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Abstract Lattice-based encryption schemes still suffer from a low mes-
sage throughput per ciphertext and inefficient solutions towards realizing
enhanced security properties such as CCA1- or CCA2-security. This is
mainly due to the fact that the underlying schemes still follow a tradi-
tional design concept and do not tap the full potentials of LWE. Fur-
thermore, the desired security features are also often achieved by costly
approaches or less efficient generic transformations. Recently, a novel en-
cryption scheme based on the A-LWE assumption (relying on the hard-
ness of LWE) has been proposed, where data is embedded into the error
term without changing its target distributions. By this novelty it is pos-
sible to encrypt much more data as compared to the classical approach.
In this paper we revisit this approach and propose several techniques in
order to improve the message throughput per ciphertext. Furthermore,
we present a very efficient trapdoor construction of reduced storage size.
More precisely, the secret and public key sizes are reduced to just 1
polynomial, as opposed to O(log q) polynomials following previous con-
structions. Finally, we give an efficient implementation of the scheme
instantiated with the new trapdoor construction. In particular, we at-
test high message throughputs and low ciphertext expansion factors at
efficient running times. Our scheme even ensures CCA (or RCCA) secu-
rity, while entailing a great deal of flexibility to encrypt arbitrary large
messages or signatures by use of the same secret key.
Keywords: Lattice-Based Encryption, Lattice-Based Assumptions

1 Introduction

In [EDB15], a novel lattice-based encryption scheme has been proposed that
encrypts data in a way that differs from previous constructions [Reg05,GPV08,
Pei09, Pei10, ABB10, LP11, SS11, MP12] following the one-time-pad approach.
It is equipped with many features such as a high message throughput per ci-
phertext as compared to current state-of-the-art encryption schemes while si-
multaneously ensuring different security notions (e.g. CCA security) for many



cryptographic applications, for instance utilized for sign-then-encrypt scenar-
ios or to securely transmit bundles of keys as required for the provisioning of
remote attestation keys during manufacturing. Public key encryption schemes
also represent important building blocks of advanced primitives such as group
signature and ABS schemes. In many application scenarios it is also desired to
ensure CCA1- or CCA2-security. The Augmented Learning with Errors problem
(A-LWE) [EDB15], a modified LWE variant, has been introduced that allows
to inject auxiliary data into the error term without changing the target distri-
butions. In fact, the A-LWE problem has been proven to be hard to solve in
the random oracle model assuming the hardness of LWE. Using a suitable trap-
door function as a black-box such as [EB14,MP12], the owner of the trapdoor is
empowered to recover the secret resp. error-term and hence reveal the injected
data. By this novelty, it is possible to exploit the error term as a container for
the message or further information such as lattice-based signatures following the
distributions of the error-term. It further encompasses a great deal of flexibility
and other important properties such as CCA-security.

1.1 Our Contributions

In this paper we revisit the A-LWE problem and the implied encryption schemes
from [EDB15]. In particular, we provide several theoretical improvements, intro-
duce new tools, and give an efficient software implementation of the scheme
testifying its conjectured efficiency. Below, we give an overview of features that
can be realized by our scheme LARA (LAttice-based encryption of data embed-
ded in RAndomness):

1. Flexibility. The encryptor of the scheme can increase the amount of encrypted
data without invoking the encryption engine several times. Since the message
is embedded into the error term, increasing the error size (to at most ‖ei‖2 <
q/4 depending on the parameters) results in a higher message throughput.
Thus, we achieve very low ciphertext expansion factors as compared to recent
schemes. Furthermore, using a trapdoor allows to retrieve the secret and
error polynomials for inspection. The retrieved secret polynomial could also
play the role of a uniform random key for a symmetric key cipher.

2. Signature embedding. Due to the coinciding distributions of the error term
and lattice-based signatures, the encryptor can exploit the signature as the
error term. For instance, (c2, c3) contains the signature on the error or mes-
sage encrypted in c1. This offers an CCA2 like flavour as the decryptor can
verify that the ciphertext has not been altered during transmission and the
source of the data is authenticated via the signature. In case the size of the
signature is too large, the encryptor can further exploit its flexibility.

3. Security. An increase of the error size already enhances the security of
the scheme. However, it is also possible to further lift the security from
CPA or CCA1 to RCCA or CCA2 almost for free via the transformations
from [EDB15].



4. Efficiency. Due to the resemblance of ciphertexts to plain LWE samples, the
efficiency of the scheme is very close to that required to generate ring-LWE
samples, which intuitively seems to be a lower bound for many encryption
schemes that are based on ring-LWE.

Improved Message Throughput. We introduce new techniques in order to
increase the message throughput per ciphertext. In fact, we are able to exploit
almost the full min-entropy of the error term to embed arbitrary messages.
Previously, only one bit of the message was injected into a coefficient of the
error term. By our new method, we are able to inject about log2(αq/ω(

√
logn))

bits per entry for an error vector sampled according to the discrete Gaussian
distribution with parameter αq. Encoding and decoding of the message requires
only to reduce the coefficients modulo some integer.

m = c · nk CCA CPA/CCA CPA/CCA CCA CPA
k = log q [MP12] [EDB15] This work This work + [MP12] [LP11], others
Ciphertext size m · k m · k m · k m · k m · k
Signature size nk c log(αq)nk c log(αq)nk (c log(αq) + 1)nk cnk − n
Message size nk c · nk c · nk log(αq/4.7) (c log(αq/4.7) + 1)nk cnk − n
Message Exp. c · k k k

log(αq/4.7)
k

log(αq/4.7)+1/c k + k
ck−1

Following this approach we can revise the parameters from [EDB15] according to
the table above. When comparing our approach with the CPA-secure encryption
scheme from Lindner and Peikert [LP11] and other recently proposed schemes,
we attest an improvement factor of at least O(log(αq)).

Improved Trapdoors, Scheme Instantiation and Security. We give an
improved construction of trapdoors in the random oracle model, which allows
to significantly reduce the number of ring elements in the public key by a factor
O(log q), hence moving trapdoor constructions towards practicality. More pre-
cisely, we give an improved construction of trapdoor algorithms
(TrapGen, LWEGen, LWEInv), in case the secret vector is sampled uniformly at
random and can thus be selected s = F (r, H(r)) involving a deterministic func-
tion F and a cryptographic hash function H modeled as a (quantum-) random
oracle. This is a crucial ingredient of our construction and the resulting schemes.
In particular, we achieve public and secret keys each consisting only of 1 poly-
nomial. Hence, our construction improves upon previous proposals, where the
public key contains at least dlog qe polynomials (matrix dimension in [MP12] is
n × n(1 + lg q), see also [LPR13]), and is thus comparable with the public key
size used in current state-of-the-art encryption schemes. This makes the usage
of trapdoor based constructions more attractive for practice as it provides direct
access to the secret and error vectors, which can be exploited in many different
ways and at least for inspection.

Implementation and Analysis. In order to attest the conjectured efficiency
of our scheme that we call LARACPA or LARACCA, we implement the (quantum-)
random oracle variants of our CPA- and CCA-secure schemes in software. This



implementation is optimized with respect to the underlying architecture. To this
end, we applied optimized techniques for discrete Gaussian sampling and FFT
multiplication, the core elements governing the efficiency of the scheme. In partic-
ular, we adopt several optimizations for the polynomial representation and poly-
nomial multiplication by use of efficient FFT/NTT operations. We implement
our scheme and compare it with various schemes. For our reference implementa-
tion and n = 1024 (conservative parameters), we attest running times of 418 000
cycles for encryption and about 289 000 cycles for decryption in the CPA-secure
setting. Thus, in comparison to the other schemes, we achieve by our improved
trapdoor construction high message throughputs at low ciphertext expansion
factors and at efficient running times and key sizes. The AVX-implementation
is about twice as fast.

1.2 Acknowledgements

The work presented in this paper was performed within the context of the project
P1 within the CRC 1119 CROSSING. We thank Douglas Stebila for his useful
comments.

1.3 Organization

This paper is structured as follows. Section 2 provides the relevant background
of our work. In Section 3 we introduce the A-LWE problem from [EDB15] and
present our improvements to enhance the message throughput. In Section 4 a
description of new trapdoor algorithms is proposed. The resulting encryption
schemes are detailed in Section 5. In Section 6 we present our software imple-
mentation and experimental results.

2 Preliminaries

Notation We will mainly focus on polynomial rings R = Z[X]/ 〈Xn + 1〉 and
Rq = Zq[X]/ 〈Xn + 1〉 for integers q > 0 and n being a power of two. We denote
ring elements by boldface lower-case letters e.g. p, whereas for vectors of ring
elements we use p̂ and upper-case bold letters for matrices (e.g., A). By ⊕ we
denote the XOR operator.

Discrete Gaussian Distribution We define by ρ : Rn → (0, 1] the n-dimensional
Gaussian function

ρs,c(x) = e−π·
‖x−c‖2

2
s2 , ∀x, c ∈ Rn .

The discrete Gaussian distribution DΛ+c,s is defined to have support Λ + c,
where c ∈ Rn and Λ ⊂ Rn is a lattice. For x ∈ Λ + c, it basically assigns the
probability DΛ+c,s(x) = ρs(x)/ρs(Λ+ c) .

Lattices. Throughout this paper we are mostly concerned with q-ary lattices
Λ⊥q (A) and Λq(A), where q = poly(n) denotes a polynomially bounded modulus



and A ∈ Zn×mq is an arbitrary matrix. Λ⊥q (A) resp. Λq(A) are defined by

Λ⊥q (A) = {x ∈ Zm | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Zm | ∃s ∈ Zm s.t. x = A>s mod q} .

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ∗\{0}) ≤ ε .

Lemma 1 ([Ban95, Lemma 2.4]). For any real s > 0 and T > 0, and any
x ∈ Rn, we have

P [| 〈x,DZn,s〉 | ≥ T · s ‖x‖] < 2exp(−π · T 2) .
Lemma 2 ([GPV08, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis S,
and let ε > 0. We have ηε(Λ) ≤‖ S̃ ‖ ·

√
ln
(
2n
(
1 + 1

ε

))
/π. In particular, for any

function ω(
√

logn), there is a negligible ε(n) for which ηε(Λ) ≤‖ S̃ ‖ ·ω(
√

logn).

Corollary 1 ([DM14, Corollary 4]). Let n ≥ 4 be a power of two, q ≥ 3 a
power of 3, and set Rq = Zq[x]/ 〈xn + 1〉, then any nonzero polynomial t ∈ Rq
of degree d < n/2 and coefficients in {0,±1} is invertible in Rq .

Definition 2 (LWE Distribution). Let n,m, q be integers and χe be distri-
bution over Z. By LLWE

n,m,αq we denote the LWE distribution over Zn×mq × Zmq ,
which draws A ←R Zn×mq uniformly at random, samples e ←R DZm,αq and
returns (A,b>) ∈ Zn×mq × Zmq for s ∈ Znq and b> = s>A + e>.
Definition 3 (LWE Problem). Let u ∈ be uniformly sampled from Zmq .
– The decision problem of LWE asks to distinguish between (A,b>)← LLWE

n,m,αq

and (A,u>) for a uniformly sampled secret s←R Znq .
– The search problem of LWE asks to return the secret vector s ∈ Znq given an

LWE sample (A,b)← LLWE
n,m,αq for a uniformly sampled secret s←R Znq .

3 Augmented Learning with Errors
In this section, we give a description of the message embedding approach as
proposed in [EDB15] and how it is used in order to inject auxiliary data into
the error term of LWE samples. This feature represents the main building block
of the generic encryption scheme from [EDB15], which allows to encrypt huge
amounts of data without increasing the ciphertext size. In fact, it is even possible
to combine this concept with the traditional one-time-pad approach in order to
take the best from both worlds and hence increase the message size per ciphertext
at almost no cost.
Lemma 3 ([EDB15, Statistical]). Let B ∈ Zn×mp be an arbitrary full-rank
matrix and ε = negl(n). The statistical distance ∆(DZm,r,DΛ⊥v (B),r) for uniform
v←R Znp and r ≥ ηε(Λ⊥(B)) is negligible.
Lemma 4 ([EDB15, Computational]). Let B ∈ Zn×mp be an arbitrary full-
rank matrix. If the distribution of v ∈ Znp is computationally indistinguishable
from the uniform distribution over Znp , then DΛ⊥v (B),r is computationally indis-
tinguishable from DZm,r for r ≥ ηε(Λ⊥(B)).



3.1 Message Embedding

The proposed technique aims at embedding auxiliary data into the error term e
such that it still follows the required error distibution. In particular, Lemma 3
and 4 are used, which essentially state that a discrete Gaussian over the integers
can be sampled by first picking a coset Λ⊥c (B) = c + Λ⊥p (B) uniformly at ran-
dom for any full-rank matrix B ∈ Zn×mp and then invoking a discrete Gaussian
sampler outputting a preimage x for c such that B · x ≡ c mod p However, this
requires the knowledge of a suitable basis for Λ⊥q (B). In fact, the random coset
selection can be made deterministic by means of a random oracle H taking a
random seed with enough entropy as input.
The fact that xoring a message m to the output of H does not change the dis-
tribution, allows to hide the message within the error vector without changing
its target distribution. As a result, we obtain e← DΛ⊥

H(µ)⊕m(B),r, which is indis-
tinguishable from DZm,r for a random seed µ and properly chosen parameters
(see Lemma 3 and Lemma 4). Subsequently, based on the message embedding
approach the Augmented LWE problem (A-LWE) has been introduced, where
A-LWE samples resemble ordinary LWE instances except for the modified error
vectors. In particular, the A-LWE problem is specified with respect to a spe-
cific matrix G, which allows to efficiently sample very short vectors according to
the discrete Gaussian distribution. We note that other choices are also possible
as long as the parameter of the error vectors exceed the smoothing parameter
of the associated lattice. We now give a generalized description of the A-LWE
distribution using any preimage sampleable public matrix B.

Definition 4 (Augmented LWE Distribution). Let n, n′,m,m1,m2, k, q, p
be integers with m = m1 + m2, where αq ≥ ηε(Λ⊥(B)). Let H : Znq × Zm1 →
{0, 1}n

′·log(p) be a cryptographic hash function modeled as random oracle. Let B ∈
Zn′×m2
p be a preimage sampleable full-rank matrix (such as B = G from [MP12]).

For s ∈ Znq , define the A-LWE distribution LA-LWE
n,m1,m2,αq(m) with m ∈ {0, 1}n

′ log p

to be the distribution over Zn×mq × Zmq obtained as follows:

1. Sample A←R Zn×mq and e1 ←R DZm1 ,αq .

2. Set v = encode(H(s, e1)⊕m) ∈ Zn′p .
3. Sample e2 ←R DΛ⊥v (B),αq .

4. Return (A,b>) where b> = s>A + e> with e = (e1, e2) .

We note that the Step 3 returns a discrete Gaussian that is distributed asDZm2 ,αq

follwoing [EDB15, Computational]. In principal, for A-LWE one differentiates
the decision problem decision A-LWEn,m1,m2,αq from the corresponding search
problem search-s A-LWEn,m1,m2,αq, as known from LWE. Furthermore, there ex-
ists a second search problem search-m A-LWEn,m1,m2,αq, where a challenger is
asked upon polynomially many A-LWE samples to find in polynomial time the
message m injected into the error vector. Note that the error distribution could
also differ from the discrete Gaussian distribution. For instance, one could use
the uniform distribution, for which one obtains similar results. All the proofs



from [EDB15] go through without any modifications, since the security proofs
are not based on the choice of B.

Theorem 1 (adapted [EDB15]). Let n, n′,m,m1,m2, q, p be integers with
m = m1 + m2. Let H be a random oracle. Let αq ≥ ηε(Λ⊥q (B)) for a real ε =
negl(λ) > 0 and preimage sampleable public matrix B ∈ Zn′×m2

p . Furthermore,
denote by χs and χe1 the distributions of the random vectors s and e1 involved
in each A-LWE sample. If H∞(s, e1) > λ, then the following statements hold.

1. If search LWEn,m,αq is hard, then search-s A-LWEn,m1,m2,αq is hard.
2. If decision LWEn,m,αq is hard, then decision A-LWEn,m1,m2,αq is hard.
3. If decision LWEn,m,αq is hard, then search-m A-LWEn,m1,m2,αq is hard.

One easily notes, that these hardness results also hold for the ring variant
(see [ABBK17]). We remark that for encryption schemes the secret s is always
resampled such that H(s) suffices to output a random vector and the complete
bandwidth of e is exploited for data to be encrypted.

3.2 Improved Message Embedding

For the sake of generality, we used in all our statements an abstract matrix
B ∈ Zn′×mp for integers p, n′, and m. This is used to embed a message into the
error term via e2 ←R DΛ⊥v (B),αq, where v = encode(H(seed) ⊕ m) ∈ Zn′p is
uniform random. However, we can specify concrete matrices that optimize the
amount of information per entry with respect to the bound given in Lemma 2.
We propose several techniques in order to enhance the message throughput per
discrete Gaussian vector. These techniques could also be applied to the error vec-
tor involved in the A-LWE distribution. In other words, we aim at choosing an
appropriate preimage sampleable full-rank matrix B ∈ Zn′×mp such that n′ · log p
is maximized. For now, we will focus on how to apply this technique to the differ-
ent encryption schemes and omit the term e1 when invoking the random oracle,
since the secret s ∈ Znq is always resampled in encryption schemes and hence
provides enough entropy for each fresh encryption query. The first approach is
based on a method used to construct homomorphic signatures in [BF11]. We also
propose a simpler approach that avoids such complex procedures while entailing
the same message throughput.

Intersection Method. The intersection method as proposed in [BF11] con-
siders two m-dimensional integer lattices Λ1 and Λ2 such that Λ1 + Λ2 = Zm,
where addition is defined to be element-wise. Therefore, let m1 and m2 be two
messages, where m1 and m2 define a coset of Λ1 and Λ2 in Zm, respectively. As a
result, the vector (m1,m2) defines a unique coset of the intersection set Λ1 ∩Λ2
in Zm. By the Chinese Remainder theorem one can compute a short vector t
such that t = m1 mod Λ1 and t = m2 mod Λ2 using a short basis for Λ1 ∩ Λ2.
In fact, it is easy to compute any vector t that satisfies the congruence relations.
Subsequently, by invoking a preimage sampler one obtains a short vector from
Λ1 ∩ Λ2 + t.



Lattices of the Form pZm. One realizes that for a given parameter αq for the
distribution of the error vector one can be much more efficient, if one considers
only the lattice Λ⊥p (I) = pZm. In this case, the message space is simply defined
by the setM = Zm/Λ⊥p (I) ∼= Zmp . When comparing with the previous approach,
for instance, it is only required to increase p by a factor of 2 in order to obtain the
same message throughput m log 2p = m · (log p + 1). Furthermore the decoding
and encoding phase is much faster, since encoding requires only to sample e←
Db+pZm,αq for b = H(r) ⊕ m using fast discrete Gaussian samplers such as
the Knuth-Yao algorithm or efficient lookup tables. Decoding is performed via
H(r)⊕(e mod p). Optimizing the message throughput requires to increase p such
that ηε(Λ) ≤ p ·const ≤ αq still holds for const =

√
ln(2(1 + 1/ε))/π. Doing this,

one can embed approximately m · log p bits of data, which almost coincides with
the min-entropy of a discrete Gaussian with parameter αq, since const ≈ 4.7.
Therefore, one prefers to choose a parameter αq = p · const with p = 2i and
integer i > 0 in order to embed i bits of data into the error term.

Uniform Error. For uniformly distributed errors one can directly employ the
output of the random function H(·) as the error term. More specifically, suppose
e ∈ ([−p, p]∩Z)m, then let H(·) : {0, 1}∗ → ([−p, p]∩Z)m be a random function
(e.g. RO) such that e← encode(H(r)⊕m) for m ∈ {0, 1}m log2(2p). As a result,
one can use the full bandwidth of the error term and inject m log2(2p) message
bits.

4 New Trapdoor Algorithms for Ideal-Lattices

In [EB14] a generic approach of how to instantiate the trapdoor construction
is given that allows to retrieve the error term and the secret vector from A-
LWE instances. However, the number of public key polynomials is with m̄ + k
polynomials where k = dlog qe rather large and hence not suitable for practice.
In fact, the trapdoor constructions [EB14,MP12] require at least 2 public key
polynomials in order to generate signatures. For encryption, one requires even
more as the LWE inversion algorithm has to efficiently recover the correct secret.
Thus, a new approach is needed in order to tackle this issue.

In this section, we give new trapdoor algorithms and show how to reduce the
size of the public key to just 1 polynomial. This is due to the fact that we can
select the secret vector in A-LWE instances to be of the form s = F (r, H1(r))
for a deterministic function F (·), where r is a random bit string and H1 is a
cryptographic hash function modeled as RO. Remarkably, the secret key consists
only of 1 polynomial, which improves upon the construction from [MP12,EB14].
We start with a description of our new trapdoor algorithms in the ring setting
K = (TrapGen, LWEGen, LWEInv). Lemma 5 shows that TrapGen outputs a public
key that is computationally indistinguishable from uniform random. In order to
use tags for CCA-secure constructions, we need to modify the way, in which tags
are applied.



4.1 Construction of Efficient Trapdoors for A-LWE

We present new trapdoor algorithms for public key generation (TrapGen), ring-
LWE generation (LWEGen) and inversion (LWEInv). These algorithms will serve
to instantiate our new encryption scheme from ring A-LWE. For the sake of
simplicity, we only consider the case where q = pk, where p is any positive
(prime) integer.

1. TrapGen(1n) : Let q = pk for a prime integer p > 0. Let further g = pk−1. The
system parameters are two uniform random polynomials a1,a2 ∈ Rq (e.g.
sampled from a seed). Sample 2 random polynomials ri according to DZn,rsec
for i ∈ {1, 2}. The public and secret keys are given by pk := a3, sk = [r1, r2]
with

A =

a1,a2,g− (a1 · r1 + a2 · r2)︸ ︷︷ ︸
a3

 ∈ R3
q.

If a tag tu is applied, we obtain Au via tu · g (see below).

2. LWEGen(1n) : In order to generate an (A-)LWE instance, we let H1 be a
cryptographic hash function modeled as a random oracle. For A we generate
ring-LWE instances

[b1, b2, b3] = [a1,a2,g− (a1 · r1 + a2 · r2)] · s + ê ∈ R3
q .

Each coefficient of s ∈ Rq is of the form

si = ci,0 + ci,1 · p+ ....+ ci,k−1 · pk−1

for ci,j ∈ {0, . . . , p − 1} and i ∈ {1, . . . , n}, where ci,0 ←R {0, . . . , p − 1} is
sampled uniformly at random. Then, invoke d = H(c1,0, . . . , cn,0) → Znpk−1

and set si = ci,0 + p · di.
• For the special case q = 2k, the binary number ci,0 corresponds to the
least significant bit of the coefficient si. That is LSB(si)←R {0, 1}, where
LSB denotes the least significant bit. Then, in order to set the remain-
ing bits of si invoke d = H1(LSB(s1), . . . , LSB(sn)) ∈ Zn2k−1 . Finally,
determine si = LSB(si) + 2 · di ∈ Zq by appending the bit ci,0 to di.

The error polynomials ei can now be sampled from the discrete Gaussian
distribution DZn,αq, where 1 ≤ i ≤ 3 and αq > 0.

3. LWEInv(b̂, sk) : We first compute

v = g · s + t = b3 + b1 · r1 + b2 · r2,

where t is a some small error.
The closest integer ci,0·pk−1 to each coefficient vi is recovered. This is possible
if |ti| < pk−1/2. In particular, we recover ci,0 via

ci,0 = bvi/pk−1e mod p for 0 ≤ i < n



• For q = 2k, we have ci,0 = LSB(si) = bvi/2k−1e mod 2 .
Once having recovered all ci,0, the hash function is invoked d =
H1(c1,0, . . . , cn−1,0) ∈ Znpk−1 such that si = ci,0 + di · p. The error vector
is subsequently retrieved via ê = b̂−A · s.

Remark 1. For odd q and small secrets, we can instead set g = (q − 1)/2 .
The most significant bits do not vanish but wrap around modulo q. We note,
that the case q = 2k is very efficient due to cheap sampling and modulo
operations.

Lemma 5. Let a1,a2 ∈ Rq be uniform random polynomials and r1, r2 be
sampled according to DR,αq = DZn,αq (via the coefficient embedding) for
αq > 2

√
n. The public key

A = [a1,a2,a1 · r1 + a2 · r2]

is computationally indistinguishable from uniform.

Proof. For simplicity, we can assume that a1 is a unit in Rq, since the ring
of units R×q represents a non-negligible subset of Rq for the rings in consid-
eration. Then

A = a1 · [1, ā, ā · r2 + r1] ,
where [ā, ā · r2 + r1] is a ring-LWE instance with a uniform random poly-
nomial ā = a−1

1 a2, since a2 is uniform random. As a result and due to the
independence of a1 from a2 the claim follows.

Lemma 6 (Correctness). For q = pk, error polynomials ei and secret key
polynomials rj, the algorithm LWEInv(b̂, sk) correctly inverts the (A-)LWE
instance, if

‖e3 + e1 · r1 + e2 · r2‖∞ < pk−1/2 .

Proof. The inversion algorithm computes

b3 + b1 · r1 + b2 · r2 mod q = g · s + e3 + e1 · r1 + e2 · r2 mod q
= pk−1 · s + e3 + e1 · r1 + e2 · r2 mod q

= pk−1 ·

c1,0
...

cn,0

+ e3 + e1 · r1 + e2 · r2 mod q

So, if ‖e3 + e1 · r1 + e2 · r2‖∞ < pk−1/2, then we cleary can recover ci,0 of
each coefficient. From the coefficients we can recover s and ej and thus the
message.

Tagging the public key (in order to achieve CCA security) in the ring setting
is accomplished similar to [MP12, EDB15], but with some practical obsta-
cles to be solved for decryption. This is due to the random oracle instanti-
ation, which prevents from recovering the tag tu in a straightforward way,



because the inversion algorithm only recovers ci,0 (for q = pk) of the co-
efficients from tu · s. However, via a trick we can circumvent this obstacle
in a computationally indistinguishable way. This is mainly possible, since
tu is a unit and multiplication with a uniform random polynomial is again
uniform. Thus, we can instead generate tu · s := ci,0 + p · di in LWEGen and
cancel out tu from it via its inverse when s is required. Here, we denote
Au = [a1,a2, tu · g− (a1r1 + a2r2)] in accordance to Section 4.

5 Public Key Encryption
In order to build a public key encryption scheme we need to combine the
trapdoor construction described in Section 4 with the message embedding
approach from Section 3. The main idea is to inject data to be encrypted
into the error polynomials from LWEGen. To this end, we need the error
terms to be partially deterministic and simultaneously look random by use
of a random oracle.

LARA.KGen(1λ)
1: (sk, pk)← TrapGen(1λ)
2: We replace a1,a2 in the public key with the seed generating those elements,

i.e. pk = (seed,a3).

LARA.Enc(pk, (m1,m2,m3) ∈ {0, 1}3n log w)
1: a1,a2 ← G(seed)
2: c0 = (c1,0, . . . , cn,0)← Znp
3: (v1,v2,v3),d← H(c0) ∈ Z3n

w × Zn
pk−1

4: s = c0 + p · d
5: ti = Encode(mi) + vi mod w for 1 ≤ i ≤ 3
6: ei ← Dti+w·Zn,s for 1 ≤ i ≤ 3
7: Output bi = ai · s + ei for 1 ≤ i ≤ 3

LARA.Dec(sk,b ∈ R3
q)

1: a1,a2 ← G(seed)
2: (s := c0 + p · d, e1, e2, e3)← LWEInv(sk,b)
3: (v1,v2,v3),d← H(c0) ∈ {0, 1}3n log w × Zn

pk−1

4: ti = ei mod w for 1 ≤ i ≤ 3
5: mi = Decode(ti − vi mod w)
6: Output (m1,m2,m3)

Fig. 1: Description of the CPA-secure Encryption Scheme.

We now give a description of our new CPA-secure public key encryption
scheme. Thus, let s = w ·

√
ln
(
2n
(
1 + 1

ε

))
/π for an integer w > 2. Hence,

we embed the message into the cosets of the lattice w · Zn (see Section 3.2).
For key generation, the CPA-secure scheme just invokes TrapGen. For a com-
pact scheme, we let the uniform random polynomials a1,a2 be generated
from a large enough seed ∈ {0, 1}λ ensuring λ(n) classical bits. Here G is



instantiated as a random oracle, which in practice can be replaced by pseu-
dorandom generators such as Shake .
The encryption function works similar to LWEGen with the main difference
that H outputs the additional random vectors vi used to mask the message
and to generate the error polynomials via Lemma 3. The Encode and Decode
routines are used to translate between bit strings and vectors/polynomials.
The decryption routine invokes LWEInv to recover the error polynomials and
the secret s . Finally, all steps from the encryption function are reversed such
that the message is unmasked again.
Remark 2. For q = 2k, ti = Encode(mi) + vi mod 2 is equivalent to ti =
Encode(mi ⊕ hi), where hi := Decode(vi) . This complies with the represen-
tation of Section 3, when defining the ALWE problem. We can also directly
generate vi as a bit string during encryption without the need for conversion.
In the standard IND-CPA security game the adversary is challenged to cor-
rectly guess the bit b with non-negligible advantage given two distinct mes-
sages of his/her choice.

Experiment Expind−CPA
E,A (n)

(pk, sk)← KGen(1k)
(µ0, µ1)← A(choose, pk)
cb ← Encpk(µb) for b←R {0, 1}
b′ ← A(guess, cb)
Output 1 iff

1. b′ = b
2. |µ0| = |µ1|

We now state the main theorem of this section, which can be extended to
the quantum random oracle case. By lb− RLWE we define the problem of
finding low order bits in ring-LWE instances.

Theorem 2. Let lb− RLWE be defined as in Lemma 7. In the random oracle
model, assume that there exists a PPT-adversary A against the scheme with
s ≥ w ·

√
ln
(
2n
(
1 + 1

ε

))
/π, then there exists a reduction M that breaks

ring-LWE/ring-ALWE such that

AdvCPA
LARA(A) ≤ 3Advdec−RLWE

n,3 (M) + Advlb−RLWE
n,3 (M) + qH/pn .

Proof. We proceed via a sequence of hybrids and show that the ciphertext
is pseudorandom under any of the computational assumptions, namely ring-
LWE or ring-ALWE, where latter is itself based on ring-LWE. Let H0 be
the real IND− CPA game. In the first hybrid H1, we replace a3 by a uni-
form random polynomial. If there exists a distinguisher that can distinguish
H0 from H1, then there exists a reduction M0 that breaks decision ring-
LWE (dec− RLWE). Thus, AdvH0,H1(A) ≤ Advdec−RLWE

n,1 (M0) . In the second
hybrid H2, we change the random oracle output (v1,v2,v3),d of H(c0) by
uniform random values and thus also ti for 1 ≤ i ≤ 3 . A PPT adversary can
only distinguish H1 from H2, if it queries H on c0 (see below). But then, a



reduction M1 exists (Lemma 7) that breaks lb− RLWE. Thus, we have
AdvH1,H2(A) ≤ Advlb−RLWE

n,3 (M1) + qH/pn . Latter term represents the prob-
ability of a correct guess with at most qH queries to H. In the third hybrid
H3, we replace ei ← Dti+pZn,s by ei ← DZn,s (coefficient embedding) via
Lemma 3. Here, ei is distributed statistically close to the discrete Gaussian
distribution. Thus, AdvH2,H3(A) ≤ Advdec−RLWE

n,3 (M2) for appropriate param-
eters. Note that AdvH2,H3(A) is bounded by the statistical distance. We note
that samples from H2 are ring-LWE instances (except with negligible statis-
tical distance). In the last hybrid H4, we let the ciphertexts bi for 1 ≤ i ≤ 3
be generated uniformly at random rather than as ring-LWE instances. Thus,
AdvH3,H4(A) ≤ Advdec−RLWE

n,3 (M3) . The claim follows from
AdvH0,H4(A) ≤ AdvH0,H1(A) + AdvH1,H2(A) + AdvH2,H3(A) + AdvH3,H4(A)

≤ 3Advdec−RLWE
n,3 (M) + Advlb−RLWE

n,3 (M) + qH/pn,

We stress that the adversary cannot tell apart samples from H1 and H2
unless he queries the RO on c0, i.e., before querying the RO on c0 samples
from H1 are indistinguishable from ones in H2 (ring-LWE samples) in the
adversary’s view. Thus, with the same probability as in H1 the adversary
queries the RO on c0 when he is only given ring-LWE samples from H2.
In H2 the only information the adversary gets about c0 is the ring-LWE
instance with least significant bits c0 of the secret. Thus, if it queries H on
c0 with non-negligible probability, it breaks ring-LWE as per Lemma 7.

Lemma 7. Let q = O(n) and ` the error size. Suppose there exists a PPT
algorithm S that can output the low order bits of the secret in ring-LWE
instances (lb− RLWE problem), then there exists a PPT algorithm B that
breaks the search version of ring-LWE.
Proof. Suppose there exists such an algorithm. For simplicity, let p be co-
prime to q. The ring-LWE samples {(ai,bi := ai · s + ei mod q)}i define
the problem instance. B is challenged to find s. With high probability,
there exists an invertible element aj ∈ Rq (see e.g. [Pei15]). Taking any
other sample, e.g. (a1,b1 := a1 · s + e1 mod q), we can construct samples
b(0)
i := (a−1

j ai)·(ej+d)+ei = a−1
j ai·(bj+d)−bi mod q with ej+d as the se-

cret and i 6= j [ACPS09]. Here, the term d is filled with the tail bound at each
coefficient such that all coefficients of ej +d are positive. Finding s is equiv-
alent to recovering (ej +d) := e(0)

j = c0 +p ·c1 + . . .+p`−1c`−1 with ci ∈ Znp
for some small ` < k . The first input to S is therefore (a(0)

i := a−1
j ai,b(0)

i )
which outputs c0 in polynomial time by assumption. In the second iteration
the input is modified to (a(1)

i ,b(1)
i ) with a(1)

i := p · a(0)
i ,

b(1)
i := b(0)

i − a(0)
i · c

(0) mod q = a(0)
i · (p · c1 + . . .+ p`−1c`−1) + ei mod q

= (p · a(0)
i ) · (c1 + . . .+ p`−2c`−1) + ei mod q = a(1)

i · e
(1)
j + ei mod q

and secret e(1)
j := (c1 + . . .+ p`−2c`−1). Then, S outputs c1 by assumption.

Analogously, via (a(t)
i := pt · a(0)

i ,b(t)
i := b(t−1)

i − a(t−1)
i · c(t−1)) as input



instances to S the algorithm B obtains all ct for 0 ≤ t ≤ ` − 1, recovers
ej + d = c0 + p · c1 + . . . + p`−1c`−1 and thus s (after ` iterations) solving
search− RLWE. Adding small errors to a(t)

i generalizes the proof to all p, q.
5.1 CCA-secure Encryption
In order to obtain CCA-security, there exist 2 approaches. The first approach
just requires to turn a CPA-secure public key encryption scheme via the
Fujisako-Okamoto transform [FO99] into a CCA-secure hybrid encryption
scheme. This can indeed be made very efficiently, where the symmetric key
cipher could be instantiated by a random oracle or pseudorandom function
(such as Shake). The other approach is realized based on the so-called tag
approach, where a random tag [MP12,ABB10,PV08] is applied to the public
key prior to encryption, i.e. we have Au = [a1,a2, tu · g − (a1r1 + a2r2)].
This has been realized in several works such as [MP12, EDB15]. To this
end, a large tag space T has to be defined, out of which the tag is drawn
uniformly at random. An element is called a tag, if it is a unit in the ring
and satisfies the unit difference property. That is, for two units u,v ∈ T
the difference u − v is again a unit. Beside of these properties, a further
objective is to specify efficient algorithms that allow to sample elements from
T uniformly at random. In fact, for q = 3k the tag space may be defined to
consist of binary polynomials of degree smaller than n/2 such that it satisfies
the unit difference property as per Corollary 2. Thus, it suffices to sample
binary strings of length n/2 bits and map them to the corresponding binary
polynomial of degree smaller than n/2. In Section 4.1 we explained how to
generate tu ·s such that we can recover s . Using the framework from [EDB15]
we give a CCA-secure scheme in Appendix A.
Corollary 2 (Unit Difference Property). Let the tag space be defined
as T = {a0 + a1 · x + . . . + an/2−1 · xn/2−1 | for ai ∈ {0, 1}}\0. Then, any
tag u ∈ T satisfies the unit difference property.
Proof. Any two elements u1,u2 ∈ T are invertible as per Corollary 1. Since
both tags of degree at most n/2− 1 have coefficients in {0, 1}, the difference
u1 − u2 has coefficients in {0,±1}; thus invertible as per Corollary 1.

6 Software Implementation and Performance Analysis

At the implementation front we consider several optimizations and present
an overview of the main ingredients. The error polynomials are generated as
ei ← DpZn+vi,αq for uniform random cosets vi following Lemma 3. This is
realized with the aid of lookup tables, where almost 0.99 of the probability
mass is concentrated on the 10 mid elements. Furthermore, we can use buck-
ets for the 10 mid elements such that one call suffices to obtain a sample in
0.99 of all cases. In general, we find the right element after around 2 table
lookups. By this technique we can build an efficient discrete Gaussian sam-
pler. We instantiate the random oracle H(·), when encrypting messages, by
an efficient and secure pseudo-random generator such as Salsa20 or Shake1.

1 KeccakCodeProject: github.com/gvanas/KeccakCodePackage/

github.com/gvanas/KeccakCodePackage/


The secret key might consist of uniform random elements deduced from a
seed and pk. We refer to the table below for a description parameters in use.

Parameter Description

n Dimension
q Modulus
λ Size of seed generating a1,a2
w Message range
s Error distribution DZn,s
rsec Distribution of secret keys: DZn,rsec or uniform

with integer coefficients from (−rsec, rsec]
Message size 3n log2 w
Ciphertext size 3n log2(q)
Public key size λ+ ndlog2(q)e
Secret key size 2λ+ ndlog2(q)e

6.1 Performance Analysis and Implementation Results

We implemented both our CPA/CCA secure schemes for n = 1024 on a
machine that is specified by an Intel Core i5-6200U processor operating at
2.3GHz and 8GB of RAM. We used a gcc-5.4 compiler with compilation flags
Ofast. Table 2 compares different schemes at a security level of 256 bits,

Scheme LARACPA LARACCA Kyber1024− KEM spLWECCA
(Ref-Impl) This work This work [BDK+] [CHK+17]

q 215 39 7681 520

Enc (in cycles) 414 586 497 239 481 042 813 800
Dec (in cycles) 289 463 418 147 558 740 787 800

Message size (in bits) 6 144 6 144 256 256
Ciphertext exp 7.5 7.5 >33 25

PK size (in bytes) 1 984 1 984 1 081 -
SK size (in bytes) 2 048 2 048 2 400 -

Fig. 2: Experimental results from our reference implementation.

where spLWECCA provides only 128 bits of security. LARA has very small
ciphertext expansion factors represented by a very low ratio of the ciphertext
size per message bit. The number of cycles per encrypted message bit as well
as its absolute performance and key sizes are very competitive for the CPA
and CCA secure schemes. For instance, we are able to encrypt 2 bits per
entry for q = 215 or q = 214 resulting in 414 586 cycles for encryption or 67
cycles per message bit. In order to estimate the security we used the LWE
estimator2.

2 https://bitbucket.org/malb/lwe-estimator

https://bitbucket.org/malb/lwe-estimator
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A CCA-secure Encryption with Tags

Let q = 3k and T define the tag space containing binary polynomials of
degree less than n/2 .

LARACCA.KGen :(1`)
1: (sk, pk)← TrapGen(1n)
2: We replace a1,a2 in the public key with the seed generating those elements,

i.e. pk = (seed,a3), where a3 = (a1 · r1 + a2 · r2).

LARACCA.Enc(pk, (m1,m2,m3) ∈ {0, 1}3n log w)
1: a1,a2 ← G(seed)
2: tu ∈ T
3: c0 = (c1,0, . . . , cn−1,0)← Znp
4: (v1,v2,v3),d← H(c0) ∈ Z3n

w × Zn
pk−1

5: tu · s = c0 + p · d
6: s := t−1

u · (c0 + p · d)
7: ti = Encode(mi) + vi mod w for 1 ≤ i ≤ 3
8: ei ← Dti+w·Zn,s for 1 ≤ i ≤ 3
9: bi = ai · s + ei for i = 1, 2
10: b3 = tus · g− a3 · s + e3
11: h = H(s, tu, ê)
12: Output u, h, b̂ = (b1,b2,b3) .

LARACCA.Dec(sk, (u, h, b̂) ∈ {0, 1}n/2 × {0, 1}λ ×R3
q)

1: a1,a2 ← G(seed)
2: (tus := c0 + p · d, e1, e2, e3)← LWEInv′(sk, b̂)
3: (v1, v2,v3),d← H(c0) ∈ {0, 1}3n log w × Zn

pk−1

4: if h = H(s, tu, ê)∧ ‖ ê ‖≤
√

3n · s
5: ti = ei mod w for 1 ≤ i ≤ 3
6: mi = Decode(ti − vi mod w)
7: Output (m1,m2,m3)

Fig. 3: Description of the CCA-secure Encryption Scheme.

Remark 3. We note that in the encryption routine we have
(tu · g − a3) · s + e3 = tus · g − a3 · s + e3 . Furthermore,the trapdoor
inversion algorithm LWEInv′ computes the same quantities as LWEInv with
the difference that it also deduces tu from u via the coefficient embedding.
Once tu · s is recovered, one can compute s and thus ê = b̂ − Au · s (see
Section 4).



A.1 Chosen Ciphertext Security and Variants

We recall the definitions of (replayable) chosen ciphertext security of encryp-
tion schemes. Let E = (KGen,Enc,Dec) be a public key encryption scheme
and consider the following experiments for atk ∈ {cca1, cca2, rcca}:

Experiment Expind−atk
E,A (n)

(pk, sk)← KGen(1k)
(µ0, µ1)← ADec(·)(choose, pk)
cb ← Encpk(µb) for b←R {0, 1}
b′ ← AO2(·)(guess, cb)
Output 1 iff

1. b′ = b
2. |µ0| = |µ1|
3. cb was not queried to O2

If A queries O2(c), and
- if atk = cca1, then return ⊥.
- if atk = cca2, then return Dec(sk, c).
- if atk = rcca and Dec(sk, c) /∈ {µ0, µ1},
then return Dec(sk, c).
- Otherwise, return ⊥.

The security of the scheme directly follows from the framework as described
in [EDB15].
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