which

are described below. We let vA(t) := XA(t)
XA(t)+XH(t) denote the fraction of the urn

occupied by XA at time t. At each tick of a discrete clock, the state is updated
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as follows:

X(t+ 1) =



[
XA(t)

XH(t) + c

]
w.p. 1− vA(t)

[
XA(t) + c

max{XH(t)− c, 0}

]
w.p. vA(t).

(19)

Intuitively, if the honest XH wins a given draw, then the honest pool gains c
unit of reward. If the adversarial pool XA instead wins a given draw, it negates
c honest units, and adds c units to the adversarial pool. The following theorem
shows that AM-1 gives a universal upper bound on vA(t) under any arbitrary
strategic behavior by the adversary. We refer to Appendix C.5 for a proof.

Theorem 4. Under the constant reward function, for any adversarial strategy
resulting in a stake fraction time series vA(t), the AM-1 random process ṽA(t)
stochastically dominates vA(t), i.e. P(vA(t) ≤ a) ≥ P(ṽA(t) ≤ a) for all a ∈ [0, 1]
and any t ∈ Z+. (Proof in Appendix C.5)
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Fig. 8: AM-1 urn process provides an upper bound on the compounding effect
of any adversarial strategy. We fix initial fraction vA(0) = 1/3, S(0) = 1, and
T = 10, 000 time steps, and show for two values of network connectivity of the
adversary γ ∈ {0.5, 1.0} defined in the strategy space subsection of Section ??
and varying total reward R.

Figure 8 (left) shows that for small values of the total reward R ≤ 2S(0)
and when adversaries are well connected to the honest nodes (γ = 1), the AM-1
upper bound is quite close to an achievable strategy of MO-4. The right panel
show that when the adversaries are less connected (γ = 0.5), then the strategic
behavior takes over less stake. We analyze an upper bound (inspired by AM-1),
which reveals that a PoS system is less vulnerable against strategic attacks when
initial stake S(0) is larger.
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Analytical upper bound. We introduce and analyze a new random process
called always-match-2 (AM-2), which is an upper bound on AM-1, but has the
merit that the expected fractional stake is tractable in a closed form.

Always-Match-2 (AM-2): Similar to AM-1, AM-2 is an urn process with state

X(t) =

[
XA(t)
XH(t)

]
, X(0) =

[
SA(0)
SH(0)

]
,

where as before, SA(t) denotes the number of tokens held by party A at time t.
At each tick of a discrete clock, the state is updated as follows:

X(t+ 1) =



[
XA(t)

XH(t) + c

]
w.p. 1− vA(t)

[
XA(t) + 2c

max{XH(t)− c, 0}

]
w.p. vA(t).

(20)

The addition of 2c units of adversarial reward keeps the total change in urn size
constant across time steps, which simplifies the analysis of this urn process. The
following theorem shows that AM-2 gives an upper bound on the AM-1 process.
We refer to Appendix C.6 for a proof.

Theorem 5. Under the constant reward function, the AM-2 process stochasti-
cally dominates the AM-1 process. (Proof in Appendix C.6)

We are interested in how much an adversary can gain by acting strategically.
The above theorem provides a tool for characterizing an upper bound on any
strategies, by analyzing AM-2. Recall Theorem 3 from Section 4, which makes
this formal:

Theorem 3. Let vA(t) denote the fractional stake of the adversary under selfish
mining (mathematically defined in Appendix B.1), when the total initial stake
is S(0), initial fractional stake of the adversary is vA(0), and the total reward
dispensed over time T is R = cT . If R ≤ S(0)(1− vA(0)), then

E[vA(T )] = (1 + η) vA(0) , (15)

where η , R/(S(0) + c). (Proof in Appendix C.10)

This analysis allows us to quantify the price of compounding under adversar-
ial strategy. When there is no compounding effect, either under a PoW system
or because the rewards are not automatically appended to the stake, an upper
bound on adversarial strategy we consider in this paper has been analyzed in
[27]. Translating the bound into the same notations as in Theorem 3, we get
that when there is no compounding, an adversary’s fractional stake is bounded
by

vA(T ) ≤
(

1 +
vA(0) η

1 + (1− vA(0)) η

)
vA(0) +O

( log T

T

)
,
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with high probability. For large enough T , with high probability. Compared
to Eq. (15), when η is large, compounding allows the adversary’s gain to grow
linearly in η whereas the adversary’s gain is a constant in η with no compounding.
This shows that strategic parties can gain significantly over honest parties, under
PoS systems with compounding effects.

C Proofs

C.1 Proof of Remark 1

We first prove the converse, Var(vA,r(T )) ≤ vA(0)(1−vA(0)) for all T and r. This
follows from the fact that E[vA,r(T )] = vA(0), and vA,r(T ) is bounded below by
zero and above by one. Maximum variance is achieved when all probability mass
is concentrated on the boundary of zero and one.

We prove the achievability, by constructing a simple constant reward func-
tion, with total reward R = T 2 is increasing super-linearly in T . From the
variance computation of a constant reward function in Eq. (13), it follows that
limT→∞Var(vA,rc(T )) = vA(0)(1− vA(0)).

C.2 Proof of Lemma 1

Let eθn , S(n)/S(n− 1) and r(n) = S(n+ 1)− S(n), then

E[vA,r(n+ 1)2|vA,r(n)] = vA,r(n)
(S(n)vA,r(n) + r(n)

S(n+ 1)

)2
+ (1− vA,r(n))

(S(n) vA,r(n)

S(n+ 1)

)2
=

(S(n)2 + 2r(n)S(n))vA,r(n)2 + r(n)2vA,r(n)

S(n+ 1)2

= (2e−θn+1 − e−2θn+1)vA,r(n)2 + (e−θn+1 − 1)2vA,r(n) .

It follows that

E[vA,r(T )2]− E[vA,r(T )] = (2eθT − e2θT )
(
E[vA,r(T − 1)2]− E[vA,r(T − 1)]

)
=
(
E[vA,r(0)2]− E[vA,r(0)]

) T∏
n=1

(2e−θn − e−2θn) .

Hence,

Var(vA,r(T )) =
(
E[vA,r(0)]− E[vA,r(0)2]

)(
1−

T∏
n=1

(2e−θn − e−2θn)
)

=
(
vA,r(0)− vA,r(0)2

)(
1−

T∏
n=1

e−2θn
T∏
n=1

(2eθn − 1)
)

=
(
vA,r(0)− vA,r(0)2

)(
1− S(0)2

S(T )2

T∏
n=1

(2eθn − 1)
)
.



Compounding of Wealth in Proof-of-Stake Cryptocurrencies 27

C.3 Proof of Theorem 1

Lemma 1 and Remark 2 imply that in order to show joint optimality over all
parties, it is sufficient to show that for an arbitrary party A,

Var
(
vA,rg (T )

)
≤ Var

(
vA,r(T )

)
, (21)

for all r ∈ RT such that
∑T
n=1 r(n) = R and r(n) ≥ 0 for all n ∈ [T ]. To this

end, we prove that rg is a unique optimal solution to the following optimization
problem:

minimizer∈RT Var(vA,r(T )) (22)

s.t.
∑
n∈[T ]

r(n) = R

r(n) ≥ 0 , ∀n ∈ [T ].

Using Lemma 1, we have an explicit expression for Var(vA,r(T )). After some
affine transformation and taking the logarithmic function of the objective, we
get an equivalent optimization of

maximizeθ∈RT

T∑
n=1

log(2eθn − 1) (23)

s.t.
∑
n∈[T ]

θn = log(1 +R) ,

θn ≥ 0,∀n ∈ [T ]. (24)

This is a concave maximization on a (rescaled) simplex. Writing out the KKT
conditions with KKT multipliers λ and {λn}Tn=1, we get ∀n ∈ [T ]:

2eθn

2eθn − 1
− λn − λ = 0 (25)

λn ≥ 0 (26)

θnλn = 0 (27)

Among these solutions, we show that θ∗ = ((log(1 + R))/T )1 is the unique
optimal solution, where 1 is a vector of all ones. Consider a solution of the KKT
conditions that is not θ∗. Then, we can strictly improve the objective by the
following operation. Let i, j ∈ [T ] denote two coordinates such that θi = 0 and
θj 6= 0. Then, we can create θ̃ by mixing θi and θj , such that θ̃n = θn for all

n 6= i, j and θ̃i = θ̃j = (1/2)θj . We claim that θ̃ achieves a smaller objective
function as log(2eθj−1) < 2 log(2eθj/2−1). This follows from Jensen’s inequality
and strict concavity of the objective function. Hence, θ∗ is the only fixed point
of the KKT conditions that cannot be improved upon.

In terms of the reward function, this translates into S(n)/S(n − 1) = (1 +
R)1/T and r(n) = (1 +R)n/T − (1 +R)(n−1)/T .
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C.4 Proof of Theorem 2

By the same logic as the proof of Theorem 1, the optimization problem of interest
can be written as

maximizeθ∈RTk

Tk∑
n=1

log(2eθn − 1) (28)

s.t.

Ti∑
n=Ti−1+1

θn = log

(
1 + R̃i

1 + R̃i−1

)
,∀i ∈ [k]

θn ≥ 0,∀n ∈ [Tk] ,

where recall that θn = S(n)
S(n−1) , and we define T0 := 0. Notice that this optimiza-

tion problem is separable over the variables in different time intervals, so we can
separately solve k optimization problems, each of the form

maximizeθ∈RTi−Ti−1

Ti∑
n=Ti−1+1

log(2eθn − 1)

s.t.

Ti∑
n=Ti−1+1

θn = log

(
1 + R̃i

1 + R̃i−1

)
θn ≥ 0,∀n ∈ [Ti−1 + 1, Ti]

for each i ∈ [k]. Using the same KKT conditions as in Theorem 1, we get that

θ∗n = 1
Ti−Ti−1

log( 1+R̃i

1+R̃i−1
), which in turn implies that for n ∈ [Ti−1 + 1, Ti],

S(n) = (1 + R̃i−1)

(
1 + R̃i

1 + R̃i−1

)(n−Ti−1)/(Ti−Ti−1)

and

r(n) = (1 + R̃i−1)

( 1 + R̃i

1 + R̃i−1

) n−Ti−1
Ti−Ti−1

−

(
1 + R̃i

1 + R̃i−1

)n−1−Ti−1
Ti−Ti−1

 .

C.5 Proof of Theorem 4

We first represent the standard Pòlya’s urn process using a binary tree of the
state evolution according to who won at each time step. Recall that the winner
is assigned according to

W (t) =

{
H with probability 1− vA(t) ,
A with probability vA(t) ,

,

which determines who gets the reward. We need the following notations for the
proof. We denote the outcome of the random winner drawings as W (0 : 2) =
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Genesis

W(0)=H W(0)=A

W(1)=H

W(2)=H

W(1)=A

W(2)=A

t=0

t=1

t=2

t=3

W(1)=H W(1)=A

W(2)=H W(2)=A W(2)=H W(2)=A W(2)=H W(2)=A

AAH if the winner at time 0 is the adversary (meaning that the adversary was
elected the leader and an adversarial block is generated), at time t = 1 is the
adversary, and at t = 2 is the honest party. Under this event, we denote the
factional stake of the adversary by x̃(AAH), and the total stake by S(AAH).
We use the notion of the standard Pòlya’s urn process to denote the process
with constant reward c at each time.

A strategic behavior consists of union of the following actions. When elected a
leader at a certain time t, say t = 1 in the figure below, the adversary may decide
to withhold its currently generated block and also the reward. This withheld
reward (and the block) is awarded when the adversary either matches or overrides
(based on the instance of the future winner elections). If matched, the reclaimed
block also takes away one of the honest blocks (and the corresponding reward).
If overridden, the reclaimed block may or may not take away one of the honest
blocks.

We represent the strategy of the adversary on a single withheld block (gen-
erated at time t = 1), using the following binary decision tree. We consider a
binary decision tree of height T , as follows (e.g. T = 4). We can encode any
strategy of the adversary on when to reclaim the withheld reward on the binary
tree. We are hiding the part of the tree branching from W (0) = H as it is not
affected by the current adversary we are considering.

For example, the adversary withholds a block if he is elected a leader at
time t = 1, which is encoded as the orange node. The adversary might choose to
reclaim the reward (by publishing the side-chain that includes the withheld block
of interest) if the next winner is an honest one (W (1) = H), if next two winners
are adversarial and honest in that order (W (1 : 2) = AH), and if next three
winners are adversarial, adversarial, and honest in that order (W (1 : 3) = AAH).
These are encoded on a binary tree as shown above in blue nodes. Any binary
tree where a single path from an orange node (block withheld) to a leaf only
contains a single blue node (block reclaimed) is a valid strategy, as a withheld
reward can only be claimed once. We do not explicitly encode wether a honest
block is taken away when adversarial block is reclaimed, as it does not change
the proof as we will show.

In the above example, the orange node at the event W (0) = A encodes the
strategy that a unit c reward is withheld if the adversary wins at time T = 0.
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Genesis

W(0)=A

W(1)=H W(1)=A

Block and reward withheld at t=1

Reward reclaimed  
when W(1)=H

Reward reclaimed  
when W(1:2)=AH

Reward reclaimed  
when W(1:3)=AAH

W(2)=H

W(3)=H

W(2)=A

W(3)=A

t=0

t=1

t=2

t=3

t=4

W(0)=H

Hence, the resulting stake at that node is x̃(A) = X̃(0) as no reward is claimed,
and S(A) = S(0). the blue node at the event AH denotes that the adversary
reclaims the withheld reward if the next winner is an honest party. Under this
event of AH, the resulting stake at that node AH is x̃(AH) = X̃(A) + (c/S(A))
as c unit reward is given to the adversary and c unit reward is taken from the
honest party, and and the total stake S(AH) = S(A) remains unchanged.

The next lemma provides a set of operations on the colored binary tree we
can perform, in order to turn it into a more stochastically dominant process. We
give a proof in Appendix C.7.

Lemma 2. Given a representation of a random process with an adversarial
strategy as a colored binary tree, the following operation results in a new random
process that stochastically dominates the old one:

A.1. convert a white leaf node to a blue leaf node;
A.2. convert two blue leaf nodes who are siblings into one blue parent node with

two white offsprings;
A.3. convert two blue sibling nodes into one blue parent node with two white off-

springs; and
A.4. convert two blue offsprings of an orange node into one parent node that is

blue and orange with two white offsprings.

Note that a blue and orange node denotes the combination of a orange node
and a blue node, where one unit reward given to the adversary and one unit
reward taken away from the honest party. Applying the above operations in the
order of A.1, A.2, A.3, and A.4, we have the following random urn process that
stochastically dominates any adversarial behavior with a single reward withheld.

From the preservation of stochastic dominance by the standard Pòlya’s urn
process (as shown in Lemma 4), we can now convert a white node in which an
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More stochastically  
dominant

Less stochastically  
dominant

adversary is a winner into a blue and orange node, from top to bottom. The
resulting process is exactly the AM-1 process, finishing the proof of stochastic
dominance when only a single reward is withheld at time t = 1.

More stochastically  
dominant

Less stochastically  
dominant

When a single reward is withheld at time t > 1, we need a preservation of
stochastic dominance for AM-1. The following lemma justifies conversion of a
white node into a blue and orange node when the descendent nodes follow AM-1.
We provide a proof in Appendix C.9.

Lemma 3 (Preservation of stochastic dominance of AM-1 process).
Consider two AM-1 processes with the same initial total stake S(0). One process
has a random initial fractional stake vA(0), which is stochastically dominated
by that of the other process v′A(0). Then, the final fractional stake preserves the
dominance, i.e. vA(T ) is stochastically dominated by v′A(T ).

In general, a strategic behavior consists of multiple rewards withheld at mul-
tiple nodes in the binary tree. Each withheld reward will have some strategy for
being reclaimed in the future. Lemmas 4 and 3 ensure that the above argument
for converting such a strategy into AM-1 process still holds when multiple re-
wards are withheld. This finishes the proof of the claim that AM-1 stochastically
dominates any adversarial strategy.

C.6 Proof of Theorem 5

The fact that AM-2 further stochastically dominates AM-1 follows immediately
from Lemma 3 and converting a binary tree representation of AM-1 to that of
AM-2 from top to bottom. We omit this part of the proof as it is straightforward.
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C.7 Proof of Lemma 2

We use the following example of a adversarial strategy for illustration of the
proof:

Genesis

W(0)=A

W(1)=H W(1)=A

Block and reward withheld at t=1

Reward reclaimed  
when W(1)=H

Reward reclaimed  
when W(1:2)=AH

Reward reclaimed  
when W(1:3)=AAH

W(2)=H

W(3)=H

W(2)=A

W(3)=A

t=0

t=1

t=2

t=3

t=4

W(0)=H

A.1. Convert a white leaf node to a blue leaf node. As this change
only affects one sample path, only one instance is affected, say T = 4 and
W (0 : T − 1) = AAAA. The probability of this outcome does not change, but
only the fractional stake corresponding to this outcome changes from x̃(AAAA)
to x̃′(AAAA) = x̃(AAAA) + (c/S(AAAA)). As c/S(AAAA) > 0, the process
after the changing the white leaf node into a blue one is strictly stochastically
dominant. After this conversion, the node AAAA is now blue, in which case we
apply the next operation.

A.2. Convert two blue leaf nodes who are siblings into one blue parent
node with two white offsprings. This change affects two sample paths, say
T = 4, W (0 : T −1) = AAAA and W (0 : T −1) = AAAH. The fractional stakes
do not change, but the probabilities do. P(AAAH|AAA) = 1− x̃(AAA) changes
to P′(AAAH|AAA) = 1 − x̃(AAA) − (c/S(AAA)). P(AAAA|AAA) = x̃(AAA)
changes to P′(AAAA|AAA) = x̃(AAA) + (c/S(AAA)). Given that x̃(AAAH) ≤
x̃(AAAA) and c/S(AAA) > 0, the resulting process is stochastically dominant.
After this conversion, the node AAA is now blue, in which case we apply the
next operation.

A.3. Convert two blue sibling nodes into one blue parent node with
two white offsprings. This change affects many sample paths, all descendants
of a single node (parent of the two blue nodes of interest), say node AA, and node
AAA and node AAH are blue nodes. We know from rule A.2. that conditioned
on the event W (0 : 1) = AA, x̃′(2) stochastically dominates x̃(2). The rest of



Compounding of Wealth in Proof-of-Stake Cryptocurrencies 33

the process follows the standard Pòlya’s urn process. Hence, the following lemma
implies the desired claim. We provide a proof of this lemma in Appendix C.8.

Lemma 4 (Preservation of stochastic dominance of the standard Pòlya’s
urn process). Consider two standard Pòlya’s urn processes with the same ini-
tial total stake S(0) and the same constant reward c. One process has a random
initial fractional stake vA(0), which is stochastically dominated by that of the
other process v′A(0). Then, the final fractional stake preserves the dominance,
i.e. vA(T ) is stochastically dominated by v′A(T ).

After this conversion, the node AA is now blue, in which case we apply the
next operation.

A.4. Convert two blue offsprings of an orange node into one parent
node that is blue and orange with two white offsprings. Note that the
stakes at time t = 2 remain unchanged by the conversion, i.e. x̃(AA) = x̃′(AA),
and x̃(AH) = x̃′(AH). Only the corresponding probability of events change.
Node A is orange with, say x̃(A) = vA(t = 0), as the reward is withheld at time
t = 1. Hence, P(AA|A) = vA(0), whereas P′(AA|A) = vA(0) + (c/S(A)), after
the conversion. It follows from the fact that c/S(A) > 0 and X̃(AA) > X̃(AH)
(and also Lemma 4) that the conversion results in a process that is stochastically
dominant.

C.8 Proof of Lemma 4

We prove it by a recursion. Consider the following representation of the standard
Pòlya’s urn process. vA(t) denotes the fractional stake of party A at time t, that
starts as vA(0). S(t) = S(0) + c t denotes the total stake. First, we claim that if

vA(0) < v′A(0) deterministically, then vA(1)
D
≤ v′A(1). This follows from the fact

that

vA(1) =

{
vA(0)S(0)+c
S(0)+c w. p. vA(0) ,
vA(0)S(0)
S(0)+c w. p. 1− vA(0) ,

, and v′A(1) =

{
v′A(0)S(0)+c
S(0)+c w. p. v′A(0) ,
v′A(0)S(0)
S(0)+c w. p. 1− v′A(0) ,

.(29)

For these two valued discrete random variable, not only are those two values
both larger for the latter process, but also the probability mass for the larger

of those two values are also higher for the latter process. Hence, vA(1)
D
≤ v′A(1).

Note that assuming stochastic dominance of vA(0)
D
≤ v′A(0) leads to the same

conclusion. Hence, we can recursively apply the above result to prove the desired
lemma.

C.9 Proof of Lemma 3

Consider the following representation of the AM-1 process. Let vA(t) denote the
fractional stake of party A at time t, that starts as vA(0). Let S(t) denote the
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total stake at time t, that starts with S(0). First, we claim that if vA(0) < v′A(0)

deterministically, then vA(1)
D
≤ v′A(1). This follows from the fact that

vA(1) =

{
vA(0)S(0)+c

S(0) w. p. vA(0) ,
vA(0)S(0)
S(0)+c w. p. 1− vA(0) ,

, and v′A(1) =

{
v′A(0)S(0)+c

S(0) w. p. v′A(0) ,
v′A(0)S(0)
S(0)+c w. p. 1− v′A(0) ,

.(30)

The rest of the proof follows similarly as in the proof of Lemma 4 in Section C.8.

C.10 Proof of Theorem 3

This proof is best understood by reading Appendix B.2, which contains a number
of related lemmas. As R ≤ S(0)(1− vA(0)), xH(0) will always be non-negative.
Then,

E[vA(t+ 1)|vA(t)] = vA(t)
vA(t)S(t) + 2c

S(t+ 1)
+ (1− vA(t))

vA(t)S(t)

S(t+ 1)

= vA(t)
S(t+ 2)

S(t+ 1)
.

It follows that

E[vA(T )] = E[vA(T − 1)]
S(T + 1)

S(T )

= vA(0)
S(T + 1)

S(1)

= vA(0)
(

1 +
cT

S(0) + c

)
.
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