
Adaptively Secure Constrained Pseudorandom
Functions

Abstract. A constrained pseudo random function (PRF) behaves like
a standard PRF, but with the added feature that the (master) secret
key holder, having secret key K, can produce a constrained key, Kf ,
that allows for the evaluation of the PRF on a subset of the domain
as determined by a predicate function f within some family F . While
previous constructions gave constrained PRFs for poly-sized circuits, all
reductions for such functionality were based in the selective model of
security where an attacker declares which point he is attacking before
seeing any constrained keys.
In this paper we give new constrained PRF constructions for arbitrary
circuits in the random oracle model based on indistinguishability obfus-
cation. Our solution is constructed from two recently emerged primitives:
an adaptively secure Attribute-Based Encryption (ABE) for circuits and
a Universal Sampler Scheme as introduced by Hofheinz et al. Both prim-
itives are constructible from indistinguishability obfuscation (iO) (and
injective pseudorandom generators) with only polynomial loss.

1 Introduction

Constrained pseudorandom functions The concept of constrained pseudorandom
functions (constrained PRFs) was proposed independently by Boneh and Wa-
ters [5], Boyle, Goldwasser and Ivan [7] and Kiayias et al. [23]. A constrained
PRF behaves like a standard PRF [16], but with the added feature that the
(master) secret key holder, having secret key K, can produce a constrained key,
Kf , that allows for the evaluation of the PRF on a subset of the domain as de-
termined by a predicate function f within some family F . The security definition
of a constrained PRF system allows for a poly-time attacker to query adaptively
on several functions f1, . . . , fQ and receive constrained keys Kf1 , . . . ,KfQ . Later
the attacker chooses a challenge point x∗ such that fi(x

∗) = 0 ∀i. The attacker
should not be able to distinguish between the output of the PRF F (K,x∗) and
a randomly chosen value with better than negligible probability.

Constrained PRFs can hence be seen as PRFs in which the ability to evalu-
ate the PRF can be delegated, using a constrained key. This feature has proved
useful in various applications, e.g., broadcast encryption [5], multiparty key ex-
change [6] and the development of “punctured programming” techniques using
obfuscation [28].

Ideally, we would like to have constrained PRFs that are as universally useful
as possible. In particular, they should support as expressive constraints, and thus
delegation capabilities, as possible. In their initial work, Boneh and Waters [5]
gave a construction for building constrained PRFs for polynomial sized circuits



(with a priori fixed depth) based on multilinear encodings [13, 10]. Furthermore,
they demonstrated the power of constrained PRFs with several motivating ap-
plications.

For instance, one application (detailed in [5]) is a (secret encryption key)
broadcast key encapsulation mechanism with “optimal size ciphertexts”, where
the ciphertext consists solely of a header describing the recipient list S. The
main idea is that the key assigned to a set S is simply the PRF evaluated on S
as F (K,S). A user i in the system is assigned a key for a function fi(·), where
fi(S) = 1 if and only if i ∈ S. Other natural applications given include identity-
based key exchange and a form of non-interactive policy-based key distribution.
Later Sahai and Waters [28] showed the utility of (a limited form of) constrained
PRFs in building cryptography from indistinguishability obfuscation and Boneh
and Zhandry [6] used them (along with obfuscation) in constructing recipient
private broadcast encryption.

Focus: adaptive security While the functionality of the Boneh-Waters construc-
tion was expressive, their proof reduction was limited to selective security where
the challenge point x∗ is declared by the attacker before it makes any queries. For
many applications of constrained PRFs, achieving adaptive security requires an
underlying adaptively secure constrained PRF. In particular, this applies to the
optimal size broadcast, policy-based encryption, non-interactive key exchange
and recipient-private broadcast constructions mentioned above.

In this work we are interested in exploring adaptive security in constrained
PRFs. Hence, we are interested in the question

Is there an adaptively secure constrained PRF for expressive families of
constraints? Specifically, is there an adaptively secure constrained PRF
for the family of poly-sized circuits?

Any selectively secure constrained PRF can be proven adaptively secure if one
is willing to use a technique called complexity leveraging (as used, e.g., in the
context of IBE schemes [4]). This technique, however, leads to a reduction with
superpolynomial loss (which leads to a significant quantitative loss in security),
and thus it can be desirable to look for alternative ways to achieve adaptive
security. Hence, here we are interested in polynomial-time reductions, and thus
in avoiding complexity leveraging.

Up until now, constrained PRF constructions that achieve adaptive security
have relatively limited functionality. Hohenberger, Koppula, and Waters [21]
show how to build adaptive security from indistinguishability obfuscation for a
special type of constrained PRFs called puncturable PRF. In a puncturable PRF
system the attacker is allowed to make several point queries adaptively, before
choosing a challenge point x∗ and receiving a key that allows for evaluation
at all points x 6= x∗. While their work presents progress in this area, there
is a large functionality gap between the family of all poly-sized circuits and
puncturing-type functions. Fuchsbauer et al. [12] give a subexponential reduction
to obfuscation for a larger class of “prefix-type” circuits, however, their reduction
is still super polynomial. In addition, they give evidence that the problem of
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achieving full security with polynomial reductions might be difficult. They adapt
the proof of [24] to show a black box impossibility result for a certain class of
“fingerprinting” constructions that include the original Boneh-Waters [5] scheme.

The difficulty of achieving adaptive security (and why we utilize the random ora-
cle model) In order to describe the technical problem that arises with adap-
tively secure constrained PRFs, say that we want to construct a bit-fixing
constrained PRF F , i.e., one that allows for constrained keys Kfx for “bit-
matching” predicates of the form fx(x) = 1 ⇔ ∀i : xi = xi ∨ xi = ⊥ with
x = (xi)

n
i=1 ∈ ({0, 1} ∪ {⊥})n. An adversary A on F may first ask for polyno-

mially many constrained keys Kfx , and then gets challenged on a preimage x∗.
The goal of a successful simulation is to be able to prepare all Kfx , but not to
be able to compute F (K,x∗).

Now if x∗ = (x∗i )
n
i=1 is known in advance, then the simulation can set up the

function F (K, ·) in an “all-but-one” way, such that all images except F (K,x∗)
can be computed. For instance, the selective-security simulation from [5] sets up

F (K,x) = e(g, . . . , g)
∏n

i=1 αi,xi (for K = (αi,b)i,b), (1)

where e is an (n − 1)-linear map, and the simulation knows all αi,1−x∗
i

(while

the αi,x∗
i

are only known “in the exponent,” as g
αi,x∗

i ). This setup not only
allows to compute F (K,x) as soon as there is an i with xi 6= x∗i (such that the
corresponding αi,xi

= αi,1−x∗
i

is known); also, assuming a graded multilinear
map, evaluation can be delegated. (For instance, a constrained key that allows
to evaluate all inputs with x1 = 1 would contain α1,1 and gαi,b for all other i, b.)

However, observe now what happens when A chooses the challenge preimage
x∗ only after asking for constrained keys. Then, the simulation may be forced
to commit to the full function F (K, ·) (information-theoretically) before even
knowing where “not to be able to evaluate.” For instance, for the constrained
PRF from [5] sketched above, already a few suitably chosen constrained keys
(for predicates fi) fully determine F (K, ·), while the corresponding predicates
fi leave exponentially many potential challenge preimages x∗ uncovered. If we
assume that the simulation either can or cannot evaluate F (K,x) on a given
preimage x (at least once F (K, ·) is fully determined), we have the following
dilemma. Let C be the set of preimages that the simulation cannot evaluate. If C
is too small, then x∗ ∈ C will not happen sufficiently often, so that the simulation
cannot learn anything from A. But if C is too large, then the simulation will not
be able to construct “sufficiently general” constrained keys for A (because the
corresponding predicates f would evaluate to 1 on some elements of C).1

This argument eliminates not only guessing x∗ (at least when aiming at a
polynomial reduction), but also the popular class of “partitioning arguments”.
(Namely, while guessing x∗ corresponds to |C| = 1 above, partitioning arguments

1 In fact, for many classes of allowed constraining predicates, A can easily ask for
constrained keys that, taken together, allow to evaluate F (K, ·) everywhere except
on x∗. For instance, in our case, A could ask for all keys Kfi with fi(x) = 1⇔ xi =
1− x∗i . Hence, in this case, the simulation must fail already whenever |C| ≥ 2.
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consider larger sets C. However, the argument above excludes sets C of any size
for relevant classes of constraining predicates and superpolynomial preimage
space.) In particular, since the selectively-secure constrained PRFs from [23, 5,
7] fulfill the assumptions of the argument, it seems hopeless to prove them fully
secure, at least for standard preimage sizes.

Hence, to obtain adaptively secure constrained PRFs, we feel that leaving
the standard model of computation is unavoidable, and so we utilize the random
oracle for our security analysis.

The random oracle model versus the random oracle heuristic When attempt-
ing to instantiate a scheme described and proven in the random oracle model
the most common method is to apply the heuristic [3] of replacing oracle calls
with an evaluation of a hash function such as SHA-256. This heuristic has been
(apparently) successful for a number of deployed cryptographic schemes (e.g.,
[22, 29]), but on the other hand there are well documented [9] issues with this
heuristic.

While the random oracle heuristic is tightly associated with the random or-
acle model, we wish to emphasize that there are potentially other avenues to
instantiate the model. In particular, one could try to realize a random oracle
like object via specialized and limited trusted hardware or a distributed con-
sensus protocol such as a blockchain. It could even be the case that an existing
blockchain could be obliviously leveraged for such a functionality in a similar
vein to the work Goyal and Goyal [18] for one time programs.

Our Contributions In this paper, we give an affirmative answer to the question
above. That is, we present the first constrained PRF constructions for poly-sized
circuits 2 that have polynomial reductions to indistinguishability obfuscation in
the random oracle model. While our construction does use heavy tools such
as indistinguishability obfuscation, and our proof involves the random oracle
heuristic, we wish to emphasize that our solution is currently the only known
one for this problem. Moreover, prior to our work, it was not clear if it is pos-
sible to construct adaptively secure constrained PRFs even under these strong
assumptions. Recent results [1] have shown that for certain problems (such as
simulation secure functional encryption), it is impossible to get the desired secu-
rity guarantees, even assuming the existence of indistinguishability obfuscation
and the random oracle heuristic.

Ingredients used in our Construction Our solution is constructed from two re-
cently emerged primitives: an adaptively secure Attribute-Based Encryption
(ABE) [27] for circuits and Universal Samplers as introduced by Hofheinz et
al. [19]. Both primitives are constructible from indistinguishability obfuscation
(iO) (and injective pseudorandom generators) with only polynomial loss. Wa-
ters [31] recently gave an adaptively secure construction of ABE3 based on indis-

2 More specifically, we present a construction for polynomial-sized circuits of any apri-
ori bounded depth.

3 The construction is actually for Functional Encryption which implies ABE.
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tinguishability obfuscation and Hofheinz et al. [19] showed how to build Universal
Samplers from iO in the random oracle model — emphasizing that the random
oracle heuristic is applied outside the obfuscated program.

Before we describe our construction we briefly overview the two underlying
primitives. An ABE scheme (for circuits) has four algorithms. A setup algo-
rithm ABE.setup(1λ) that outputs public parameters pkABE, and a master secret
key mskABE. The encryption algorithm ABE.enc(pkABE, t, x) takes in the pub-
lic parameters, message t, and “attribute” string x and outputs a ciphertext c.
A key generation algorithm ABE.keygen(mskABE, C) outputs a secret key given
a boolean circuit C. Finally, the decryption algorithm ABE.dec(SK, c) will de-
crypt an ABE ciphertext encrypted under attribute x iff C(x) = 1, where C is
the circuit associated with the secret key.

The second primitive is a universal sampler scheme. Intuitively, a universal
sampler scheme behaves somewhat like a random oracle except it can sample
from arbitrary distributions as opposed to just uniformly random strings. More
concretely, a universal sampler scheme consists of two algorithms, US.setup and
US.sample. In a set-up phase, U ← US.setup(1λ) will take as input a security
parameter and output “sampler parameters” U . We can use these parameters to
“obliviously” sample from a distribution specified by a circuit d, in the following
sense. If we call US.sample(U, d) the scheme will output d(z) for hidden random
coins z that are pseudorandomly derived from U and d.

Security requires that in the random oracle model, US.setup outputs images
that look like independently and honestly generated d-samples, in the following
sense. We require that an efficient simulator can simulate U and the random
oracle such that the output of US.sample on arbitrarily many adversarially cho-
sen inputs di coincides with independently and honestly chosen images di(zi)
(for truly random zi that are hidden even from the simulator). Of course, the
simulated U and the programmed random oracle must be computationally in-
distinguishable from the real setting.

Our Solution in a Nutshell We now describe our construction that shows how
to build constrained PRFs from adaptively secure ABE and universal samplers.
One remarkable feature is the simplicity of our construction once the underlying
building blocks are in place.

The constrained PRF key is setup by first running U ← US.setup(1λ) and
(pkABE,mskABE)← ABE.setup(1λ). The master PRF keyK is (U, (pkABE,mskABE)).
To define the PRF evaluation on input x we let dpkABE,x(z = (t, r)) be a cir-
cuit in some canonical form that takes as input a pair z = (t, r) and com-
putes ABE.enc(pkABE, t, x; r). Here we view pkABE, x as constants hardwired into
the circuit d and t, r as the inputs, where we make the random coins of the
encryption algorithm explicit. To evaluate the PRF F (K,x) we first compute
cx = US.sample(U, dpkABE,x). Then we compute and output ABE.dec(mskABE, cx)4.

4 We use the convention that the master secret key can decrypt all honestly generated
ABE ciphertexts. Alternatively, one could just generate a secret key for a circuit
that always outputs 1 and use this to decrypt.
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Essentially, the evaluation function on input x first uses the universal sampler
to encrypt an ABE ciphertext under attribute x for a randomly chosen message
t. Then it uses the master secret key to decrypt the ciphertext which gives t as
the output.

To generate a constrained key for circuits C, the master key holder simply
runs the ABE key generation to compute skC = ABE.keygen(mskABE, C) and
sets the constrained key to be K{C} = (U, (pkABE, skC)). Evaluation can be
done using K{C} on input x where C(x) = 1. Simply compute cx from the
sampler parameters U as above, but then use skC to decrypt. The output will
be consistent with the master key evaluation.

The security argument is organized as follows. We first introduce a hybrid
game where the calls to the universal sampler scheme are answered by a sampling
oracle that generates a fresh sample every time it is called. The security defi-
nition of universal samplers schemes argues (in the random oracle model) that
the attacker’s advantage in this game must be negligibly close to the original
advantage. Furthermore, any polynomial time attacker will cause this samples
oracle to be called at most some polynomial Q number of times. One of these
calls must correspond to the eventual challenge input x∗.

We can now reduce to the security of the underlying ABE scheme. First the
reduction guesses with 1/Q success probability which samples oracle call will
correspond to x∗ and embed an ABE challenge ciphertext here. An attacker on
the constrained PRF scheme now maps straightforwardly to an ABE attacker.

Future Directions A clear future direction is to attempt to achieve greater func-
tionality in the standard model. There is a significant gap between our random
oracle model results of constrained PRFs for all circuits and the standard model
results of Hohenberger, Koppula, and Waters for puncturable PRFs [21]. It would
be interesting to understand if there are fundamental limitations to achieving
such results. Fuchsbauer et al. [12] give some initial steps to negative results,
however, it is unclear if they generalize to larger classes of constructions.

Other Related Work Attribute-Based Encryption for circuits was first achieved
independently by Garg, Gentry, Halevi, Sahai and Waters [14] from multilin-
ear maps and by Gorbunov, Vaikuntanathan and Wee [17] from the learning
with errors [26] assumption. Both works were proven selectively secure; requir-
ing complexity leveraging for adaptive security. In two recent works, Waters [31]
and Garg, Gentry, Halevi and Zhandry [15] achieve adaptively secure ABE for
circuits under different cryptographic assumptions. We also note that Boneh
and Zhandry [6] show how to use indistinguishability obfuscation for circuits
and punctured PRFs to create constrained PRFs for circuits. This construction
is limited though to either selective security or utilizing complexity leveraging.

Brakerski and Vaikunthanathan [8] showed a constrained PRF construction
that is secure against single query attackers based on the LWE assumption.
However, our construction and motivating applications are concerned with the
case of multiple queries or collusions.
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1.1 Discussion of our Assumptions

Our construction uses “heavyweight” tools (i.e., indistinguishability obfuscation
and random oracles) for a problem that can also be solved in a much simpler way
with complexity leveraging. In this section, we would like to argue the benefits of
a “more structured” solution like ours. Specifically, while an ideal or “last word”
solution would be given under better assumptions, we feel that our work makes
interesting progress that sets a bar for the future work to try to overcome.

One obvious way to relax the required assumptions for our work would be to
only build on one heavyweight assumption (instead of two, as we do). In other
words, this would mean to remove the random oracle or work under standard
assumptions with a random oracle. While we definitely agree this would be an
improvement, either one of these appears to require completely new techniques.
For instance, consider the task of achieving expressive constrained PRFs from
standard assumptions (that is, assumptions not based on indistinguishability
obfuscation/multilinear maps). Currently, there are no known collusion-resistant
constrained PRFs from standard assumptions. Achieving such a constrained
PRF would be highly surprising even if it were selectively (not adaptively secure),
used subexponential assumptions and the random oracle model.

On the other hand, consider the problem of achieving adaptive security from
indistinguishability obfuscation alone, avoiding random oracles. The most similar
problem to this is achieving adaptive security in Attribute-Based Encryption
schemes. All such solutions (starting with [30]) in this regime have used dual
system encryption (or similar) techniques. With those techniques, the simulation
maintains and manipulates a special relationship between the private keys and
challenge ciphertext. This lets one circumvent impossibilities and lower bounds
such as the ones from [11, 20, 24]. In constrained PRFs there are no challenge
ciphertexts (only an input point) so the only techniques we know do not apply.
Indeed, our contribution, which uses random oracles (in a rather nontrivial way),
proposes some approach to this problem. We think our work helps make the
challenge clear to the community.

A fine point here is that known approaches to proving indistinguishability
obfuscation from non-interactive assumptions seem to already imply some form
of complexity leveraging or sub-exponential hardness. So given that we can get
adaptive security with sub-exponential hardness anyway, why should our ap-
proach help? While we understand this argument, we think it can be mislead-
ing. For example, [31] gave an adaptively secure functional encryption scheme
from indistinguishability obfuscation where one could have given the exact same
rationale. In fact, later [2] built upon these ideas to give a generic selective to
adaptive FE conversion where subexponential hardness is not inherent. For our
case, we currently do not have such a next step, but it is well possible some future
work could find it. As a starting point, [25, Section 1.5] provide an interesting
discussion about how in the future one might avoid the subexponential barrier
in indistinguishability obfuscation for certain cases.

7



2 Preliminaries

2.1 Notations

Let x ← X denote a uniformly random element drawn from the set X . Given
integers `ckt, `inp, `out, let C[`ckt, `inp, `out] denote the set of circuits that can be
represented using `ckt bits, take `inp bits input and output `out bits.

2.2 Constrained Pseudorandom Functions

The notion of constrained pseudorandom functions was introduced in the con-
current works of [5, 7, 23]. Let K denote the key space, X the input domain and
Y the range space. A PRF F : K×X → Y is said to be constrained with respect
to a boolean circuit family F if there is an additional key space Kc, and three
algorithms F.setup, F.constrain and F.eval as follows:

– F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input
and outputs a key K ∈ K.

– F.constrain(K,C) is a PPT algorithm that takes as input a PRF key K ∈ K
and a circuit C ∈ F and outputs a constrained key K{C} ∈ Kc.

– F.eval(K{C}, x) is a deterministic polynomial time algorithm that takes as
input a constrained key K{C} ∈ Kc and x ∈ X and outputs an element
y ∈ Y. Let K{C} be the output of F.constrain(K,C). For correctness, we
require that for all security parameters λ ∈ N, keys K ← F.setup(1λ), circuit
C ∈ F , K{C} ← F.constrain(K,C) and x ∈ X ,

F.eval(K{C}, x) = F (K,x) if C(x) = 1.

Security of Constrained Pseudorandom Functions Intuitively, we require
that even after obtaining several constrained keys, no polynomial time adversary
can distinguish a truly random string from the PRF evaluation at a point not
accepted by the queried circuits. This intuition can be formalized by the following
security game between a challenger and an adversary Att.

Let F : K × X → Y be a constrained PRF with respect to a circuit family
F . The security game consists of three phases.

Setup Phase The challenger chooses a random key K ← K and a random bit
b← {0, 1}.

Query Phase In this phase, Att is allowed to ask for the following queries:

– Evaluation Query Att sends x ∈ X , and receives F (K,x).
– Key Query Att sends a circuit C ∈ F , and receives F.constrain(K,C).
– Challenge Query Att sends x ∈ X as a challenge query. If b = 0, the

challenger outputs F (K,x). Else, the challenger outputs a random element
y ← Y.
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Guess Att outputs a guess b′ of b.
Let E ⊂ X be the set of evaluation queries, L ⊂ F be the set of constrained

key queries and Z ⊂ X the set of challenge queries. The attacker Att wins if
b = b′ and E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0. The advantage of Att

is defined to be AdvFAtt(λ) =
∣∣∣Pr[Att wins]− 1/2

∣∣∣.
Definition 1. The PRF F is a secure constrained PRF with respect to F if for
all PPT adversaries Att, AdvFAtt(λ) is negligible in λ.

In the above definition the challenge query oracle may be queried multiple
times on different points, and either all the challenge responses are correct PRF
evaluations or they are all random points. As argued in [5], such a definition
is equivalent (via a hybrid argument) to a definition where the adversary may
only submit one challenge query. For our proofs, we will use the single challenge
point security definition.

Another simplification that we will use in our proofs is with respect to the
evaluation queries. Note that since we are considering constrained PRFs for cir-
cuits, without loss of generality, we can assume that the attacker queries for
only constrained key queries. This is because any query for evaluation at input
x can be replaced by a constrained key query for a circuit Cx that accepts only x.

2.3 Universal Samplers and Attribute Based Encryption

Due to space constraints, the definitions of universal samplers and attribute
based encryption are given in the full version of the paper.

3 Adaptively Secure Constrained PRF

In this section, we will describe our constrained pseudorandom function scheme
for circuit class F . Let n = n(λ), `rnd = `rnd(λ) be polynomials in λ, and let
`ckt be a polynomial (to be defined in the construction below). We will use
an adaptively secure ABE scheme (ABE.setup, ABE.keygen, ABE.enc, ABE.dec)
for a circuit family F with message and attribute space {0, 1}n. Let us assume
the encryption algorithm ABE.enc uses `rnd bits of randomness to compute the
ciphertext. We will also use an (`ckt, `inp = n+ `rnd, `out = n) universal sampler
scheme U = (US.setup,US.sample).

The PRF F : K×{0, 1}n → {0, 1}n, along with algorithms F.setup, F.constrain
and F.eval are described as follows.

F.setup(1λ) The setup algorithm computes the sampler parameters U ←
US.setup(1λ) and (pkABE,mskABE) ← ABE.setup(1λ). In order to define F ,
we will first define a program Prog{pkABE, x} (see Figure 1).
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–

Prog

Input : t ∈ {0, 1}n, r ∈ {0, 1}`rnd .

Constants : pkABE, x ∈ {0, 1}n.

Output ABE.enc(pkABE, t, x; r).

Fig. 1. Program used by setup algorithm: Prog

Let C-Prog{pkABE, x} be an `ckt = `ckt(λ) bit canonical description of Prog{pkABE, x},
5 where the last n bits of the representation are x, and let C-Prog{pkABE} be
C-Prog{pkABE, x} without the last n bits; that is, ∀x ∈ {0, 1}n, C-Prog{pkABE}||x
= C-Prog{pkABE, x}.
The PRF keyK is set to be (U, (pkABE,mskABE), C-Prog{pkABE}). To compute
F (K,x), the setup algorithm first ‘samples’ a ciphertext c = US.sample(U, C-Prog{pkABE}||x)
and output ABE.dec(mskABE, c).

F.constrain(K = (U, (pkABE,mskABE), C-Prog{pkABE}), C): The constrain al-
gorithm first computes an ABE secret key corresponding to circuit C. It
computes an ABE secret key skC = ABE.keygen(mskABE, C) and sets the
constrained key to be K{C}= (U , (pkABE, skC), C-Prog{pkABE}).

F.eval(K{C} = (U, (pkABE, skC), C-Prog{pkABE}), x): The evaluation algo-
rithm first computes the canonical circuit C-Prog{pkABE, x} = C-Prog{pkABE}||x.
Next, it computes c = US.sample(U, C-Prog{pkABE, x}). Finally, it outputs
ABE.dec(skC , c).

Correctness Consider any key K = (U, (pkABE,mskABE), C-Prog{pkABE}) output
by F.setup(1λ). Let C ∈ F be any circuit, and let skC ← ABE.keygen(mskABE, C),
K{C} = (U , (pkABE, skC), C-Prog{pkABE}). Let x be any input such that C(x) =
1. We require that F.eval(K{C}, x) = F (K,x).

F.eval(K{C}, x)

= ABE.dec(skC ,US.sample(U, C-Prog{pkABE, x}))
= ABE.dec(mskABE,US.sample(U, C-Prog{pkABE, x}))6

= F (K,x)

5 Note that the value `ckt required by the universal sampler scheme is determined by
the ABE scheme. It depends on the size of the encryption circuit ABE.enc and the
length of pkABE.

6 Recall ABE.dec(mskABE,ABE.enc(pkABE,m, x)) outputs m, and so does
ABE.dec(skC ,ABE.enc(pkABE,m, x)) if C(x) = 1.
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4 Proof of Security

In this section, we will prove adaptive security for our constrained PRF in the
random oracle model. The construction uses adaptively secure universal sam-
plers, which in turn uses an appropriate hash function which is modeled as a
random oracle in the ROM. We assume the random oracle outputs `RO bit strings
as output. We will first define a sequence of hybrid experiments, and then show
that if any PPT adversary Att has non-negligible advantage in one experiment,
then it has non-negligible advantage in the next experiment. Game 0 is the con-
strained PRF adaptive security game in the random oracle model. In Game 1,
the challenger simulates the sampler parameters and the random oracle queries.
It also implements a Samples Oracle O which is used for this simulation. Let
qpar denote the number of queries to O during the Setup, Pre-Challenge and
Challenge phases. In the next game, the challenger guesses which samples oracle
query corresponds to the challenge input. Finally, in the last game, it modifies
the output of the samples oracle on challenge input.

4.1 Sequence of Games

Game 0 In this experiment, the challenger chooses PRF key K. It receives ran-
dom oracle queries and constrained key queries from the adversary Att. On re-
ceiving the challenge input x∗, it outputs either F (K,x∗) or a truly random
string. The adversary then sends post-challenge random oracle/constrained key
queries, and finally outputs a bit b′.

––1. Setup Phase Choose U ← US.setup(1λ), (pkABE,mskABE)← ABE.setup(1λ).
Let C-Prog{pkABE} be the canonical circuit as defined in the construction.

2. Pre Challenge Phase
– Constrained Key Queries: For every constrained key query C, com-

pute skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.

– Random Oracle Queries: For each random oracle query yi, check if
yi has already been queried.
If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

3. Challenge Phase On receiving challenge input x∗, set d∗ = C-Prog{pkABE}||x∗.
Compute c = US.sample(U, d∗), t0 = ABE.dec(mskABE, c).
Choose b← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase Respond to constrained key and random oracle
queries as in pre-challenge phase.

5. Guess Att outputs a bit b′.

Game 1 This game is similar to the previous one, except that the sampler param-
eters U and responses to random oracle queries are simulated. The challenger
implements a Samples Oracle O, and O is used for simulating U and the random
oracle. Also, instead of using US.sample to compute F (K,x∗), the challenger
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uses the samples oracle O. Please note that even though O is defined during the
Setup Phase, it is used in all the remaining phases.

1. Setup Phase Choose (pkABE,mskABE)← ABE.setup(1λ). Let C-Prog{pkABE}
be the canonical circuit as defined in the construction.
Implement the Samples Oracle O as follows:

– Implement a table T . Initially T is empty.

– For each query d ∈ C[`ckt, `inp, `out](recall C[`ckt, `inp, `out] is the family
of circuits whose bit representation is of length `ckt, takes input of length
`inp and provides output of length `out) ,

• If ∃ an entry of the form (d, α, β), output α.
• Else if d is of the form C-Prog{pkABE}||x,

choose t← {0, 1}n, r ← {0, 1}`rnd .
Output c = ABE.enc(pkABE, t, x; r).
Add (d, c, t) to T .

• Else, choose t← {0, 1}`inp , compute α = d(t).
Add (d, α,⊥) to T and output α.

Choose (U, τ)← SimUGen(1λ).

2. Pre Challenge Phase

– Constrained Key Queries: For every constrained key query C, com-
pute skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.

– Random Oracle Queries: For each random oracle query yi, output SimRO(τ, yi)
(recall SimRO can make polynomially many calls to Samples Oracle O).

3. Challenge Phase On receiving challenge input x∗, set d∗ = C-Prog{pkABE}||x∗.
If T does not contain an entry of the form (d∗, α, β),
Query the Samples Oracle O with input d∗.
Let (d∗, α, β) be the entry in T corresponding to d∗.

Set t0 = ABE.dec(mskABE, O(d∗)) = β 7.
Choose b← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase Respond to constrained key and random oracle
queries as in pre-challenge phase.

5. Guess Att outputs a bit b′.

Game 2 In this game, the challenger ‘guesses’ the samples oracle query which
will correspond to the challenge input. The attacker wins if this guess is correct,
or if the challenge input has not been queried before. Recall qpar denotes the
number of calls to the Samples Oracle O during the Setup, Pre-Challenge and
Challenge phases.

1. Setup Phase Choose i∗ ← [qpar]. Remaining experiment is same as in Game 1.

7 Recall O(d∗) = α, and ABE.dec(mskABE, α) = β.
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Game 3 The only difference between this game and the previous one is in the
behavior of the Sample Oracle on the (i∗)th query. Suppose the (i∗)th input is
of the form d∗ = C-Prog{pkABE}||x∗. In the previous game, the entry in table T
corresponding to d∗ is of the form (d∗, α∗, β∗) where α∗ is an encryption of β∗

for attribute x∗ using public key pkABE. In this game, the entry corresponding to
d∗ is (d∗, α∗, β∗), where α∗ is the encryption of a random message for attribute
x∗ using pkABE.

1. Setup Phase Choose i∗ ← [qpar].
Choose (pkABE,mskABE)← ABE.setup(1λ). Let C-Prog{pkABE} be the canon-
ical circuit as defined in the construction. Implement the Samples Oracle O
as follows:
– Implement a table T . Initially T is empty.
– For each query d ∈ C[`ckt, `inp, `out],
• If there exists an entry of the form (d, α, β), output α.
• Else if d is of the form C-Prog{pkABE}||x for some x, choose t, t̃ ←
{0, 1}n, r ← {0, 1}`rnd .
If d is not the (i∗)th unique query,
output c← ABE.enc(pkABE, t, x; r), add (d, c, t) to T .

Else set c← ABE.enc(pkABE, t̃, x; r), add (d, c, t).

• Else, choose t ← {0, 1}`inp , compute α = d(t). Add (d, α,⊥) to T
and output α.

Choose (U, τ)← SimUGen(1λ).
2. Remaining experiment is same as in Game 2.

4.2 Analysis

For any PPT adversary Att, let AdviAtt denote the advantage of Att in Game i.

Claim 1 Assuming U = (US.setup,US.sample) is a secure (`ckt, `inp, `out) uni-
versal sampler scheme, for any PPT adversary Att,∣∣Adv0Att − Adv1Att

∣∣ ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that
∣∣Adv0Att − Adv1Att

∣∣ = ε.
For any SimUGen,SimRO, we will construct a PPT algorithm B such that∣∣∣Pr[RealB(1λ) = 1]− Pr[IdealBSimUGen,SimRO(1λ) = 1]

∣∣∣ = ε.

B interacts with Att and participates in either the Real or Ideal game. It
receives the sampler parameters U . It chooses (pkABE,mskABE)← ABE.setup(1λ).

During the pre-challenge phase, B receives either secret key queries or random
oracle queries. On receiving secret key query for circuit C, it computes skC ←
ABE.keygen(mskABE, C) and sends K{C} = (U, (pkABE, skC), C-Prog{pkABE}) to
Att. On receiving random oracle query y, it forwards it to the universal sampler
challenger. It receives response α, which it forwards to Att.

13



On receiving the challenge message x∗, it sets d∗ to be the circuit C-Prog{pkABE}||x∗,
computes c = US.sample(U, d∗), t0 = ABE.dec(mskABE, c). It chooses b← {0, 1}.
If b = 0, it sends t0, else it sends t1 ← {0, 1}n.

The post challenge queries are handled similar to the pre challenge queries.
Finally, Att outputs b′. If b = b′, B send 0 to the universal sampler challenger,
indicating Real experiment. Else it sends 1.

Note that due to the honest sample violation probability being 0, Att partic-
ipates in either Game 0 or Game 1. This concludes our proof.

Observation 1 For any adversary Att, Adv2Att ≥
Adv1Att
qpar

.

Proof. Since the challenger’s choice i∗ is independent of Att, if d = C-Prog{pkABE}||x∗
was queried before the challenge phase, then the challenger’s guess is correct with
probability 1/qpar.

Claim 2 Assuming ABE = (ABE.setup, ABE.keygen, ABE.enc, ABE.dec) is an
adaptively secure attribute based encryption scheme, for any PPT adversary Att,∣∣Adv2Att − Adv3Att

∣∣ ≤ negl(λ).

Proof. Note that the only difference between Game 2 and Game 3 is in the imple-
mentation of Samples Oracle O. Suppose there exists a PPT adversary Att such
that

∣∣Adv2Att − Adv3Att
∣∣ = ε. We will construct a PPT algorithm B that interacts

with Att and breaks the adaptive security of ABE scheme with advantage ε.

B receives pkABE from the ABE challenger. It chooses i∗ ← [qpar] and com-
putes (U, τ)← SimUGen(1λ).

Implementing the Samples Oracle O : B must implement the Samples Oracle.
It maintains a table T which is initially empty. On receiving a query d for O,
if there exists an entry of the form (d, α, β) in T , it outputs α. Else, if d is a
new query, and is not of the form C-Prog{pkABE}||x for some x, it chooses t ←
{0, 1}`inp , outputs d(t) and stores (d, d(t),⊥). Else, if d = C-Prog{pkABE}||x, and
d is not the (i∗)th query, it chooses t ∈ {0, 1}n, computes c = ABE.enc(pkABE, t, x)
and stores (d, c, t) in T . Else, if d∗ = C-Prog{pkABE}||x∗ is the (i∗)th query, B
chooses t, t̃ ← {0, 1}n, sends t, t̃ as the challenge messages and x∗ as the chal-
lenge attribute to the ABE challenger. It receives c in response. B stores (d∗, c, t)
in T and outputs c.

The remaining parts are identical in both Game 2 and Game 3. During the
pre-challenge query phase, B receives either constrained key queries or ran-
dom oracle queries. On receiving constrained key query for circuit C, it sends
C to the ABE challenger as a secret key query, and receives skC . It sends
(U, (pk, skC), C-Prog{pkABE}) to Att. On receiving a random oracle query y, it
computes SimRO(τ, y), where SimRO is allowed to query the Samples Oracle
O. If B receives any constrained key query C such that C(x∗) = 1 (where
d∗ = C-Prog{pkABE}||x∗ was the (i∗)th unique query to O), then B aborts.

14



In the challenge phase, B receives input x∗. If d∗ = C-Prog{pkABE}||x∗ was
not the (i∗)th query to O, B aborts. Else, let (d∗, α∗, β∗) be the corresponding
entry in T . It chooses b ← {0, 1}. If b = 0, it outputs t0 = β∗, else it outputs
t1 ← {0, 1}n.

The post challenge phase is handled similar to the pre-challenge phase. Fi-
nally, Att outputs b′. If b = b′, B outputs 0, indicating c is an encryption of t.
Else it outputs 1.

We will now analyse B’s winning probability. Let x∗ be the challenge input
sent by Att. Note that if B aborts, then the (i∗)th unique query to O was not
d∗ = C-Prog{pkABE}||x∗, in which case, Att wins with probability exactly 1/2.

If d∗ was the (i∗)th query and c is an encryption of t, then this corre-
sponds to Game 2. Else, it corresponds to Game 3. Note that Pr[B outputs 0
— c ← ABE.enc(pkABE, t, x∗)] = Pr[Att wins in Game 2] and similarly, Pr[B
outputs 0 — c ← ABE.enc(pkABE, t̃, x∗)] = Pr[Att wins in Game 3]. Therefore,
AdvABEB = ε.

Observation 2 For any adversary Att, Adv3Att = 0.

Proof. Note that Att receives no information about t0 in the pre-challenge and
post challenge phases. As a result, t0 and t1 look identical to Att.
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A Preliminaries Continued

A.1 Universal Samplers

In a recent work, Hofheinz et al. [19] introduced the notion of universal sam-
plers. Intuitively, a universal sampler scheme provides a concise way to sample
pseudorandomly from arbitrary distributions. More formally, a universal sampler
scheme U , parameterized by polynomials `ckt, `inp and `out, consists of algorithms
US.setup and US.sample defined below.

– US.setup(1λ) takes as input the security parameter λ and outputs the sampler
parameters U .

– US.sample(U, d) is a deterministic algorithm that takes as input the sampler
parameters U and a circuit d of size at most `ckt bits. The circuit d takes as
input `inp bits and outputs `out bits. The output of US.sample also consists
of `out bits.

Intuitively, US.sample is supposed to sample from d, in the sense that it outputs a
value d(z) for pseudorandom and hidden random coins z. However, it is nontrivial
to define what it means that the random coins z are hidden, and that even
multiple outputs (for adversarially and possibly even adaptively chosen circuits
d) look pseudorandom.

Hofheinz et al. [19] formalize security by mandating that US.sample is pro-
grammable in the random oracle model. In particular, there should be an efficient
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way to simulate U and the random oracle, such that US.sample outputs an ex-
ternally given value that is honestly sampled from d. This programming should
work even for arbitrarily many US.sample outputs for adversarially chosen in-
puts d simultaneously, and it should be indistinguishable from a real execution
of US.setup and US.sample.

In this work, we will be using a universal sampler scheme that is even adap-
tively secure. In order to formally define adaptive security for universal samplers,
let us first define the notion of an admissible adversary A.

An admissible adversary A is defined to be an efficient interactive Turing
Machine that outputs one bit, with the following input/output behavior:

– A takes as input security parameter λ and sampler parameters U .
– A can send a random oracle query (RO, x), and receives the output of the

random oracle on input x.
– A can send a message of the form (params, d) where d ∈ C[`ckt, `inp, `out].

Upon sending this message,A is required to honestly compute pd = US.sample(U, d),
making use of any additional random oracle queries, and A appends (d, pd)
to an auxiliary tape (this is required to check for Honest Sample Violation
in the Ideal experiment).

Let SimUGen and SimRO be PPT algorithms. Consider the following two ex-
periments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each
unique query made to RO.

2. U ← US.setupRO(1λ).
3. A(1λ, U) is executed, where every random oracle query, represented by a

message of the form (RO, x), receives the response RO(x).
4. Upon termination of A, the output of the experiment is the final output of

the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps `ckt bits to `inp bits is implemented by
assigning random `inp-bit outputs to each unique query made to F . Through-
out this experiment, a Samples Oracle O is implemented as follows: On input
d, where d ∈ C[`ckt, `inp, `out], O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the
Samples Oracle O.

3. A(1λ, U) and SimRO(τ) begin simultaneous execution.
- Whenever A sends a message of the form (RO, x), this is forwarded to
SimRO, which produces a response to be sent back to A.

- SimRO can make any number of queries to the Samples Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary

tape of A is examined until an entry of the form (d, pd) is added to it. At
this point, if pd is not equal to d(F (d)), then experiment aborts, resulting
in an Honest Sample Violation.
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4. Upon termination of A, the output of the experiment is the final output of
the execution of A.

Definition 2. A universal sampler scheme U = (US.setup, US.sample), param-
eterized by polynomials `ckt, `inp and `out, is said to be adaptively secure in the
random oracle model if there exist PPT algorithms SimUGen and SimRO such
that for all admissible PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts ] = 0, 8

and ∣∣∣Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1]
∣∣∣ ≤ negl(λ)

Hofheinz et al. [19] construct a universal sampler scheme that is adaptively
secure in the random oracle model, assuming a secure indistinguishability ob-
fuscator, a selectively secure puncturable PRF and an injective pseudorandom
generator.

A.2 Attribute Based Encryption

An attribute based encryption scheme ABE for a circuit family F with message
space M and attribute space X consists of algorithms ABE.setup, ABE.keygen,
ABE.enc and ABE.dec defined below.

– ABE.setup(1λ) is a PPT algorithm that takes as input the security parameter
and outputs the public key pkABE and the master secret key mskABE.

– ABE.keygen(mskABE, C) is a PPT algorithm that takes as input the master
secret key mskABE, a circuit C ∈ F and outputs a secret key skC for circuit
C.

– ABE.enc(pkABE,m, x) takes as input a public key pkABE, message m ∈M, an
attribute x ∈ X and outputs a ciphertext c. We will assume the encryption al-
gorithm takes `rnd bits of randomness 9. The notation ABE.enc(pkABE,m, x; r)
is used to represent the randomness r used by ABE.enc.

– ABE.dec(skC , c) takes as input secret key skC , ciphertext c and outputs y ∈
M∪ {⊥}.

Correctness For any circuit C ∈ F , (pkABE,mskABE)← ABE.setup(1λ), message
m ∈M, attribute x ∈ X such that C(x) = 1, we require the following:

ABE.dec(ABE.keygen(mskABE, C),ABE.enc(pkABE,m, x)) = m.

For simplicity of notation, we will assume ABE.dec(mskABE, ABE.enc(pkABE,
m, x )) = m for all messages m, attributes x 10.

8 The definition in [19] only requires this probability to be negligible in λ. However, the
construction actually achieves zero probability of Honest Sample Violation. Hence,
for the simplicity of our proof, we will use this definition

9 This assumption can be justified by the use of an appropriate pseudorandom gener-
ator that maps `rnd bits to the required length.

10 We can assume this holds true, since given mskABE, one can compute a se-
cret key sk for circuit Call that accepts all inputs, and then use sk to decrypt
ABE.enc(pkABE,m, x).
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Security Security for an ABE scheme is defined via the following adaptive
security game between a challenger and adversary Att.

1. Setup Phase The challenger chooses (pkABE,mskABE)← ABE.setup(1λ) and
sends pkABE to Att.

2. Pre-Challenge Phase The challenger receives multiple secret key queries.
For each C ∈ F queried, it computes skC ← ABE.keygen(mskABE, C) and
sends skC to Att.

3. Challenge Att sends messages m0,m1 ∈ M and attribute x ∈ X such
that C(x) = 0 for all circuits queried during the Pre-Challenge phase. The
challenger chooses b ← {0, 1}, computes c ← ABE.enc(pkABE, mb, x) and
sends c to Att.

4. Post-Challenge Phase Att sends multiple secret key queries C ∈ F as in
the Pre-Challenge phase, but with the added restriction that C(x) = 0. It
receives skC ← ABE.keygen(mskABE, C).

5. Guess Finally, Att outputs its guess b′.

Att wins the ABE security game for scheme ABE if b = b′. Let AdvABEAtt =∣∣∣Pr[Att wins]− 1/2
∣∣∣.

Definition 3. An ABE scheme ABE = (ABE.setup, ABE.keygen, ABE.enc, ABE.dec)
is said to be adaptively secure if for all PPT adversaries Att, AdvABEAtt ≤ negl(λ).

In a recent work, Waters [31] showed a construction for an adaptively secure
functional encryption scheme, using indistinguishability obfuscation. An adap-
tively secure functional encryption scheme implies an adaptively secure attribute
based encryption scheme. Garg, Gentry, Halevi and Zhandry [15] showed a di-
rect construction based on multilinear encodings. Ananth, Brakerski, Segev and
Vaikuntanathan [2] showed how to transform any selectively secure FE scheme
to achieve adaptive security.
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