
Universally Verifiable MPC and
IRV Ballot Counting

Chris Culnane1, Olivier Pereira1,2, Kim Ramchen1,3, and Vanessa Teague1

1 Department of Computing and Information Systems
the University of Melbourne
2 ICTEAM – UCLouvain

B-1348 Louvain-la-Neuve, Belgium
3 Faculty of Information Technology – Monash University

Clayton, Australia

Abstract. We present a very simple universally verifiable MPC proto-
col. The first component is a threshold somewhat homomorphic cryp-
tosystem that permits an arbitrary number of additions (in the source
group), followed by a single multiplication, followed by an arbitrary num-
ber of additions in the target group. The second component is a black-
box construction of universally verifiable distributed encryption switch-
ing between any public key encryption schemes supporting shared setup
and key generation phases, as long as the schemes satisfy some natural
additive-homomorphic properties. This allows us to switch back from the
target group to the source group, and hence perform an arbitrary num-
ber of multiplications. The key generation algorithm of our prototypical
cryptosystem, which is based upon concurrent verifiable secret sharing,
permits robust re-construction of powers of a shared secret.

1 Introduction

We explore the design of efficient universally verifiable MPC protocols, motivated
by applications to the counting of complex ballots in an election. Universal veri-
fiability means that the computation should be verifiably correct, even to people
who do not participate, and even if all parties involved in the computation are
misbehaving. Apart from verifiability, we also require privacy to be guaranteed
as long as the number of trustees behaving honestly is above a certain threshold.
As trustees must be able to compute the result of the computation, and there-
fore jointly have access to the inputs, this appears to be the best we can hope
for, at least in the absence of extra setup assumptions. (anonymous channel,
tamper-proof devices, etc.).

Achieving these goals is particularly important in elections: we need the
correctness of the tally to be guaranteed, even if all the people in charge of
running the election are corrupted – or if all of their computing devices have been
hacked – and ballots need to remain secret. Of course, this setting is meaninful in
a lot of other contexts: secret bid auctions in which the winning bid is determined
by the organisers and, more generally, any cloud application in which a group

of users outsource their secret data to one or more cloud service providers, and
expect correct computation while maintaining the confidentiality of their data.

Homomorphic encryption lends itself naturally to universally verifiable com-
putation, because the computation itself can be performed by anyone. The pri-
vate key can be shared among several trustees, who need only prove that they
decrypted the final result correctly. For simple elections in which tallying consists
only of addition, efficient solutions exist based on additive-homomorphic encryp-
tion [19, 2, 7]. We are interested in complex election schemes in which more than
a simple sum is needed. Our particular application is Instant runoff voting (IRV),
also called alternative voting, which is used in verious places around the globe,
either in general public elections (e.g., Australia, Ireland, San Francisco), or in
internal consitutencies or political party elections (e.g., Canada, India, U.K.).
In IRV, each voter lists some or all the candidates in their order of preference.
At each iteration, each ballot is credited towards its highest uneliminated can-
didate. The candidate with the lowest tally is then eliminated (so each ballot
is then credited to its next uneliminated candidate). This terminates when one
candidate has a strict majority. This elimination process requires multiplications
on top of addition, which cannot be homomorphically achived with traditional
efficient schemes like ElGamal or Paillier. For this case, leveled homomorphic
encryption [13] would work, but would need to be parameterized in advance for
the maximum depth of multiplications that might possibly be needed, and pay
an efficiency cost on that basis. In our setting, that depth would be the total
number of candidates (minus 2), which might be a lot more than the actual
number of eliminations.

1.1 Summary of our contribution

We build a simple universally verifiable MPC protocol from two components.

1. A somewhat homomorphic encryption scheme with threshold key generation
in the malicious static adversary setting. It is similar to [16] in allowing
arbitrary additions in a source space, then one multiplication. Our threshold
key generation protocol allows efficient proofs of correct decryption.

2. A multiparty encryption switching protocol that transforms a ciphertext from
the target space, i.e., resulting from a homomorphic multiplication, into a
ciphertext in the source space, hence making it possible to perform more
multiplications. This protocol is universally verifiable in the setting of [39].

Our scheme only requires computation in standard prime order groups and
relies on standard computational assumptions (e.g., SXDH). The availability
of addition and multiplication is sufficient to perform arbitrary computation. It
supports threshold key generation in the malicious setting with static corruption.

As a demonstration for our example application, we present a privacy-preserving
universally verifiable implementation of the tallying phase of Instant Runoff Vot-
ing, based on our universally verifiable computation protocol. Our sample imple-
mentation was run on real-world data from public elections in Australia, which

2

Src Tgt

“+” “×” “+”

“Identity”

Fig. 1. Operations supported by our encryption scheme. Continuous (resp. dashed)
arrows refer to non-interactive (resp. interactive) operations.

shows that our protocol is efficient enough for tallying real-world elections within
a reasonable time frame, while leaving ample space for further optimization.

1.2 Comparison with related work on MPC

Our approach bears some resemblance to the encryption-switching approach of
Couteau et al. [18], but has some significant differences. They switch between ad-
ditively and multiplicatively homomorphic encryption schemes, while we switch
between spaces in which we have additively homomorphic encryption, with the
possibility to perform a multiplication as part of a switch. They have two switch-
ing protocols, between the additively and multiplicatively homomorphic cipher-
text spaces, while we only need a protocol to switch from our target space back
to our source space. Their protocols for secure computation are 2-party proto-
cols and highly asymmetric (assigning specific roles to each party), while our
protocols are multi-party, perfectly symmetric and universally verifiable.

Catalano and Fiore [16] describe boosting linearly homomorphic encryption
to achieve server aided two-party secure function evaluation on parallel inputs in
the semi-honest setting. We do not know if this approach can be generalised to
the N -party setting. Like [12], their system allows evaluation of 2DNF formulae,
that is, an addition, followed by one multiplication, followed by more additions.
However, additions in the target space require ciphertext expansion, which is
not the case in our scheme.

Three recent works address universally verifiable MPC. Their main bottle-
neck is key generation. Baum et al. [5] add universally verifiable proofs of cor-
rectness to SPDZ [21], which uses a somewhat homomorphic encryption scheme
that has n-out-of-n key generation in the covert adversary model. The proto-
col therefore only offers confidentiality in that model. We have security in the
traditional malicious adversary setting. This approach naturally scales to arbi-
trary multiplications, with cost proportional to the total number actually done.
However, the structure of the protocols, based on secret shared data, uses secure
bidirectional channels between the input parties (e.g., the voters) and the com-
puting parties (e.g., the election trustees), which is a challenging constraint for
large scale applications. Our focus is on single pass protocols [9], in which voters
can vote by submitting a single message built from a public election description,
and have a computational work independent of the number of trustees.

3

Schoenmakers and Veeningen [39] rely on Damgaard-Jurik encryption, which
supports efficient threshold key generation if an RSA modulus with unknown
factorization is available bringing us back to key generation difficulties.

The most closely related work comes from Castagnos et al. [15], who propose
new encryption schemes and switching protocols following [18], but working in
prime order groups (like we do), hence also supporting threshold operations.
They combine additively and multiplicatively homomorphic schemes (while we
use a somewhat homomorphic approach). Their encryption scheme however re-
lies on the hardness of DDH in very specific groups: subgroups of the class group
of an order of a quadratic field of discriminant −p3, which comes with efficiency
penalties. They also need to work in subgroups of unknown order, which in-
creases the cost of the ZK proofs needed for verifiability. Our protocol works in
a standard computational setting (traditional asymmetric pairings), with effi-
ciency and compatibility advantages (in particular, standard sigma protocols for
prime order groups can be used). The tradeoff between the two would depend on
the computation: in our IRV counting setting, we have many additions, followed
by a single multiplication, followed by many more additions, repeatedly. For this
kind of circuit our approach is more efficient than [15]. However, a computation
with unbounded successive multiplications would eventually be faster with their
method, despite the use of more expensive components.

In concurrent work, Attrapadung et al. [3] introduce a somewhat homomor-
phic encryption scheme that is a specific instance of our encryption scheme
family. However, they do not offer a threshold (or distributed) variant, or a
switching protocol, which are the key ingredients for our universally verifiable
MPC protocol, nor do they consider general computation or voting.

1.3 Counting IRV Ballots

Plaintext IRV tallying raises coercion issues. The number of possible votes is
more than c! (where c is the number of candidates), which may be much larger
than the number of votes actually cast. This introduces the possibility of an
attack often called the Italian attack: a coercer demands a certain pattern of
preferences, presumably with her favourite candidate first, and then checks to
see whether that pattern appears in the final tally. To thwart this attack, many
works describe universally verifiable IRV tallying without revealing individual
ballots [30, 36, 27, 35, 37, 8].

However, these all use mix-nets [33], which count among the most complex
cryptographic protocols ever deployed. Besides, even when mixes use strong zero
knowledge-proof based verification, if a single mix misbehaves then the entire
mix-net halts until a replacement is found, leading to a protocol which is in-
herently non-robust. Ours is the first universally verifiable scheme for privacy-
preserving IRV tallying without mixnets.

For our example application we implemented the single-authority version of
our cryptosystem and switching protocol and used it to recount two real IRV
elections, using public data from the Australian state of New South Wales. Each
election included more than 40,000 ballots. The first, involving 5 candidates and

4

a single elimination round, completed in 2 hours. The second, with 6 candidates
and 4 elimination rounds, took 15 hours. This does not include the proofs of
correct switching, which would add a constant multiplicative factor The details
are in Section J.

1.4 Structure of this paper

The next section contains cryptographic background. In Section 2 we present a
new candidate cryptosystem with which to instantiate source and destination
encryption schemes for the N -party encryption switching primitive. Next, in
Section 3, we tackle the problem of constructing a distributed key generation
procedure for this protocol. Then in Section 4 we describe the universally verifi-
able protocol for switching from target back to source encryption schemes. Our
prototype implementation for Instant Runoff Vote counting is in Section 5.

1.5 Background

We define a generic access structure for linear secret sharing schemes.

Definition 1 (Access Structure [32, 41]) Let S be a set of parties. A collec-
tion A ⊂ 2S is monotone if ∀ B,C : if B ∈ A and B ⊆ C then C ∈ A. An
access structure, respectively monotone access structure, is a collection (respec-
tively monotone collection) A of non-empty subsets of 2S i.e., A ⊆ 2S\{∅}. The
sets in A are called the authorised sets; the sets not in A are called unauthorised
sets.

Definition 2 (Linear Secret-Sharing Scheme [6, 41]) A secret-sharing scheme
Π over a set of parties P is called linear over field Zp if

1. The shares of the parties form a vector of dimension at most l over Zp.

2. There exists a matrix M with ` rows and d columns called the share-generating
matrix for Π. There also exists a function ρ which maps each row of the
matrix to an associated party. That is for i = 1, . . . , `, the value ρ(i) is
the party associated with row i. When we consider the column vector v =
(s, r2, . . . , rd)

T , where s ∈ Zp is the secret to be shared, and r2, . . . , rd ∈ Zp
are randomly chosen, then Mv is the vector of ` shares of the secret s ac-
cording to Π. The share (Mv)i belongs to the party ρ(i).

It is proven in [6] that every every linear secret-sharing scheme (LSSS) sat-
isfies the following property, called linear-reconstruction in [41]. Suppose that
Π is an LSSS for the access structure A. Let V ∈ A be any authorised set, and
let I ⊆ {1, . . . , `} be defined as I = {i : ρ(i) ∈ V }. Then there exist constants
{Λi,V ∈ Zp : i ∈ I} such that, if {si} are valid shares of any secret s according
to Π, then

∑
i∈I Λi,V · si = s. Moreover these constants {Λi,V } can be found in

time polynomial in the dimensions of the share-generating matrix M .

5

Definition 3 (T -Threshold Access Structure) Of specific interest for our
purposes is the T -party threshold access structure, defined as AT -Th = {S : S ∈
2{P1,...,Pn}, |S| ≥ T}, where T < n/2. Let M be the linear secret-sharing scheme
matrix corresponding to AT -Th. In that case there exists M with row-dimension
l = n and column-dimension d = T .

Pairings on Prime-Order Groups To build our one-time homomorphic cryp-
tosystem of Section 3, we require the notion of projecting bilinear group gener-
ators [25]. Our specific choice of generator will be a variant of the polynomial-
induced projecting generator introduced by Herold et al. [31], tailored for the
asymmetric pairing setting.

Definition 4 (Bilinear Group Generator [25]) A bilinear group generator
is an algorithm G that takes as input a security parameter λ and outputs a de-
scription of five abelian groups G,G1, H,H1, Gt with G1 < G and H1 < H.
Assume that this description permits polynomial-time group operations and ran-
dom sampling in each group. The algorithm also outputs an efficiently computable
map e : G×H → Gt that satisfies:

Bilinearity. For all g1, g2 ∈ G and h1, h2 ∈ H,
e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2).

Non-degeneracy. e(g, h) = 1 ∀h ∈ H ⇐⇒ g = 1
and e(g, h) = 1 ∀g ∈ G ⇐⇒ h = 1.

A bilinear group generator G is prime-order if G,G1, H,H1, Gt all have prime
order p.

Definition 5 (Projecting Bilinear Group Generator [25]) Let G be a bi-
linear group generator. Say that G is projecting if it also outputs a group G′t < Gt
and three group homomorphisms π1, π2, πt mapping G,H,Gt to themselves such
that

1. Subgroups G1, H1, G
′
t are contained in the kernels of π1, π2, πt respectively.

2. e(π1(g), π2(h)) = πt(e(g, h)) for all g ∈ G, h ∈ H.

We propose a projecting bilinear group operator induced by tensor prod-
uct, instead of relying on the polynomial product previously proposed [31]. The
polynomial solution was designed for the symmetric pairing setting, but raises
difficulties in the definition of the projecting operator when moving to the asym-
metric setting. Our tensor product based solution offers an efficient alternative
that makes it possible to have efficient ciphertext in the base groups, by relying
on the sXDH assumption.

Definition 6 (l-Symmetric Cascade Assumption [24]) Let {Gλ}λ be an en-
semble of cyclic groups with prime-orders {Zp(λ)}λ where ∃c > 0 ∀λ |p(λ)| < λc.

6

For fixed λ, let Zp = Zp(λ) and define the distribution of matrices over Z(l+1)×l
p :

SCl =:



−s 0 . . . 0 0
1 −s . . . 0 0
0 1 0 0

. . .
. . .

0 0 . . . 1 −s
0 0 . . . 0 1


: s ∈R Zp.

Then ∀ PPT adversaries A, the difference below is a negligible function of λ.

|Pr[1← A(G, g, gA, gAw) : g ∈R G, A ∈ SCl,w ∈R Zlp]−
Pr[1← A(G, g, gA, gu) : g ∈R G, A ∈ SCl,u ∈R Zl+1

p]|.

Definition 7 (External l-Symmetric Cascade Assumption) Let D1, D2 and
Dt be three ensembles of cyclic groups, such that for every λ ∈ N, if G1 = G1λ ∈
D1, G2 = G2λ ∈ D2 and Gt = Gtλ ∈ Dt, there exists an efficiently computable
pairing e(·, ·), such that e : G1 × G2 → Gt. The External l-Symmetric Cascade
assumption is that the l-Symmetric Cascade assumption holds in each of the
ensembles D1 and D2.

Proposition 1 The Symmetric External Diffie-Hellman Assumption [40] holds
with respect to group ensembles D1,D2, iff the External 1-Symmetric Cascade
Assumption holds with respect to D1,D2.

CF Encryption Recently Catalano and Fiore [16] showed how to generalise
earlier work on 2DNF formulae [12] to transform virtually any linearly homomor-
phic cryptosystem into one permitting the computation of any degree-2 formula.
Multiplication transforms two input ciphertexts from a “level-1” space into an
encryption of the product in the “level-2” space. In this level-2 space, further
homomorphic additions remain possible, at the cost of ciphertext expansion at
each step. Still, it is not possible to perform any further multiplications.

For concreteness we will assume additive ElGamal encryption for the base
public key encryption scheme. Let (Keygen,Enc,Dec) be additive ElGamal on
message space (M,+). The Catalano-Fiore cryptosystem is as follows.

Keygen(1λ) Let (pk, sk)← Keygen(1λ).
Set (pk, sk)← (pk, sk).

Enc(pk,M) Choose b ∈RM.
Output C = (M − b,Enc(pk, b)).

Multiply(pk, C, C ′) Let C = (C0, C1) and C ′ = (C ′0, C
′
1) be inputs. Let α =

Enc(pk, C0C
′
0) · (C1)C

′
0 · (C ′1)C0 .

Output (α,C1, C
′
1).

Dec(sk, C) Accept C = (α,C1, C
′
1) as input.

Let M ′ ← Dec(sk, α), b← Dec(sk, C1) and
b′ ← Dec(sk, C ′1) as input. Output M = M ′ + bb′.

7

Noninteractive Zero Knowledge Proofs We use non-interactive zero knowl-
edge proofs of the following NP relations. Efficient constructions of these can be
found in Appendix D. Let Πrange = (Grange, Prange, Vrange) be a non-interactive
zero knowledge proof for the relation Rrange = {(c, y)|∃ a, r : ci = Enc(y, a; r) ∧
a ∈ [0, 2λ − 1]}. Let Rbit ⊆ Rrange be the special case λ = 1 and Πbit be the
corresponding proof system. Let Πeq = (Geq, Peq, Veq) be a non-interactive zero
knowledge proof system for the relation Req = {(c, c′, pk1, pk2)|∃m, r, r′ : c =
Enc1(pk1,m; r) ∧ c′ = Enc2(pk2,m; r′)}. For 1 ≤ j ≤ N let σj be the common
reference string belonging to Pj .

2 One-time Multiplicatively Homomorphic Cryptosystem

The basis of our universally verifiable MPC protocol is a homomorphic cryp-
tosystem that supports arbitrarily many additions, followed by one multiplica-
tion, followed by arbitrarily many additions.

Many such encryption schemes have been already proposed, starting with
the BGN pairing-based scheme [12]. However, threshold key generation for BGN
and similar schemes is challenging, as it would require the generation of RSA-
type moduli with unknown factorization, and computing in the resulting pairing
groups of composite order is also quite demanding. Unverifiable trust assump-
tions would undermine the main purpose of this work.

This motivates our construction of a pairing based homomorphic cryptosys-
tem on prime-order groups, for which a secure and robust key generation pro-
cedure can be derived. This has been explored by Freeman [25], who shows how
to build such schemes from projecting pairings and, more recently by Herold et
al. [31] who show how to build them from hidden matrix-rank based indistin-
guishability assumptions [24] on the source group of symmetric pairings.

As these symmetric pairings have also become extremely expensive from a
computational point of view due to the recent attacks on the discrete logarithm
in low characteristic, we aim for a more efficient scheme based an asymmet-
ric pairings, by extending their work to that setting. This requires performing
operations in parallel in the two source groups of the pairing, and designing a
tensor product-based projecting pairing as a replacement for their polynomial
product. The underlying indistinguishability problem induced by this pairing on
both source groups is a generalisation of the well-known XDH problem [40].

This section contains only the simplest instance of our encryption scheme,
based on the External 1-Symmetric Cascade Assumption. A general version
based on the External l-Symmetric Cascade Assumption is presented in Ap-
pendix C. We first construct a projecting bilinear group as a special case of
Definition 15 (in Appendix C) with l = 1.

Definition 8 (Projecting pairing construction) Take as input a prime-order
bilinear group (p,G1,G2,Gt, ê), elements g ∈ G1 and h ∈ G2, and secret keys s
and s′ in Zp.

Define G = G2
1, H = G2

2, Gt = G4
t , and define the bilinear map e : G×H →

Gt as e((g0, g1), (h0, h1)) = (ê(g0, h0), ê(g0, h1), ê(g1, h0), ê(g1, h1)).

8

Define G1 (resp. H1) as the subgroup of G (resp. H) generated by g(−s,1) =
(g−s, g) (resp. h(−s

′,1)).
Define the following projecting maps:

– π1 : G→ G1 as π1(g1, g2) = g1g
s
2,

– π2 : H → G2 as π2(h1, h2) = h1h
s′

2 ,
– πt : Gt → Gt as πt(g1, g2, g3, g4) = g1g

s′

2 g
s
3g
ss′

4 .
Output secret key sk = (π1, π2, πt) and public key pk = (G,G1, H,H1, Gt, e, g, h).

It is easy to see that G1 and H1 are the kernel of π1 and π2 and that these
operators essentially offer a decryption operation for ElGamal-like encryption
schemes that use s and s′ as secret keys.

Notation: v1 · v2 denotes elementwise multiplication; v2
n is elementwise

exponentiation.
Our encryption scheme is then defined as follows.

Setup(1λ) : Let P be a prime-order bilinear group generator. Let M = Zp.
Output pp = (p,G1,G2,Gt, ê)← P(1λ).

KeyGen(pp) : Select s and s′ in Zp, set x = (−s, 1) and x′ = (−s′, 1). Choose

g ∈R G1, h ∈R G2, and define g = gx = (g−s, g) and h = hx
′

= (h−s
′
, h).

Run the Projecting Pairing construction on input pp, g, h, s, s′. Output the
resulting secret key sk = (π1, π2, πt) and the public key pk = (G,G1, H,H1, Gt, e, g, h).
Note that G1 and H1 are described by their generators g and h respectively.

Encsrc(pk,M) : Choose a, b at random in Zp. Let g1 = (g)a = (g−as, ga) and

h1 = (h)b = (h−bs
′
, hb). Let C0 = gM · g1, C1 = hM · h1. Output the

ciphertext (C0, C1) in G×H.
Enctgt(pk,M) : Choose a, b at random in Zp. Let g1 = (g)a = (g−as, ga) and

h1 = (h)b = (h−bs
′
, hb). Output the ciphertext C = e(g,h)M · e(g,h1) ·

e(g1,h) in Gt.
Multiplysrc(pk, C, C

′) : Take as input two ciphertexts C = (C0, C1) and C ′ =
(C ′0, C

′
1). Choose g1 ∈R G1 and h1 ∈R H1, as in the above routine. Output

C = e(C0, C
′
1) · e(g,h1) · e(g1,h), an element of Gt.

Addsrc(pk, C, C
′) : Take as input two ciphertexts C = (C0, C1) and C ′ = (C ′0, C

′
1).

Choose g1 ∈R G1 and h1 ∈R H1. Let C ′′0 = C0 ·C ′0 ·g1. Let C ′′1 = C1 ·C ′1 ·h1.
Output C ′′ = (C ′′0 , C

′′
1).

Addtgt(pk, C, C
′) : Take as input two ciphertexts C and C ′ in Gt. Choose g1 ∈R

G1 and h1 ∈R H1.
Let C ′′ = C · C ′ · e(g,h1) · e(g1,h). Output C ′′.

Decsrc(sk, C) : Take as input a ciphertext C = (C0, C1) in G × H. Compute
M ← logπ1(g)(π1(C0)) and M ′ ← logπ2(h)(π2(C1)). Output M if M = M ′

or ⊥ otherwise.
Dectgt(sk, C) : Take as input a ciphertext C inGt. OutputM ← logπt(e(g,h))(πt(C)).

Lemma 1. Suppose that the External 1-Symmetric Cascade assumption, i.e.,
Symmetric External Diffie Hellman assumption, holds with respect to the groups
G1 and G2. Then the above cryptosystem is semantically secure.

Proof. See Appendix C.

9

3 Distributed Key Generation Protocol for One-time
Multiplicative Homomorphic Cryptosystem

In this section we describe key generation for the one-time multiplicatively ho-
momorphic cryptosystem of Section 2. Traditional protocols for threshold key
generation [34, 26] would be a natural choice, except that they fail for the Dectgt
algorithm, because the evaluation of πt requires the sharing of a quadratic secret
ss′, while the traditional protocols are defined for linear terms only.

To overcome this difficulty, our protocol requires each party in the qualified
set to split their individual secrets into chunks over a small interval. We construct
a blinded version, i.e, ss′+ b, in which the blinding factor b is distributed across
parties, in such a way that it can be cancelled out from shares submitted by a
qualified set. To perform the private construction of the blinded square, we use
the Catalano-Fiore transformation [16], which enables depth-one multiplications
on any linearly homomorphic cryptosystem. A problem arises with the natural
choice of additive El Gamal as the base scheme with which to bootstrap the
computation of the square. This cryptosystem mandates that only secrets from
a small space can be safely decrypted, while the space over which s and s′ are
derived is much larger. We solve this problem by splitting the individual secrets
of qualified players into chunks. Thus the private product of individual secrets
becomes equivalent to a private product of polynomials, crucially ones for which
the coefficient space is small and therefore amenable to the discrete log problem.

Another problem is how to construct the blinding factor so that no infor-
mation is leaked on ss′ in the construction of ss′ + b. We show that this is
possible via direct verifiable secret sharing of the chunks corresponding to b in
polynomial form. As long as the chunk-size used to derive b is sufficiently larger
than the chunk-size used to derive ss′, we may treat them as distinct secrets
to be jointly constructed by the qualified set. For this, and for constructing
the Catalano-Fiore encryption key, we may simply employ the key-generation
protocol of Pedersen [34] or the later protocol by Gennaro et al. [26].

Thus, after CF decryption, a blinding of the square of the secret is revealed
in the clear, while the blinding factor is a distributed secret. The blinding factor
can be cancelled out “on demand” by a threshold set of qualified players, leading
to a fully contained key generation protocol for our multiplicative cryptosystem.
Like the key generation protocols of [34, 17, 26], our protocol uses concurrent
verifiable secret sharing to build a secret key but assumes as input shares of a
transport key under which the main key generation protocol runs. For the latter
purpose one may use any of those schemes.

Let [·]y denote a CF encryption under key y. Let g1, g2, gvss, gpke ∈ G1 and
h1, h2, hpke ∈ G2 be public. Let cA = 2λA and cB = 2λB be the chunk sizes of

individual secrets and individual blinding factors. One may set cA = p
1
4l · 2−λ2

and cB = p
1
2l where l is chosen so that discrete logarithms are feasible in the

range [0, N · p 1
2l]. Appropriate sizes are given in Lemma 3, Appendix F.

Recall the security properites of a distributed key generation protocol [26].

10

Correctness : All subsets of T shares provided by honest players define the
same unique secret key sk; all honest parties have the same value of the
public key pk, which is correct wrt sk; sk is uniformly distributed among a
range {0, 1}λ, where λ is the security parameter.

Resilience : There is a procedure to reconstruct the secret key sk out of T or
more shares, which is resilient in the presence of malicious parties.

Security : No information can be learned on sk except for what is implied by
the public key pk.

The full protocol is given in Figure 2. The NIZKs are described in Appendix D.

Protocol 1: Key Generation for one-time homomorphic cryptosystem
Common Input : CF public key y. Generators gvss, gpke ∈ G1 and hpke ∈ G2.

Chunk sizes cA = 2λA and cB = 2λB , of individual secrets and individual
blinding factors respectively.

Private Input : Pi holds shares si, s
′
i and ti of secret keys s, s′ and t respectively.

Public Output : Public key pk for the source and target encryption schemes.
Private Output : To each Pi, shares xi and x′i of the source and target encryp-

tion schemes, and shares bi of ss′ + b. Blinding factor γ.

1. Each party Pi breaks its secret shares into chunks, commits publicly to the
chunks, and shares individual chunks with other parties as follows.
Write si as

∑`−1
k=0 αikc

k
B , s′i as

∑`−1
k=0 α

′
ikc

k
B , and ti as

∑2`−2
k=0 βikc

k
B , where

αik, α
′
ij ∈R [0, 2λA − 1] and βik ∈R [0, 2λB − 1]. Pi creates vectors

vi = (si, ri2, . . . , riT)t,v′i = (s′i, r
′
i2, . . . , r

′
iT)t,wi = (ti, r

′′
i2, . . . , r

′′
iT)t. Recall

secret-sharing matrix M from Definition 3. Pi computes the share vectors

si = Mvi, s
′
i = Mv′i and ti = Mwi. Let Vi = gvivss, V

′
i = g

v′i
vss,Wi = gwivss . Pi

broadcasts the values {Vi, V ′i ,Wi}. Pi sends sij = si[j], s
′
ij = s′i[j], tij = ti[j]

to each Pj via a private channel, for 1 ≤ j ≤ N . Note that

g
sij
vss = V

M(j)
i , g

s′ij
vss = V ′i

M(j)
, g
tij
vss = W

M(j)
i (1)

2. Pi verifies that the shares received from Pj , i.e., sji, s
′
ji and tji are correct,

by verifying Equation 1. If any of these equations do not hold for the
received values sji, s

′
ji and tji, Pi broadcasts the message (Pi, complain, Pj).

3. For each broadcast message (Piα , complain, Pj), player Pj is disqualified if
(sjiα , s

′
jiα , tjiα) are sent that do not satisfy Equation 1. Let Q be the set of

continuing (i.e. non-disqualified) players.

Fig. 2. Key gen protocol for one-time homomorphic cryptosystem.

11

Protocol 1– Part 2
4) Each party commits to its blinding factors and share vectors from Step 1, then

proves that the chunks it shared in Step 1 are within the required range, and
that the chunks sum correctly to the committed values, as follows.

Let Ai = gvipke, Bi = gwipke , A
′
i = h

v′i
pke, B

′
i = hwi

pke , Ci = ([αi0]y, . . . , [αi(`−1)]y),
C′i = ([α′i0]y, . . . , [α

′
i(`−1)]y), Di = ([βi0]y, . . . , [βi(2(`−1))]y) where

vi,v
′
i,wi are sampled as in Step 1. Let εi ← (Prange((Cik)k, cA),

Prange((C
′
ik)k, cA), Prange((Dik)k, cB), Peq(Ai[1],

∏`−1
k=0[αik]

ckB
y),

Peq(A
′
i[1],

∏`−1
k=0[α′ik]

ckB
y), Peq(Bi[1],

∏2(`−1)
k=0 [βik]

ckB
y)). Pi broadcasts the

values {Ai, A′i, Bi, B′i, Ci, C′i, Di, εi}. Note that

g
sij
pke = A

M(j)
i , g

tij
pke = B

M(j)
i ,

h
s′ij
pke = A′i

M(j)
, h
tij
pke = B′i

M(j)
(2)

5) Pi verifies that for the values sent by every other Pj in Q, Equation 2 holds. If
any of these equations do not hold for the values sji, s

′
ji and tji, Pi broadcasts

the message (Pi, complain, Pj).
6) For each broadcast message (Piα , complain, Pj) or proofs not satisfying

Vrange(σj , (Cj , C
′
j , Dj), εj) = 1 ∧ Veq(σj , (Aj , A

′
j , Bj), (Cj , C

′
j , Dj), εj) =

1 the other players in Q reconstruct the values
sj , tj ,vj ,wj , Aj , A

′
j , Bj , B

′
j , Cj , C

′
j , Dj .

7) For 0 ≤ k ≤ 2(`− 1), Pi computes ctk =
∑
i,j∈Q

∑
f+g=k CifC

′
jg +

∑
i∈QDik

and γk ← Dec(ki, ctk). Outputs γ =
∑2(`−1)
k=0 γkc

k
B .

8) Pi computes their share of the secret as the sum of all shares received in
Step 2 among continuing players, i.e., xi =

∑
j∈Q sji x

′
i =

∑
j∈Q s

′
ji and

bi =
∑
j∈Q tji. Pi computes vki = (gxivss, g

x′i
vss, g

bi
vss) and ypke =

∏
i∈QAi[1], zpke =∏

i∈QA
′
i[1]. Pi sets g1 = (ypke, gpke) and h1 = (zpke, hpke). The public

key is pk = ((g1, g2),g1, (h1, h2),h1, {[γk]y}k, {Vi, V ′i ,Wi}i∈Q). The secret is
(x, x′, b, γ). Note that x, x′ and b are distributed secrets while γ is held in
entirety by each player in Q.

Fig. 3. Key gen protocol for one-time homomorphic cryptosystem, Part 2.

12

3.1 Protocol description and security properties

Theorem 2. Protocol 1 is a distributed key generation protocol for the cryp-
tosystem of Section 3 and that is correct, resilient and secure against an active
adversary corrupting fewer than T statically chosen players.

Proof. See Appendix K.

Proposition 3 The values x =
∑
i∈Q si, x

′ =
∑
i∈Q s

′
i and b =

∑
i∈Q ti are

distributed secrets according to the threshold access structure.

Proof. See Appendix K.

Proposition 4 The values γ, x, x′ and b computed in Step 6 satisfy the relation
γ = xx′ + b.

Proof. See Appendix K.

4 Distributed Encryption Switching

In this section we present universally verifiable switching between target and
source encryption schemes using only the additive homomorphism on the cipher-
text spaces. The protocol is in Figure 4. The idea is for each party to contribute
an equivalent encryption of a blinding factor under both cryptosystems together
with a zero knowledge proof of plaintext equality. In the source space the blind-
ing factors are homomorphically added to the input ciphertext and the result
decrypted under a threshold decryption scheme. From this plaintext, the blind-
ing factors under the target encryption scheme are homomorphically subtracted,
producing an encryption of the input message under the target cryptosystem.

To blind the ciphertexts without increasing the size of the messages (remem-
ber that it requires a DL extraction), we apply the blinding using an xor-sum.
Specifically, we assume an ideal functionality for bit-wise sum, FSUM with the
following behaviour:

– On input (setup, 1λ) initialises D ← ∅, t← 0.
– On input (send, C), if t < N , sets D ← D ∪ {C}, t← t+ 1, if t = N , output
Cs which is an encryption of the bit-wise sum of all decrypted ciphertexts
contained in D.

The details of the protocol realising this functionality are in Appendix E.
If the ciphertexts are known to be small, the xor-sum can be avoided and we

can just homomorphically add a blinding factor, like we did for key generation.
This blinding factor can be large enough to offer statistical blinding (e.g., 40 bits
more than an upper-bound on the plaintext size) and small enough to support
efficient decryption, possibly using a baby-step giant-step algorithm. This comes
with the benefit of being a completely non interactive process, and works fine
for our voting application.

Our definition of universally verifiable secure computation is derived from [39]
and given in Appendix H. It formalises the idea that either a threshold of honest
participants produces a true answer, or the output fails verification.

13

Theorem 5. Protocol πSWITCH securely computes universally verifiable encryp-
tion switching in the FSUM-hybrid model against statically chosen adversaries if
πCOM is a secure non-malleable commitment scheme and Peq is a secure NIZK
proof system.

Proof. See Appendix K.

Given that the switch is the only operation of our protocols that requires
the use of secret information (i.e., decryption keys), and that this operation is
verifiable, we obtain a universally verifiable MPC protocol: addition and multi-
plication are publicly performed using our encryption scheme, and the verifiable
switch offers the possibility to repeat these operations as often as needed. In
Appendix H.2 we use this approach to evaluate any function class representable
by an arithmetic circuit of polynomial size over M.

Protocol πSWITCH for Player Pi.
Common Input : c = Enc1(pk,m) : m ∈ M and πCOM be a non-malleable

commitment scheme with key ck. Threshold t.
Private Input : Pi holds a share of the secret key, ski

1. Choose ui ∈R Zp and publish δi = comck(ui) using randomiser ri.
2. Publish C′i = Enc1(pk, ui) and Ci = Enc2(pk, ui) and εi ←

(Peq(δi, C
′
i),Peq(C

′
i, Ci)).

3. If at least t of the εi pass verification, let C′ =
∏λ
j=1 c

′
ij ⊗ 2j−1 and

C =
∏λ
j=1 cij ⊗ 2j−1 where (c′ij)

λ
j=1 ← πSUM(C′1, . . . , C

′
N) and (cij)

λ
j=1 ←

πSUM(C1, . . . , CN). Otherwise output ⊥.
4. Let d← c · C′, di ← dski , ξi ← ΣCD(d, di, pk, vki).
5. If at least t pass verification for both εi and ξi, let m′ ←

∏T
i=1 di and output

c = Enc∗2(m′) · C−1
. Otherwise output ⊥.

Fig. 4. Protocol πSWITCH.

5 Tallying Instant Runoff Voting (IRV)

In this section we describe how to use the primitives described earlier to construct
a universally verifiable protocol for tallying encrypted ballots according to the
IRV algorithm. Ballots are input to the tallying protocol in encrypted form. We
reveal only the tallies of each candidate after each round of the IRV algorithm.
The main challenge is to ensure that the privacy of ballots is maintained between
tallying rounds. We use distributed encryption switching on the cryptosystems
Πsrc = (Setup,KeyGen,Encsrc,Decsrc) and Πtgt = (Setup,KeyGen,Enctgt,Dectgt)
of Section C. Suppose that Πtgt → Πsrc is a distributed encryption switching

14

protocol, where Encsrc is used to encrypt votes. Recall that in an IRV election,
after each phase of tallying, if a candidate is not elected, then the candidate with
fewest votes is eliminated. Each ballot should count towards its most-preferred
uneliminated candidate. We can use the one-time multiplicative homomorphism
to compute the necessary product computations on ballots for the first two
rounds of tallying. This takes ballots from the ciphertext space of Πsrc to the
ciphertext space of Πtgt, for which addition, but not multiplication, is possible.
To compute the product computations corresponding to further rounds of tally-
ing, the election trustees will come together and perform a distributed switch on
the ballots, will take them back to the ciphertext space of Πsrc, and for which
multiplications are again possible. In this way, for every round of tallying after
the first, distributed encryption switching can be used to ensure that the trustees
can compute the tally for each uneliminated candidate.

5.1 Protocol Details

Ballot representation. Assume c candidates and M voters. An IRV ballot
allows expression of up to k preferences, where k ≤ c is a constant specific to
the election. For the purpose of homomorphic tallying, we will use a special
“preference-order” ballot. Let µn : {1, . . . , k} → {1, . . . , c} be an (injective)
function representing the preferences of voter n. The ballot used for tallying, Bn,
will be an encryption of the indicator vectors eµn(1), . . . , eµn(k). The indicator
vector eµn(j) is encrypted as a tuple of c ciphertexts, vj . Thus Bn is simply a
list of k encrypted c-tuples Figure 5 (left) shows an example.
Updating of ballots. This ballot representation permits a convenient method
for eliminating candidates, by simply striking out the corresponding column
in Bn’s matrix of preferences. Since each elimination is a function of publicly
verifiable totals, there is no ambiguity as to the representation of any ballot
at any stage of tallying. An important feature of this is that the sequence of
accesses made by Protocol 2 is derivable from the sequence of intermediate tallies
it produces until termination. Input obliviousness follows. Figure 5 (right) shows
a preference-order ballot after a candidate has been eliminated.

preference\ candidate 1 2 3 4 5 6 1 2 3 4 5 6

1 0 0 1 0 0 0 0 0 × 0 0 0
2 0 0 0 0 1 0 0 0 × 0 1 0
3 1 0 0 0 0 0 1 0 × 0 0 0

Fig. 5. Preference-order ballot for c = 6 and k = 3, in its initial form (left) and after
elimination of candidate 3 (right), when it should count in candidate 5’s tally.

Tallying votes. Let Bn = (v1, . . . ,vk) be a ballot, SC be the set of uneliminated
candidates, and ΣSC

(vi) be the homomorphic sum of the entries of the ith pref-
erence vector over uneliminated candidates. Clearly ΣSC

(vi) is an encryption

15

of 1 iff the ith preference is for an uneliminated candidate, and an encryption
of 0 otherwise. Let C �src C

′ = Encsrc(pk,MM ′) : M = Decsrc(sk, C) and M ′ =
Decsrc(sk, C

′). After l ≤ k rounds of tallying, the product

π
(l)
j :=

�src
1≤j′≤j (Enc∗1(1)−ΣSC(vj′)) : j ≤ l

is an encryption of 0 iff at least one of the first j preferences is for an uneliminated
candidate, and an encryption of 1 otherwise. After l−1 rounds of tallying, there
is at least one j ≤ l such that the jth preference is for a continuing candidate.4

Therefore after l rounds of tallying, the homomorphic dot product
∑l
j=1 vj �src

πj is an encryption of the indicator vector describing which candidate this vote
should count for in round l. The protocol is shown in Figure 14, Appendix J.

Implementation We implemented the single-authority version of our system and
tested it using elections data for the districts of Albury and Auburn for the
2015 New South Wales state election.5 The implementation encrypted each of
the entries in the ballot matrix prior to commencing the count, to simulate
the receipt of encrypted ballots. Ballots were represented as per Figure 5. The
experiments were performed on an Intel i7-6770HQ with 4 cores (8 threads) and
32GB RAM. The results are shown in Table 1.

We also ran experiments to time the main primitives, i.e. switching and
multiplication. We ran the multiply and switch functions 1000 times and took the
mean time. Multiplication in the source group averages 0.0671s, while switching
averages 0.0971s. The code is available at [REMOVED FOR ANONYMITY.]

District

Albury (5 candidates) Auburn (6 candidates)

No. Ballots 46347 43738

Ballot Encryption Time 3069s 3936s

No. Elimination Rounds 1 4

Count Time 6979s 54637s

Table 1. Results for Sample IRV Counts. Timings in seconds.

6 Conclusion

We have devised a very simple universally verifiable MPC protocol based on
combining an efficient distributed key generation, a somewhat homomorphic
cryptosystem in which one multiplication comes almost for free, and a switching
protocol that allows a return to the cryptosystem from which more multiplica-
tions can be performed.

4 For example, the use of a “stop” candidate by [30] remedies the case that a ballot is
exhausted prematurely.

5 From http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm

16

Acknowledgement

Olivier Pereira is grateful to the Belgian Fund for Scientific Research (F.R.S.-
FNRS) for its financial support provided through the the SeVoTe project, and
to the Melbourne School of Engineering for its fellowship.

References

1. Abe, M., Fehr, S.: Perfect nizk with adaptive soundness. In: Vadhan, S.P. (ed.) The-
ory of Cryptography: 4th Theory of Cryptography Conference, TCC 2007, Amster-
dam, The Netherlands, February 21-24, 2007. Proceedings. pp. 118–136. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
70936-7 7, https://doi.org/10.1007/978-3-540-70936-7_7

2. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university
president using open-audit voting: Analysis of real-world use of helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections. pp. 10–10. EVT/WOTE’09, USENIX Association, Berke-
ley, CA, USA (2009), http://dl.acm.org/citation.cfm?id=1855491.1855501

3. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
Efficient two-level homomorphic encryption in prime-order bilinear groups and a
fast implementation in webassembly. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security. pp. 685–697. ACM (2018)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order.
In: Selected Areas in Cryptography – SAC’2005. LNCS, vol. 3897, pp. 319–331.
Springer (2006)

5. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. In: International Conference on Security and Cryptography for Networks.
pp. 175–196. Springer (2014), also Cryptology ePrint Archive, Report 2014/075:
http://eprint.iacr.org/2014/075

6. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Israel Institute of Technology (1996)

7. Benaloh, J., Byrne, M., Kortum, P.T., McBurnett, N., Pereira, O., Stark, P.B.,
Wallach, D.S.: Star-vote: A secure, transparent, auditable, and reliable voting sys-
tem. CoRR abs/1211.1904 (2012), http://arxiv.org/abs/1211.1904

8. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: Coercion-
resistant verifiable tallying for stv voting. Trans. Info. For. Sec. 4(4), 685–698
(Dec 2009). https://doi.org/10.1109/TIFS.2009.2033757, http://dx.doi.org/10.
1109/TIFS.2009.2033757

9. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting he-
lios for provable ballot privacy. In: Vijay Atluri, C.D. (ed.) Computer Security –
ESORICS 2011. Lecture Notes in Computer Science, Springer (9 2011)

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing. pp. 103–112. STOC ’88, ACM, New York,
NY, USA (1988). https://doi.org/10.1145/62212.62222, http://doi.acm.org/10.
1145/62212.62222

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) Advances in Cryptology – CRYPTO 2004: 24th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19,

17

2004. Proceedings. pp. 41–55. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3, https://doi.org/10.1007/
978-3-540-28628-8_3

12. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-dnf formulas on cipher-
texts. In: Proceedings of the Second International Conference on Theory
of Cryptography. pp. 325–341. TCC’05, Springer-Verlag, Berlin, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18, http://dx.doi.org/10.

1007/978-3-540-30576-7_18

13. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(Jul 2014)

14. Camenisch, J., Michels, M.: Separability and efficiency for generic group signa-
ture schemes. In: Wiener, M. (ed.) Advances in Cryptology — CRYPTO’ 99: 19th
Annual International Cryptology Conference Santa Barbara, California, USA, Au-
gust 15–19, 1999 Proceedings. pp. 413–430. Springer Berlin Heidelberg, Berlin,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 27, https://doi.org/

10.1007/3-540-48405-1_27

15. Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching protocols revis-
ited: Switching modulo p. In: Advances in Cryptology - CRYPTO 2017. LNCS,
vol. 10401, pp. 255–287. Springer (2017)

16. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Proceedings of the 22Nd ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1518–1529. CCS ’15,
ACM, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813624,
http://doi.acm.org/10.1145/2810103.2813624

17. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed elgamal à la
pedersen: Application to helios. In: Proceedings of the 12th ACM Workshop on
Workshop on Privacy in the Electronic Society. pp. 131–142. WPES ’13, ACM,
New York, NY, USA (2013). https://doi.org/10.1145/2517840.2517852, http://

doi.acm.org/10.1145/2517840.2517852

18. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In: Rob-
shaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016: 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I. pp. 308–338. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53018-4 12, http://dx.doi.org/
10.1007/978-3-662-53018-4_12

19. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Advances in Cryptology - EUROCRYPT ’97. LNCS,
vol. 1233, pp. 103–118. Springer (1997)

20. Damgard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. Cryptology ePrint Archive, Report 2011/535
(2011), http://eprint.iacr.org/2011/535

21. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Advances in Cryptology–CRYPTO 2012,
pp. 643–662. Springer (2012)

22. Damgrd, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. Cryptology ePrint Archive, Report 2003/080 (2003), http://eprint.

iacr.org/2003/080

23. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
Non-interactive Zero Knowledge, pp. 566–598. Springer Berlin Heidelberg, Berlin,

18

Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33, https://doi.org/

10.1007/3-540-44647-8_33

24. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology – CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II. pp. 129–147. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 8, http://dx.doi.org/10.1007/978-3-642-40084-1_8

25. Freeman, D.M.: Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In: Proceedings of the 29th An-
nual International Conference on Theory and Applications of Cryptographic
Techniques. pp. 44–61. EUROCRYPT’10, Springer-Verlag, Berlin, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-13190-5 3, http://dx.doi.org/

10.1007/978-3-642-13190-5_3

26. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gen-
eration for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (Jan
2007). https://doi.org/10.1007/s00145-006-0347-3, http://dx.doi.org/10.1007/
s00145-006-0347-3

27. Goh, E.J., Golle, P.: Event driven private counters. In: Proceedings of
the 9th International Conference on Financial Cryptography and Data
Security. pp. 313–327. FC’05, Springer-Verlag, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11507840 27, http://dx.doi.org/10.1007/11507840\

_27

28. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) Advances
in Cryptology - ASIACRYPT 2010: 16th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore, December
5-9, 2010. Proceedings. pp. 341–358. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-17373-8 20, http://dx.doi.org/
10.1007/978-3-642-17373-8_20

29. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
nizk. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006: 26th An-
nual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2006. Proceedings. pp. 97–111. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2006). https://doi.org/10.1007/11818175 6, https://doi.org/10.1007/
11818175_6

30. Heather, J.: Implementing stv securely in prêt à voter. In: Proceedings
of the 20th IEEE Computer Security Foundations Symposium. pp. 157–
169. CSF ’07, IEEE Computer Society, Washington, DC, USA (2007).
https://doi.org/10.1109/CSF.2007.22, http://dx.doi.org/10.1109/CSF.2007.22

31. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: A
new framework for composite-to-prime-order transformations. Cryptology ePrint
Archive, Report 2014/445 (2014), http://eprint.iacr.org/2014/445

32. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general ac-
cess structure. Electronics and Communications in Japan (Part III: Fundamental
Electronic Science) 72(9), 56–64 (1989). https://doi.org/10.1002/ecjc.4430720906,
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906

33. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Workshop on the Theory and Application of Cryptographic
Techniques on Advances in Cryptology. pp. 248–259. EUROCRYPT ’93, Springer-

19

Verlag New York, Inc., Secaucus, NJ, USA (1994), http://dl.acm.org/citation.
cfm?id=188307.188351

34. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Proceedings
of the 10th Annual International Conference on Theory and Application of Crypto-
graphic Techniques. pp. 522–526. EUROCRYPT’91, Springer-Verlag, Berlin, Hei-
delberg (1991), http://dl.acm.org/citation.cfm?id=1754868.1754929

35. Ryan, P.Y.A.: Prêt à voter with paillier encryption. Math. Comput. Model. 48(9-
10), 1646–1662 (Nov 2008). https://doi.org/10.1016/j.mcm.2008.05.015, http://
dx.doi.org/10.1016/j.mcm.2008.05.015

36. Ryan, P.Y.A.: A variant of the chaum voter-verifiable scheme. In: Proceedings of
the 2005 Workshop on Issues in the Theory of Security. pp. 81–88. WITS ’05, ACM,
New York, NY, USA (2005). https://doi.org/10.1145/1045405.1045414, http://

doi.acm.org/10.1145/1045405.1045414

37. Ryan, P.Y.A., Teague, V.: Ballot permutations in prêt à voter. In: Proceedings of
the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy
Elections. pp. 13–13. EVT/WOTE’09, USENIX Association, Berkeley, CA, USA
(2009), http://dl.acm.org/citation.cfm?id=1855491.1855504

38. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on
the conditional gate. In: Lee, P.J. (ed.) Advances in Cryptology - ASI-
ACRYPT 2004: 10th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Jeju Island, Korea, December 5-
9, 2004. Proceedings. pp. 119–136. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-30539-2 10, https://doi.org/10.
1007/978-3-540-30539-2_10

39. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation
from threshold homomorphic cryptosystems. In: International Conference on Ap-
plied Cryptography and Network Security. pp. 3–22. Springer (2015), cryptology
ePrint Archive, 2015/058: http://eprint.iacr.org/2015/058

40. Scott, M.: Authenticated id-based key exchange and remote log-in with simple
token and pin number. Cryptology ePrint Archive, Report 2002/164 (2002), http:
//eprint.iacr.org/2002/164

41. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Proceedings of the 14th International Confer-
ence on Practice and Theory in Public Key Cryptography Conference on Public
Key Cryptography. pp. 53–70. PKC’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=1964658.1964664

A Reusable Commitments

Definition 9 (Commitment Scheme [22]) A commitment scheme πCOM con-
sists of three PPT algorithms (K, commitck, decommitck).

K(1λ): On input 1λ, the key generator outputs a public key ck. Associated to
this are a message space Mck, a commitment space Cck and two polynomial
time algorithms commitck and decommitck.

commitck(m, r) : On input m ∈ Mck choose at random a randomiser r. The
output is (c, d) where c ∈ Cck and d is some decommitment information.

decommitck(c, d) : If c 6∈ Cck or d is not a proper opening output ⊥. Otherwise,
if c is constructed as the output of commitck output m.

20

Definition 10 (Non-malleable Commitment Scheme [22]) Let K′ be a mod-
ified key generator which outputs a public key indistinguishable from the real key.
Let A be a PPT adversary. Let M be a message generator and D be distinguisher
which receive as auxiliary input zM and zD respectively. We require that for ev-
ery such adversary A there exists a PPT simulator S so that following ensembles
are computationally indistinguishable.

{D(s,m,m′, zD) : ck ← K(1λ), (s,m)←M(ck, zM);

(c,d)← commitck(m); c′ ← A(ck, c,M, zM);d′ ← A(d);

m′ ← decommitck(c′,d′)}λ,zM ,zD
≈c

{D(s,m,m′, zD) : (ck, sck)← K′(1λ); (s,m)←M(ck, zM);

m′ ← S(ck, sck, |m|,M, zM)}λ,zM ,zD

B Encryption Switching

In this section we define an N -party extension of the encryption switching pro-
tocols by Couteau et al. [18] as well as a definition of security following the
simulation-based paradigm introduced there-in. We will need the notion of twin-
ciphertext pair [18] which is augmented with appropriate homomorphic proper-
ties on the respective ciphertext spaces.

Definition 11 (Twin-Ciphertext Pair [18]) For i = {1, 2} let Πi be an en-
cryption scheme (Setupi,KeyGeni,Enci,Deci) with plaintext space Mi. A twin-
ciphertext pair (c1, c2) is a pair of ciphertexts satisfying:

1. c1 is an encryption of m1 ∈M1 under Π1.
2. c2 is an encryption of m2 ∈M2 under Π2.
3. m1 = m2 (which in turn belongs to M1 ∩M2).

Definition 12 (Distributed Encryption Switching) For i ∈ {1, 2} let Πi =
(Setup,KeyGen,Enci,Deci) be semantically secure cryptosystems with plaintext
spaces (Mi,+,×) such that M = M1 ∩ M2 6= ∅. Suppose that the following
homomorphic properties hold:

∀m,m1,m2 ∈Mi

Enci(m1; r1) ·i Enci(m2; r2) = Enci(m1 +m2; r1 + r2),

∀R ∈M (Enci(m; r))R = Enci(R×m;R · r)

Assume also the existence of Randi(·) which re-randomizes a ciphertext in Πi

(for example, these can be constructed via multiplication of the input ciphertext
with a fresh encryption of zero using the above homomorphisms).

A N -party distributed encryption switching protocol between Π1 and Π2, with
respect to access structure A, denoted Π1
 Π2, is a tuple (Share,Switch) such
that:

21

Share(pk, sk,A) Given input sk outputs a secret sharing (sk1, . . . , skN), according
to access structure A and updates pk if necessary.

Switchpar(pk, (sk1, . . . , skN), c) is an interactive protocol which from a ciphertext
c under the source encryption scheme, jointly computes a twin ciphertext c′ of
c under the destination encryption scheme or outputs ⊥ (in case of incorrect
execution of the protocol). Here subscript par indicates the direction of the
encryption switching.

Definition 13 (Correctness of Distributed Encryption Switching) A dis-
tributed encryption switching scheme Π1
 Π2 = (Share,Switch) is correct if
both Π1 and Π2 are correct encryption schemes, and for any pp ← Setup(1κ),
any keys (pk, sk) ← KeyGen(pp), any key shares pk and (sk1, . . . , , skN) ←
Share(pk, sk), any message m ∈M1∩M2 and any ci ← Enci(pki,m) for i = 1, 2,

Dec2(sk,Switch1→2(pk, (sk1, . . . , skN), c1)) = m,

Dec1(sk,Switch2→1(pk, (sk1, . . . , skN), c2)) = m

Definition 14 (Security of Distributed Encryption Switching) Figure 6
shows two experiments in which an adversary interacts with an N -party encryp-
tion switching scheme over access structure A. In the first experiment the adver-
sary interacts with the real encryption switching protocol on input ciphertext c.
In the second experiment the adversary interacts with a simulator that is given
input (c, c), which is a twin-ciphertext pair. Let OV be an oracle which on input
(pk, (ski)Pi∈V , c), emulates the honest players in set V ⊆ {P1, . . . , PN}, i.e., pro-
vides the answers Pi would send upon receiving Start when running the protocol
Switch(pk, (sk1, . . . , skN), c), for each Pi in V .

Experiment RealSwitchA
desp, A(1λ, 1N) :

B ← A(1λ, 1N) : B 6∈ A

(pk, sk)← Setup(1λ)

(sk1, . . . , skN)← Share(pk, sk)

α← AOB(pk,(ski)i∈B ,c)(pk, (ski)i∈B)

Output: α

Experiment IdealSwitchdesp, AA, (S1,S2)(1
λ, 1N) :

B ← A(1λ, 1N) : B 6∈ A

(pk, sk)← Setup(1λ)

(pk′, sk′1, . . . , sk
′
N)← S1(pk)

α← AS2(pk,(sk
′
i)i∈B ,c,c)(pk′, (sk′i)i∈B)

Output: α

Fig. 6. Experiments used in distributed encryption switching.

An N -party distributed encryption switching scheme Π1
 Π2 is (N,A)-
simulation secure, if for every PPT adversary A there exists a PPT simula-
tor S = (S1,S2) such that the ensembles {RealSwitchdesp, AA (1λ, 1N)}λ,N and

{IdealSwitchdesp, AA, (S1,S2)(1
λ, 1N)}λ,N are computationally indistinguishable.

22

C One-time Multiplicatively Homomorphic
Cryptosystem

In this section we describe a generalisation of the homomorphic cryptosystem
from Section 2 which supports arbitrarily many additions on the message space,
followed by one multiplication, followed by arbitrarily many additions. The pur-
pose of this appendix is to detail the case for general l, from which the cryp-
tosystem in Section 2 may be seen as the special case l = 1.

We first present the general definition of the tensor-induced projecting bilin-
ear generator.

Definition 15 (Tensor-Induced Projecting Bilinear Group Generator)
Let P be prime-order bilinear group generator and let (p,G1,G2,Gt, ê)← P(1λ).

Let l ∈ N be a constant and G = Gl+1
1 , H = Gl+1

2 and Gt = G(l+1)2

t . Choose
generators g ∈R G1, h ∈R G2. In what follows define R(y, i) to be the vector y
cyclically shifted right by i positions. Let a⊗ b be the tensor product of a and b.

1. Let x1 = (−s, 1, 0, . . . , 0),
x2 = R(x1, 1), . . . ,
xl = R(x1, l − 1) and
x′1 = (−s′, 1, 0, . . . , 0),
x′2 = R(x′1, 1), . . . ,
x′l = R(x′1, l − 1) in Zl+1

p and
y1 = x1 ⊗ x′1, . . . ,
yl(i−1)+j = xi ⊗ x′j , . . . ,
yl2 = xl ⊗ x′l in Z(l+1)2

p where s and s′ ∈R Zp.
2. Let G1 be the subgroup of G generated by {gx1 , . . . , gxl} and H1 be the sub-

group of H generated by {hx′1 , . . . , hx′l}. Let G′t be the subgroup of Gt gener-
ated by {ê(g, h)y1 , . . . , ê(g, h)yl2 }.

3. Define e : G×H → Gt by

e(ga, hb) =: ê(g, h)a⊗b

= (ê(ga0 , hb0), . . . ,

ê(gai , hbj), . . . ,

ê(gal , hbl))

where a = (a0, . . . , al) and b = (b0, . . . , bl).
4. For g ∈ G,h ∈ H and gt ∈ Gt and s, s′ ∈ Zp, define

π1(g) = g(1,s,...,sl)T π2(h) = h(1,s′,...,s′l)T

πt(gt) = g
((sis′j)li,j=0)

T

t

which are elements in G1,G2 and Gt respectively.
5. Output (G,G1, H,H1, Gt, G

′
t, e) and (π1, π2, πt).

23

Using this construction, the cryptosystem is designed as follows.

Setup(1λ) : Let P be the prime-order bilinear generator of Definition 8. Output
pp = (p,G1,G2,Gt, ê)← P(1λ).

KeyGen(pp) : Let G be the tensor-induced projecting bilinear generator of Def-
inition 15. Let (G,G1, H,H1, Gt, G

′
t, e, π1, π2, πt) ← G(pp). In particular,

let Gl+1
1 ,Gl+1

2 and G(l+1)2

t be descriptions of G,H and Gt respectively,

and {gx1 , . . . , gxl} and {hx′l , . . . , hx′l} be descriptions of G1, H1 respectively.
Choose g ∈R G,h ∈R H, and output the public key pk = (G,G1, H,H1, Gt, e,g,h)
and the secret key sk = (π1, π2, πt) as described in Section 1.5.

Encsrc(pk,M) : Choose (ai)1≤i≤l and (bi)1≤i≤l at random in Zp. Let g1 =∏l
j=1(gxj)aj = (g−a1s, ga1−a2s, . . . , gal−1−als, gal) and h1 =

∏l
j=1(hx

′
j)bj =

(h−b1s
′
, hb1−b2s

′
, . . . , hbl−1−bls′ , hbl). Let C0 = gM ·g1, C1 = hM ·h1. Output

the ciphertext (C0, C1) in G×H.
Enctgt(pk,M) : Choose (ai)1≤i≤l and (bi)1≤i≤l at random in Zp. Let g1 =∏l

j=1(gxj)aj = (g−a1s, ga1−a2s, . . . , gal−1−als, gal) and h1 =
∏l
j=1(hx

′
j)bj =

(h−b1s
′
, hb1−b2s

′
, . . . , hbl−1−bls′ , hbl). Output the ciphertext C = e(g,h)M ·

e(g,h1) · e(g1,h) in Gt.
Multiplysrc(pk, C, C

′) : The multiplication algorithm takes as input two cipher-
texts C = (C0, C1) and C ′ = (C ′0, C

′
1). Choose g1 ∈R G1 and h1 ∈R H1, as

in the above routine. Output C = e(C0, C
′
1) · e(g,h1) · e(g1,h), an element

of Gt.
Addsrc(pk, C, C

′) : The algorithm accepts as inputs two ciphertexts C = (C0, C1)
and C ′ = (C ′0, C

′
1). Choose g1 ∈R G1 and h1 ∈R H1.

1. Let C ′′0 = C0 · C ′0 · g1.
2. Let C ′′1 = C1 · C ′1 · h1.

Output C ′′ = (C ′′0 , C
′′
1).

Addtgt(pk, C, C
′) : The algorithm accepts as inputs two ciphertexts C and C ′ in

Gt. Choose g1 ∈R G1 and h1 ∈R H1.

1. Let C ′′ = C · C ′ · e(g,h1) · e(g1,h).

Output C ′′.
Decsrc(sk, C) : Accept as input a ciphertext C = (C0, C1) in G × H. Compute

M ← logπ1(g)(π1(C0)) and M ′ ← logπ2(h)(π2(C1)). Output M if M = M ′

or ⊥ otherwise.
Dectgt(sk, C) : Accept as input a ciphertext C inGt. OutputM ← logπt(e(g,h))(πt(C)).

Proof of Lemma 1 Suppose that the External l-Symmetric Cascade as-
sumption holds with respect to the groups G1 and G2. Then the above cryp-
tosystem is semantically secure.

Proof. We prove this via a series of games, of which the indistinguishability is
proven in the next 3 Propositions.

Game H1: Exactly the same as above but modify the encryption routine as
follows.

24

Encrypt(pk,M) : Choose (ui)1≤i≤l+1 and (bi)1≤i≤l+1 at random in Zp. Let

C0 = gM · (gu1 , . . . , gul+1), C1 = hM · (h−b1s′ , hb1−b2s′ , hbl−1−bls′ , hbl).
Output the ciphertext (C0, C1) in G×H.

Game H2: Exactly the same as H1 but modify the encryption routine as fol-
lows.

Encrypt(pk,M) : Choose (ui)1≤i≤l+1 and (u′i)1≤i≤l+1 at random in Zp. Let

C0 = gM · (gu1 , . . . , gul+1), C1 = hM · (hu′1 , . . . , hu
′
l+1). Output the ci-

phertext (C0, C1) in G×H.

Proposition 6 Suppose there exists a PPT adversary A that distinguishes the
real IND-CPA game and H1 with probability ε1. Then we can construct a PPT
adversary B that breaks the l-Symmetric Cascade assumption in G1 with advan-
tage ε1.

Proof. On input (G, g, gA, gv), attacker B performs the following steps. Write
gA = gx1‖ . . . ‖gxl . Set G1 = {gx1 , . . . , gxl}. Send pk to A. On receipt of
(M0,M1), choose β ∈R {0, 1}. Let CT = (C1, C2), where C0 = gMβ · gv, C1 =
hMβ · h1 : h1 ∈r H1. Send CT to A. Output the bit that A outputs. Clearly

Pr[1 ← B(G1, g, (g
x1 , . . . , gxl), g

∑l
j=1 ajxj)] = Pr[1 ← A(H0)], while Pr[1 ←

B(G1, g, (g
x1 , . . . , gxl), g(u1,...,ul+1)

T

)] = Pr[1 ← A(H1)]. Thus AdvB = |Pr[1 ←
A(H0)]− Pr[1← A(H1)]| = AdvA = ε1.

Proposition 7 Suppose there exists a PPT adversary A that distinguishes H1

and H2 with probability ε2. Then we can construct a PPT adversary B that breaks
the l-Symmetric Cascade assumption in G2 with advantage ε2.

Proof. On input (G2, h, h
A, hv

′
), attacker B performs the following steps. Write

hA = hx
′
1‖ . . . ‖hx′l . Set H1 = {hx′1 , . . . , hx′l}. Send pk to A. On receipt of

(M0,M1), choose β ∈R {0, 1}. Let CT = (C1, C2), where C0 = gMβ ·(gu1 , . . . , gul+1) :
u1, . . . , ul+1 ∈R Zp, C1 = hMβ · hv′ . Send CT to A. Output the bit that A out-

puts. Clearly Pr[1 ← B(G2, h, (h
x′1 , . . . , hx

′
l), h

∑l
j=1 bjx

′
j)] = Pr[1 ← A(H1)],

while Pr[1 ← B(G2, h, (h
x′1 , . . . , hx

′
l), h(u

′
1,...,u

′
l+1)

T

)] = Pr[1 ← A(H2)]. Thus
AdvB = |Pr[1← A(H1)]− Pr[1← A(H2)]| = AdvA = ε2.

Proposition 1. Any PPT adversary A has negligible advantage in winning the
modified IND-CPA game H2.

Proof. This follows from the fact that the challenge CT = (C0, C1) carries no
information about the challenge Mβ .

Combining the above propositions, we have that any IND-CPA adversary has
advantage at most ε1 + ε2 against the above cryptosystem. Therefore if the
External l-Symmetric Cascade assumption holds, ε1 and ε2 are negligible, thus
semantic security of the cryptosystem follows.

25

D NIZKs

In this section we present non-interactive zero knowledge proofs for the relations
described in Section 3. For convenience our presentation of these is unified -
our proofs assume inputs under the verifiable commitment scheme of [29] while
known techniques can be used to interchange between commitments under this
scheme and ciphertexts under the other cryptosystems in this paper [14].

Plaintext equality proofs are denoted Peq(C1, C2). We describe an adaption
of the proof by Abe and Fehr [1] to produce a NIZK proof of equality of en-
crypted messages under different public keys. Proof Prange(C, 2

λ) uses standard
bit decomposition of the input to prove that the committed value is in the range
[0, 2λ−1]. We use a version adapted to the decision linear commitments setting.
These in turn rely on the homomorphic commitment scheme of [29], which is
secure if the Decision Linear assumption holds.

Our proofs are adapted for the Decision Linear Assumption.

Definition 16 (Decision Linear Assumption [11]) Let g, u, v, h be genera-
tors in G. For adversary A define

AdvDLIN
A :=

|Pr[A(u, v, h, ua, vb, ha+b) = true : u, v, h ∈R G, a, b ∈R Zp]−
Pr[A(u, v, h, ua, vb, y) = true : u, v, h, y ∈R G, a, b ∈R Zp]|

Then for all PPT adversaries A we have AdvDLIN
A is a negligible function of λ.

D.1 Non-Interactive Zero Knowledge

We recall the notion of a non-interactive zero knowledge proof system [10]. Stan-
dard techniques can be used to make such proofs non-malleable where necessary
[23].

Definition 17 (Non-Interactive Zero Knowledge Proof [28]) A non-interactive
zero knowledge proof system for a relation R is a tuple (G,P, V) such that

G(1λ,m): a common reference string generator that takes as input the security
parameter written in unary and an intended statement size m and outputs a
common reference string σ of length Ω(λ).

P (σ, x, w): a prover algorithm that takes as input the common reference string
σ, statement x and witness w such that R(x,w) and outputs a proof ε.

V (σ, x, ε): the verifier algorithm that on input the common reference string σ,
the statement x and claimed proof, ε, outputs 1 or 0, indicating acceptance
or rejection respectively.

Additionally the following properties should hold:

Completeness. For all PPT adversaries A and m < λc for some c > 0 we
have
Pr[σ ← G(1λ,m); (x,w) ← A(σ), ε ← P (σ, x, w) : R(x,w) ⇒ V (σ, x, ε) =
1] = 1

26

Soundness. For all PPT adversaries A and m < λc for some c > 0 we have
Pr[σ ← G(1λ,m); (x, ε)← A(σ) : x 6∈ Lm ∧ V (σ, x, ε) = 1] ≈ 0

Computational Zero Knowledge. For all non-uniform polynomial time state-
ful adversaries A, i.e., adversaries which accepts an advice string dependent
on the input length, there exists a polynomial time simulator S = (S1,S2)
such that

Pr[σ ← G(1λ,m); (x,w)← A(σ); ε← P (σ, x, w) :

(x,w) ∈ Rm ∧ A(ε) = 1]

≈c
Pr[(σ, τ)← S1(1λ,m); (x,w)← A(σ); ε← S2(τ, x) :

(x,w) ∈ Rm ∧ A(ε) = 1]

Decision Linear Commitments [29] We present the homomorphic commitment
scheme of [29] which is secure if the Decision Linear assumption holds. We require
a slight twist on this scheme, which is that parameters will consist of pairs of
elements from a group G = Gm, m ≥ 3, for which a symmetric bilinear map
e : G × G → Gt exists. The reason for this modification will become apparent
when present the NIZK proof systems themselves. All operations are performed
component-wise unless otherwise specified.

Setup :
Let (p,G, e, g) ← G(1λ). Let g ∈R G2. Let x, y ← Z2m

p . Let f = gx,h = gy.
Let pk = (p,G,GT , e,g, f ,h). Let sk = (pk, x, y).

Perfectly hiding key generation Khide :
1. u,v ∈R G2. Let w = ux

−1

vy
−1

.
2. Return ck = (pk,u,v,w).

Perfectly binding key generation Kbind :
1. u,v,w ∈R G2.
2. Return ck = (pk,u,v,w).

Commitment :
To commit to message µ ∈ Zp do
1. r, s← Z2m

p

2. Return c = (c1, c2, c3) = com(µ; r, s) = (uµfr,vµhs,wµgr+s).
Trapdoor opening :

Given a commitment c = com(µ; r, s) under a perfectly hiding key, we have
c = com(µ′; r − (µ′ − µ)ru, s − (µ′ − µ)sv) for some ru, sv ∈ Z2m

p (which
may be specified in key generation). Thus we can create a perfectly hiding
commitment and open it to any value we wish if we have the trapdoor key
(ru, sv).

D.2 Plaintext Equivalence Proof [1]

We describe an adaption of the plaintext equivalence proof by Abe and Fehr [1]
to demonstrate a NIZK proof to commitments to an identical message under
different public keys.

27

Proof Peq(c1, c2)

Common Reference String : σ = (f ,g,h, pk1, pk2) where pk1 = (u1,v1,w1), pk2 =
(u2,v2,w2)← Kbind(1

λ, f ,g,h).

Statement : c, c′ are commitments to µ under pk1 and pk2.

Prover’s Input : (µ, r, s, r′, s′) so that c1 = (fruµ1 ,h
svµ1 ,g

r+swµ
1),

c2 = (fr
′
uµ2 ,h

s′vµ2 ,g
r′+s′wµ

2).

Proof :

π1 = gr−r
′+r′′

π2 = fr
′′
(u−11 u2)µ

π3 = hr
′′
(v−11 v2)µ

π4 = gr
′′
(w−11 w2)µ

Send π = (π1, π2, π3, π4) to the verifier.

Verifier : Check that

e(f , π1) = e(g, c11c
−1
21 π2)

e(h, c13c
−1
23 π

−1
1 π4) = e(g, c12c

−1
22 π3)

D.3 Range Proof

We describe an adaption of the well-known range proof by bit decomposition of
the input adapted to the decision linear commitments setting.

Proof Prange(c, 2
λ)

Common Reference String : σ = (f ,g,h, pk) where pk = (u,v,w)← Kbind(1
λ, f ,g,h).

Let [µ]j be the jth bit of integer µ.

Statement : c is a commitment to µ under (u,v,w) and µ ∈ [0, 2λ − 1].

Prover’s Input : µ, r, s so that c = (fruµ,hsvµ,gr+swµ).

Proof : For 0 ≤ j < λ let

cj = (frju[µ]j ,hsjv[µ]j ,grj+sjw[µ]j)

π1j = (u2[µ]j−1frj)rj

π2j = (v2[µ]j−1hsj)sj

π3j = (w2[µ]j−1g(rj+sj))(rj+sj)

Let π′ = gr−
∑λ−1
j=0 2j ·rj .

Send (cj , π1j , π2j , π3j)0≤j<λ, and π′.

28

Verifier : For 0 ≤ j < λ check that

e(f , π1j) = e(c1j , c1ju
−1)

e(h, π2j) = e(c2j , c2jv
−1)

e(g, π3j) = e(c3j , c3jw
−1)

e(f , π′) = e(g, c1 ·
λ−1∏
j=0

(c1j)
−2j)

e(h, c3 ·
λ−1∏
j=0

(c3j)
−2j · π′−1) = e(g, c2 ·

λ−1∏
j=0

(c2j)
−2j)

Theorem 8. The above range proof is perfectly complete, perfectly sound and
is computational zero knowledge if the Decision Linear assumption holds. The
proof consists of 2 + 12mdlog2 µe group elements.

Completeness It is straightforward to check that the verification equations
hold if the prover is honest.

Zero Knowledge Under the decision linear assumption, the common reference
string σ may be simulated so that (u,v,w) form a linear tuple, i.e., where

u ∈ G2,v ∈ G2,w = ux
−1

vy
−1

. The simulator sets f = gx,h = gy :
x, y ← Z2m

p and outputs (σ, τ) where σ = (f ,h,g,u,v,w) and τ = (x, y).
The simulator chooses rj , sj ∈ Z2m

p and computes cj = (c1j , c2j , c3j) =
(frj ,hsj ,grj+sj). It sets π1j = (c21j · f−rj · u−1)rj , π2j = (c22j · h−sj · v−1)sj

and π3j = (c23j ·g−(rj+sj) ·w−1)(rj+sj). It sets π′ = (c1 ·(
∏λ−1
j=0 (c1j)

2j)−1)x
−1

.
By inspection, π1j , π2j , π3j and π′ are distributed identically as in the real
protocol with respect to σ and (cj)j so computational zero knowledge follows.

Soundness There exists rj and sj so that cj = com(µj ; rj , sj) for some µj ∈ Zp.
Moreover, by the perfect binding property of the commitment scheme, these
are all unique. Then valid π1j implies that e(f , π1j) = e(u,u)µj(µj−1)e(f ,urj(2µj−1))

e(f , f)r
2
j . If u 6∈ span(f), it follows that µj(µj − 1) = 0, thus µj = 0 or

µj = 1. Similarly valid π2j and v 6∈ span(h), and valid π3j and w 6∈ span(g)
imply the same result. On the other hand the perfect binding instantiation
of the commitment scheme implies that (u,v,w) is a non-linear tuple, so
one of u 6∈ span(f),v 6∈ span(h), or w 6∈ span(g) holds. It follows that
µj = 0 ∨ µj = 1 for 0 ≤ j < λ. The existence of valid π′ implies that

r′ and s′ exist satisfying the equations π′ = gr
′
, c1 = fr

′+
∑λ−1
j=0 2jrj , c2 =

hs
′+

∑λ−1
j=0 2jsj , c3 ·

∏λ−1
j=0 (c3j)

2j · π′−1 = gs
′
. This implies c3 = wµgr

′+s′ : µ =∑λ−1
j=0 µj2

j . Hence µ ∈ [0, 2λ − 1].

E Distributed Key Generation Sub-Protocols

E.1 Conditional Gate

Schoenmakers et al. [38] describe a protocol by which a certain multiplication
gate may be distributed across N parties with shares of an additively homomor-

29

phic threshold cryptosystem. The first input to the gate is from a dichotomous
(two-valued) domain while the second input is unrestricted. Let FCOND be the
ideal functionality with the following behaviour.

– On input [x] and [y] returns an encryption of [xy] if x ∈ {−1,= 1} and ⊥
otherwise.

Notation: In this section we use ⊕, ⊗ and 	 to mean homomorphic addition,
multiplication and subtraction respectively.

For properly formed ciphertexts [x] and [y] let [x] ? [y] denote the output
of FCOND([x], [y]). It is shown in [38] that players may compute an encryption
of xor-sum of bit-valued inputs x and y according to the following sequence of
transformations [x′] ← 2 ⊗ [x] 	 [1] : x′ = 2x − 1, [x′y] ← [x′] ? [y], [x ⊕ y] ←
[x]	 [x′y]. The protocol is given in Figure 8, with decryption in Figure 11. This
sequence forms the basis for our protocol in Section E.2 which computes the
private xor-sum of a number of encrypted inputs.

Theorem 1 [38] states that for all input pairs ([x], [y]) : x ∈ {−1, 1} and any
PPT adversary A corrupting at most T players in an execution of the above
protocol, there exists a simulator S that interacts with the ideal world function-
ality computing the conditional gate, FCOND, and outputs a transcript which is
computationally indistinguishable from that obtained by execution in the real
world. This simulator is described in Figure 9.

Protocol πCOND ([38])
Common Input : Let [x], [y] denote encryptions with x ∈ {−1, 1} ⊆ M and

y ∈M.
Private Input : Player Pi holds a share of the secret key, ski.

Let x0 = x and y0 = y.

1. Player Pi takes [xi−1] and [yi−1] as input and broadcasts a commitment 〈〈si〉〉
with si ∈R {−1, 1}. Then Pi computes [xi] = [xi−1]⊗si⊕[0] and [yi] = [yi−1]⊗
si ⊕ [0] together with εi ← Pmul(〈〈si〉〉, [xi−1], [xi]), Pmul(〈〈si〉〉, [yi−1], [yi]). If
Pi fails to complete this step it is discarded immediately.

2. The parties jointly decrypt [xn] to obtain xn. If decryption fails because the
number of correct shares is insufficient, the entire protocol is aborted. If de-
cryption fails because xn 6∈ {−1, 1} each party Pi is required to broadcast a
proof that si ∈ {−1, 1}. Parties failing to do so are are discarded, and the
protocol is restarted. Given xn and [yn] and encryption [xnyn] is computed
publicly.

Fig. 7. Protocol πCOND computing the conditional gate.

30

E.2 Private Sum Modulo Two

Protocol πSUM

Common Input : [u1], . . . , [un] under Enc1 and ui ∈ {0, 1}λ for 1 ≤ i ≤ n.
Private Input : Pi holds ui and randomness ri of [ui] and share of secret key,

ski

Player Pi

1. Let ui =
∑λ−1
j=0 uij2

j where uij ∈ {0, 1}. Broadcast cij = [uij] under random-

ness r′ij and εij ← Pbit(cij).
2. Let C0 = . . . = Cλ−1 = Enc∗1(0).
3. If any of the εij do not pass verification output ⊥. Otherwise, for 1 ≤ k ≤ N ,

for 0 ≤ j < λ, let:
(a) c′kj = 2⊗ ckj 	 Enc∗1(1)
(b) c′′kj = πCOND(ski, c

′
kj , Cj)

(c) Cj = ckj 	 c′′kj
4. Output C = (C0, . . . , Cλ−1).

Fig. 8. Protocol πSUM.

Theorem 9. Protocol πSUM securely computes encryption switching in the FCOND-
hybrid model against statically chosen adversaries if Πbit is a secure NIZK proof
system.

Proof. Let (c∗ij , ε
∗
ij , C

∗
j , c
′
ij
∗
, c′′ij
∗
)1≤i≤N be the output of the adversary interact-

ing with the honest players in the real protocol conditional on the event C∗j = C̃j .

Then by the assumption that at most T players are corrupted, c′′ij
∗

is a an en-

cryption of the conditional product of the plaintexts contained in c′ij
∗

and C∗j
for j 6= N . Moreover, by the soundness of the zero knowledge proof for Rbit,
ciphertext c∗ij is a an encryption of u∗ij where u∗ij ∈ {0, 1}. Let u′ij

∗
= 2 ∗u∗ij − 1.

Now the relations Cj = ckj 	 c′′kj and Cj =
∑k
i=1 u

∗
ij

∏k
l=1(−1)ku′lj

∗
hold at

the kth invocation of Step 3c. This holds by inspection for k < N . For k = N
this follows since cNj = C̃j 	 C̃ ′′j implies cNj = Cj 	 C ′′j where C ′′j = C ′j ? C̃j :

C ′j = 2⊗ Cj − Enc∗1(1), exploiting the fact that Cj and C̃j are known to be bit

encryptions. Next cNj = Cj 	 C ′′j implies Cj = cNj 	 C ′j ? C̃j and hence that

Cj = cNj	c′′Nj . Also Cj = [u∗Nj]−[(2∗u∗Nj−1)
∑N−1
i=1 u∗ij

∏N−1
l=i+1(−1)N−1u′lj

∗
] =

[u∗Nj − u′Nj
∗∑N−1

i=1 u∗ij
∏N−1
l=i+1(−1)N−1u′lj

∗
] = [

∑N
i=1 u

∗
ij

∏N
l=i+1(−1)Nu′lj

∗
]. A

hybrid argument thus implies that if the adversary could distinguish the simu-
lated view, using the simulated expression for cNj in place of the real, they could
break the semantic security of Enc1 which by assumption is impossible.

31

Simulator for πSUM

Input : ([u1], . . . , [uN],C = (C̃0, . . . , C̃λ−1)

– Let B be the set of corrupted players.

1. Let (σ̂n, τN)← S1(1λ)
2. Perform Steps 1–3 on behalf of honest players Pi : i ∈ B\{N} except that c′′kj

is computed as FCOND(c′kj , Cj).
3. For 0 ≤ j < λ

(a) Let C̃′j = 2⊗ C̃j 	 Enc∗1(1), C̃′′j = FCOND(C̃′j , Cj).

(b) Publish cNj = C̃j 	 C̃′′j and εNj ← S2(τN , cNj).
(c) Let c′Nj = 2⊗ cNj 	 Enc∗1(1).
(d) Let c′′Nj be the output of FCOND(c′Nj , Cj).

Fig. 9. Simulator for protocol πSUM.

E.3 Decryption Protocol

Lemma 2. Protocol πDEC unconditionally computes encryption switching against
statically chosen adversaries.

Proof. As we have T honest players, |J | ≥ T . Validation of the pairings of
submitted shares of Pi ∈ J implies that dlogz2z2i = dloggpke

∏
j∈QAij = xi,

dlogz3z3i = dloghpke

∏
j∈QA

′
ij = x′i and dloghpke

∏
j∈QBij = bi hold. Therefore

there exists R ⊆ J, |R| ≥ T for which reconstruction coefficients Λj,R may be
applied to (zj2, zj3, zj4)j to compute πt(z1, z2, z3, z4) and hence M . As J ⊂ Q
defined by Protocol 1, there is at most a negligible probability Pi does not submit
correct (zi2, zi3, zi4) so that M 6= m.

F Parameter Selection for Distributed Key Generation

The following theorem characterises the range of parameters under which key
generation may proceed securely.

Lemma 3. Suppose that 2 log2N + log2 ` + 2λA + λ < λB. Then for each k
the distribution of γk produced in Step 7 is statistically independent of the con-
tributions by the honest players to the kth chunk of xx′, i.e., (xx′ − [xx′ mod
ck+1
B])/ckB, except with error at most 2−λ.

Proof. Let SD(·, ·) denote the statistical (i.e., total-variation) distance between
random variables. Let C ⊂ Q be the set of players corrupted by the adversary. For
fixed k, let aij =

∑
f+g=k αifα

′
jg and bi = βik. Thus γk =

∑
i,j∈Q

∑
f+g=k αifα

′
jg+∑

i∈Q βik =
∑
i,j∈Q aij +

∑
i∈Q bi =

∑
i,j∈Q\C aij +

∑
(i,j)∈C×Q∪Q×C aij +∑

i∈Q\C bi+
∑
i∈C bi = X+X+Y +Y . Clearly |X| ≤ (|Q|−T)2 ·` ·22λA . On the

32

Protocol πDEC

Common Input : C = (z1, z2, z3, z4) output of Enctgt.
Private Input : Pi holds a share of secret key, ski

Player Pi :

1. Submit (i, (zi1, zi2, zi3, zi4)).
2. Let J = {Pj}j for which

e(
∏
j∈Q

Aij , hpke) = zi2

e(gpke,
∏
j∈Q

A′ij) = zi3

e(gpke,
∏
j∈Q

Bij) = zi4

simultaneously hold per Equation 2, Protocol 1.
3. Outputs M ← logπt(e(g,h))(πt(z1, z2, z3, z4)) as in Theorem 2.

Fig. 10. Protocol πDEC.

Simulator for πDEC

Input : C,m

– Let B : |B| ≥ T be honest.

1. Perform the above steps for honest parties in B.
2. If Pj does not satisfy the above checks B extracts xj , x

′
j , bj and computes

(zj2, zj3, zj4).
3. Output ⊥ if m 6= logπt(e(g,h))(πt(z1, z2, z3, z4)).

Fig. 11. Simulator for protocol πDEC.

33

other hand, Y
d
≈ N ((|Q| − T) · 2λb−1, (|Q| − T) · 2

2λB

12). Then SD(X,X + Y) ≥
1− 2−λ holds when

((|Q| − T)2 · ` · 22λA · 2λ)2 ≤ (|Q| − T) · 22λB
12

⇔ (|Q| − T)3 · `2 · 24λA · 22λ ≤ 22λB

12

⇐ N3 · `2 · 24λA · 22λ ≤ 22λB . (3)

By non-malleability of Πrange the random variables X and Y are independent
of X and Y , so SD(X,X + X + Y + Y) ≥ SD(X,X + Y) ≥ 1 − 2−λ. Taking
logarithms of both sides of Equation 3 and multiplying by one-half yields the
result.

G Proving Correct Decryption

Protocol πSWITCH uses a proof of correct decryption, which follows from the
solution proposed in [39] for instance.

Protocol πCD ([39])
Input : The tuple {(d, di, v, vi; si) | di ← dsi}.
Announcement : Σ.ann(d, di, v, vi; si) := u ∈R [0, 2log2 N+λ]; a = du; b =

vui ; return (a, b;u)
Response : Σ.res(d, di, v, vi; a, b;u, c) := r := u+ csi; return r

Verification : Σ.ver(d, di, v, vi; a, b; c; r) := dr
?
= a(di)

c ∧ vr ?
= b(vi)

c

Extractor : Σ.ext(d, di, v, vi; a, b; c; c
′; r; r′) := return (r − r′)/(c− c′)

Simulator :Σ.sim(d, di, v, vi; c) := r ∈R [0, 2log2 N+λ]; return (dr(di)
−c, vr(vi)

−c;
c; r)

H Definition of Universally Verifiable computation

H.1 Universally Verifiable Encryption Switching

Our ideal model for universally verifiable encryption switching is derived from [39],
Process 5 and detailed in Figure 12.

H.2 Universally Verifiable Function Evaluation

We will show how use distributed encryption switching to achieve universally
verifiable secure function evaluation of any function representable as a polyno-
mial size arithmetic circuit over a prime field Zp. We assume that the inputs

34

Ideal party for verifiable encryption switching
Compute encryption switching for R with corrupted parties B; V learns encryp-
tion in target group.
Common Input: (pk1, c, c), threshold t.
for i ∈ N\B do

ski := recv(Pi)
end for . Honest inputs.
{ski}i∈B := recv(S) . Corrupted inputs.
if |B| ≥ t then

Send ri to S for all i. . Threshold corrupt. . Computation phase.
E = Enctgt(m)

end if
if R /∈ B then . honest R; adversary learns encryption, may block result.

send(E,S)
if |N\B| < t and recvS =⊥ then

send(⊥,R).
end if

else . Corrupted R. Adversary learns output, may block result to V.
send(m,S); s = recvS
if s =⊥ then

R :=⊥
elseR = Enctgt(m).
end if . Proof phase.
if V /∈ C then send(R,V).

end if

Fig. 12. Ideal party for verifiable πSWITCH.

35

to the function are T -threshold encrypted under the one time homomorphic en-
cryption scheme of Section 2. Let f be an arbitrary function with domain Zωp
and output in Zp with a representation as a polynomial size arithmetic circuit
Cf over Zp. Let the input wires of Cf be indexed 1, . . . , ω, the internal wires be
indexed ω+ 1, . . . , |Cf | − 1 and the output wire have index |Cf |. Every gate has
fan-in two and is indexed (u, v, w) where u, v are indices of the input wires and
w is the index of the output wire.

H.3 The Protocol

Input Ciphertexts c1, . . . , cω by Enc1. Circuit Cf representing function f .
Private input Share of secret key ski.
Evaluation

Addition Gates
– Player Pi computes locally cw = cu ⊕1 cv, where cu = Enc1(mu) and
cv = Enc1(mv) are the ciphertexts associated to input wires u and v.

Multiplication Gates
– Player Pi computes locally c′w = cu �1 cv.
– Player Pi participates in the switching protocol to produce cw ←

Switch(pk, c′w, ski).
Output Gate

– Player Pi participates in distributed decryption to produce m|Cf | ←
Decrypt2(ski, c

′
|Cf |).

Fig. 13. Protocol πEVAL for universally verifiable function evaluation.

Theorem 10. Protocol πEVAL achieves universally verifiable function evaluation
against any static adversary corrupting a minority of parties assuming a secure
distributed encryption scheme Π1
 Π2 equipped with the T -threshold decryp-
tion structure. The round complexity is proportional to the depth of Cf and
communication complexity is O(|Cf | · T).

Proof. We prove the result by a sequence of intermediate games. Specifically
we will prove that the advantage of any adversary AdvEVAL(λ) in distinguishing
the view of corrupted parties in the real protocol from the simulation (involv-
ing inputs chosen uniformly at random and without secret keys) is at most
(AdvSWITCH

AT-Th
(λ) +AdvEnc1(λ)) · |Cf |+AdvDEC(λ) where AdvSWITCH

AT-Th
(λ), AdvDEC(λ)

denote the simulation error in Protocols πSWITCH and πDEC and AdvEnc1(λ) de-
notes the distinguishing advantage against the one-time homomorphic scheme
of Section 2.

36

Game G0: This is the actual execution where the adversary interacts with the
real switching challenger, running the setup algorithm (pk, sk)← Setup(1λ)
and generates all shares (ski)i according to the T -threshold access structure.

Game G1: In this game the challenger chooses all inputs r1, . . . , rω uniformly at
random in M1 and generates corresponding ciphertexts c1, . . . , cω. It keeps
track of the values rw produced at each gate (u, v, w) during the subsequent
computation.

Game G2: In this game the challenger simulates the output of addition gates
by computing cw ← cu ⊕1 cv for itself on behalf of all honest parties.

Game G3: In this game the challenger simulates all secret key shares by running
the simulator S1 of the ideal switching experiment. Let (u, v, w) be a mul-
tiplication gate. Every call to πSWITCH is answered by having the adversary
interact with S2 on (c′w, ĉw).
Case 1 : w 6= |Cf |. Let c′w ← cu ⊗ cv and let ĉw be a uniformly random

encryption of ru · rv by Enc1.
Case 2: w = |Cf |. In this case the simulator chooses a uniformly random

encryption of m|Cf | for ĉw. Let PN be honest. The challenger runs the
simulator for πSWITCH but computes dN = ĉ1(

∏
i 6=T di)

−1 and ξN ←
Σ.sim(d, dN , pk, vkN).

Game G4: The challenger peforms a simulated decryption on ĉ|Cf | and passes
the output to the adversary.

A hybrid argument implies that games G0 and G1 can be distinguished with
probability at most |Cf | ·AdvEnc1(λ). On the other hand G1 and G2 are identical
from the point of view of the adversary. It is easily seen inductively that output of
S2 on the twin ciphertext pair (c′w, ĉw) must be indistinguishable from the real-
world output uing Enc1/Enc2 up to the probability of an early abort, bounded
by |Cf | · AdvSWITCH

AT-Th
(λ). The case w = |Cf | follows from the correct distribution

of c|Cf |. Lastly the simulation error in distributed decryption is AdvDEC(λ).

As an immediate consequence of Theorem 10 we have

Corollary 11 Let Cλ ∈ P/Poly be a family of size-bounded circuits and suppose
there exists an efficient attacker that distinguishes the N -party distributed eval-
uation of Cλ (Figure 6) with non-negligible advantage ε′. Then there exists an
attacker who breaks the External l-Symmetric Cascade Assumption with proba-
bility at least

ε′ − λc · AdvSWITCH
AT-Th

(λ)

λc

with at most O(λc) combined group/pairing operations over G1 where c is an
absolute constant.

I Cost Comparison to [20]

Table 2 compares the total arithmetic operations used in our scheme to [20].
Given the pairing ê : G1 × G2 → Gt let opExpDH be a Diffie-Hellman expo-
nentiation in G1. Let opExpCF be a Catalano-Fiore exponentiation. Let opAAdd

37

and opAMult be addition and multiplication operations respectively in the alge-
bra Aq = Zq[X]/Φm(X). Assume secret sharing threshold T = N/2 and chunk
parameter ` = 8.

Ours (8c(k2 − k)M + 6kcN)× opExpDH + (128N2 + 32N)× opExpCF
[20] 7c(k2 − k)M(N × opAAdd + 2× opAMult)

Table 2. Cost comparison to [20].

J Protocol and implementation details for IRV counting

This section describes the detailed protocol for IRV counting.

Theorem 12. Let εIS be the maximal distinguishing advantage of adversary A
in the ideal switching experiment. Then Protocol 4 securely realises universally
verifiable IRV tallying against statically chosen adversaries except with error
probability at most

(
k
2

)
· εIS.

Proof. Our proof proceeds by a hybrid argument following Claim J. Define H
(l)
I

to be the experiment in which on the lth round of tallying during the first I
invocations of the for loop on line 8 the adversary instead interacts with B2
on inputs pk, (ski)i∈B ,π

(l)
j ,π

′
j
(l)

and with the ideal decryption functionality,

FDEC, on line 17. Note that H
(l)
l is identical to H

(l+1)
1 , in which all encryp-

tion switching during the first l rounds of tallying is generated from the simu-
lator who is given access to key shares of honest parties and public intermedi-
ate products. Thus, given Claim J, we may conclude the proof by noting that
the maximal distinguishing advantage between real and simulated protocols is

AdvA(λ) = |Pr[A(H
(1)
1) = 1] − Pr[A(H

(k)
k) = 1]|. In particular, it follows that

ε ≤
∑k
l=1 |Pr[A(H

(l−1)
1) = 1] − Pr[A(H

(l)
1) = 1]| ≤

∑k
l=1

∑l
I=1 |Pr[A(H

(l)
I−1) =

1]− Pr[A(H
(l)
I) = 1]| ≤

(
k
2

)
· εIS.

Claim. In the FDEC-hybrid model for any PPT adversary A who distinguishes

between H
(l)
I−1 and H

(l)
I with probability ε, there exists an adversary who distin-

guishes between real and ideal switching with probability εIS := ε.

Proof. This is immediate from the perfect emulation of honest by parties by OB .

Implementation Details A proof-of-concept implementation of the IRV count-
ing protocol was made in Python 2.7 using the PPAT library6 for group opera-
tions, based on a BN curve [4] with a prime modulus of 256 bits. The implemen-
tation did not include the construction or checking of proofs, and ran as a single

6 https://github.com/ecuvelier/PPAT

38

party. It would be straightforward to include multiple parties with the addition
of the appropriate communication code.

The election for Albury was settled after just one round, and took just under
two hours. The election for Auburn took 4 rounds and completed in a little over
15 hours. In both cases the intermediate and final results were compared with
the official results to ensure accuracy of our counting algorithm.

K Proofs of Auxiliary Results

Proof of Theorem 2

Correctness It suffices to compute the projection πt of any element in Gt = G4
t

which will follow from the following elementary results concerning the cor-
rectness of γ, x, x′ and b shown in Propositions 3 and 4 below. Any qualified
set R ⊆ Q may compute πt(z1, z2, z3, z4) as follows

πt(z1,z2, z3, z4) = z1z
x
2 z
x′

3 z
xx′

4 =
z1z

x
2 z
x′

3 z
xx′+b
4

zb4

=
z1z

x
2 z
x′

3 z
γ
4

zb4

=
z1z

∑
j∈R Λj,R(

∑
i∈Q sij)

2 z
∑
j∈R Λj,R(

∑
i∈Q s

′
ij)

3 zγ4

z
∑
j∈R Λj,R(

∑
i∈Q tij)

4

=
z1z

∑
j∈R Λj,Rxj

2 z
∑
j∈R Λj,Rx

′
j

3 zγ4

z
∑
j∈R Λj,Rbj

4

In particular this expression may be computed from individual shares xj , x
′
j

and bj as the product
z1

∏
j∈R(z

xj
2)Λj,R (z

x′j
3)Λj,Rzγ4∏

j∈R(z
bj
4)Λj,R

.

Resilience It is trivial to verify the correctness of any submitted share us-
ing (Ai, A

′
i, Bi, B

′
i)i∈Q, according to Equation 2. Thus we have resilience

against an arbitrary number of misbehaving participants during the key re-
construction phase.

Privacy We show the existence of a polynomial time simulator that interacts
with the ideal world CF key generation functionality and generates a distri-
bution indistinguishable to that produced by an actual run of the protocol
by honest players. In the following the proof of security proceeds in the ideal
world CF key generation hybrid model.
We argue the simulation is good. First note that no adversary can distinguish
a real common reference string σN from the simulated common reference
string σ̂N by the zero knowledge property of Πrange and Πeq. We next note
that steps 1-3 of the simulation are indistinguishable from the corresponding
steps run in the real protocol. to see this, first note that all parties have access
to the broadcast values Vi, V

′
i and Wi, thus it is impossible for a honest player

39

not to be included in the qualified set decided in Step 3, i.e, B ⊆ Q. On the
other hand for player Pj ∈ B ∩ Q, the simulator receives at least T shares,
namely those corresponding to the honest players in Q, enabling recovery of
sj , s

′
j and tj . Thus the simulator can compute sj , s

′
j and tj for all players

Pj ∈ Q.
Let A∗i , B

∗
i , A

′∗
i , B

′∗
i be the commitments broadcast in Step 4 of the real pro-

tocol and s∗ij ,s
′
ij
∗

and t∗ij be the shares of secrets s∗i , s
′
i
∗

and t∗i sent by Pi
to Pj in Step 1, where Pi, Pj ∈ Q. In that case we have that A∗i , B

∗
i , A

′∗
i , B

′∗
i

are chosen uniformly at random in G1 × G1 × G2 × G2 subject to the con-
straints that ypke =

∏
i∈QA

∗
i [1], zpke =

∏
i∈QB

∗
i [1], y′ =

∏
i∈QB

∗
i [1], z′ =∏

i∈QB
′
i
∗
[1], i.e. the |Q|-wise product of first components is fixed to ypke,

zpke, y
′, z′. Similarly (s∗ij)Pj∈Q\{N}, (s′ij

∗
)Pj∈Q\{N} and (t∗ij)Pj∈Q\{N} are

sampled uniformly at random. On the other hand, we have ÂN [1] = ypke ·∏
i∈Q\{N}(Âi[1])−1, B̂N [1] = zpke·

∏
i∈Q\{N}(B̂i[1])−1, Â′N [1] = y′·

∏
i∈Q\{N}

(A′i[1])−1, B̂′N [1] = z′ ·
∏
i∈Q\{N}(B

′
i[1])−1 and ÂN [j], B̂N [j], Â′N [j], B̂′N [j] :

j > 1 are chosen uniformly at random. Similarly, for Pi ∈ Q, the values
Ĉi, Ĉ

′
i, D̂i, ε̂i are indistinguishable from C∗i , C

′
i
∗
, D∗i , ε

∗
i . For Pi ∈ Q\{N}

this follows because the simulator performs the same steps as in the real
protocol, while the semantic security of CF encryption implies that the
adversary cannot distinguish the encryptions of zero ĈN , Ĉ ′N and D̂N =
[γ −

∑
i∈Q\{N} si

∑
j∈Q\{N} s

′
j −

∑
j∈Q\{N} tj]y from the real values C∗N ,

C ′N
∗

and D∗N respectively. Now trapdoor τN enables the zero knowledge

simulator S2 to compute fake proofs ε̂N on the values ĈN , Ĉ ′N and D̂N ,
without the adversary noticing.
Finally the simulator participates in distributed CF decryption for the honest
players. This is a perfect simulation of the real protocol because it has access
to the ideal functionality for CF key share generation (which exists assuming
that protocol is secure).

Proof of Proposition 3 It is clear that the set Q is well-defined as it is a function
of only publicly available information. We have that for any set R ⊆ Q of T
shares, si =

∑
j∈R Λj,R · sij , s′i =

∑
j∈R Λj,R · s′ij and ti =

∑
j∈r Λj,R · tij in

Zp. Hence x =
∑
i∈Q si =

∑
i∈Q(

∑
j∈R Λj,R · sij) =

∑
j∈R Λj,R · (

∑
i∈Q sij) =∑

j∈R Λj,R · xj , i.e. x can be publicly re-constructed from any set of T shares.
By a similar argument x′ and b can be publicly re-constructed from any set of
T shares.

Proof of Proposition 4 By the correctness of CF decryption, we have γ =∑2(`−1)
k=0 γkc

k
B =

∑2(`−1)
k=0

∑
i,j∈Q

∑
f+g=k αifα

′
jgc

k
B +

∑
i∈Q βikc

k
B

=
∑
i,j∈Q

∑2(`−1)
k=0

∑
f+g=k αifα

′
jgc

f+g
B +

∑
i∈Q

∑2(`−1)
k=0 βikc

k
B = (

∑
i∈Q

∑(`−1)
f=0 αifc

f
B)·

(
∑
j∈Q

∑(`−1)
g=0 α′jgc

g
B) +

∑
i∈Q ti = (

∑
i∈Q si) · (

∑
j∈Q s

′
j) +

∑
i∈Q ti = xx′ + b.

Proof of Theorem 5 There are two simulators, depending on whether an (honest)
threshold passes verifications.

40

Case 1: at least t pass verification. We may assume that all players in B
commit to values {ui}i∈B which are unrelated to the set {uj}j∈B since otherwise
A finds a pair of message vectors m,m′ satisfying m[i] = ui,m

′[j] = uj for
which the event D(s,m,m′, zD) = 1 occurs with noticeably greater probability
in the real protocol than the simulated. By the soundness of Peq it holds that
Dec(sk1, C

′
i) = Dec(sk2, Ci) for all i 6= N or the simulation aborts. Thus in

the real protocol the values C ′ and C satisfy the relation C ′ − C ′N ≡ C − CN .
Therefore we need to show that in the simulation PN produces C ′N and CN which
satisfy this and are indistinguishable from the corresponding values produced in
the real protocol. This follows from the semantic security of Enc1 and Enc2 and
the fact that in the simulation C ′ and C are explicitly constructed as the bit-wise
sum of C ′1, . . . , C

′
N−1 and C1, . . . , CN−1 which contain identical values. Finally,

the soundness of ΣCD implies that the simulation succeeds except with negligible
probability.

Case 2: fewer than t pass verification. Then the adversary may learn the
output and may not pass it on to the result party. It can choose random blinding
factors and use the commitment simulators and ZK simulators to simulate the
honest participants perfectly.

41

Protocol 4
Common Input : Ballots B1, . . . , BM in encrypted preference-order representa-

tion.
Private Input : ski ← Share(pk, sk,AT -Th) : ski = (αi, βi).
Public Output : All intermediate tallies of all candidates until termination with

a candidate who wins a majority.
Player Pi :

1: SC ← {1, . . . , c}, bELECT ← False, λ← 1
2: while not bELECT do
3: vTALLY ← Enc∗tgt(0), . . . ,Enc∗tgt(0)︸ ︷︷ ︸

|SC |

. Tally first preference votes.

4: for 1 ≤ n ≤M do
5: Let (v1 . . . ,vk)← Bn|SC . Compute first preference vote for voter n.
6: π1 ← Enc∗src(1)
7: vFP ← v1 �src π1

8: for 2 ≤ j ≤ λ do
9: π′j ← πj−1 �src (Enc∗src(1)	src ΣSC(vj−1))

10: πj ← Switchtgt→src(pk,π
′
j , ski)

11: v′j ← vj �src πj
12: vFP ← vFP ⊕tgt v′j
13: end for . Add first preference vote of voter n to running tally.
14: vTALLY ← vTALLY + vFP

15: end for
16: λ← λ+ 1 . Decrypt running tally.
17: (n1, . . . , nc)← Dectgt(αi,vTALLY)
18: j∗ ← argmaxj∈SC (nj)

19: if nj∗ > bM2 c or λ > k then
20: bELECT ← True . Declare winner.
21: Broadcast (elect, cj∗)
22: return
23: else
24: j∗ ← argminj∈SC (nj) . Eliminate candidate with fewest votes.
25: Broadcast (eliminate, cj∗)
26: SC ← SC\{j∗}
27: end if
28: end while

Fig. 14. Tallying IRV ballots with distributed encryption switching.

42

Simulator for Protocol 4
Input (ypke, zpke), {[γk]y}k.

– Assume PN is honest.
– Let B be the set of corrupted players.

1. Let (σ̂N , τN)← S1(1λ).
2. Perform Steps 1-3 on behalf of honest parties.
3. Compute si, s

′
i and ti for all Pi ∈ Q\{N}. Choose sNi, s

′
Ni and tNi at

random in Zp for i ∈ Q ∩B. Choose y′ ∈R G1, z
′ ∈R G2.

4. Compute {Âi, B̂i, Â′i, B̂′i, Ĉi, Ĉ′i, D̂i, ε̂i} as in the real
protocol for i ∈ Q\{N}. Let ÂN [1] = ypke ·
(
∏
i∈Q\{N}Ai[1])−1, B̂N [1] = y′ · (

∏
i∈Q\{N} B̂i[1])−1, Â′N [1] =

zpke · (
∏
i∈Q\{N} Â

′
i[1])−1, B̂′N [1] = z′ · (

∏
i∈Q\{N} B̂

′
i[1])−1.

Let ÂN [j] = (ÂN [1]/
∏
i∈Q∩B g

sNi·Λi,B
pke)Λ

−1
j,B , Â′N [j] =

(Â′N [1]/
∏
i∈Q∩B h

s′Ni·Λi,B
pke)Λ

−1
j,B , B̂N [j] =

(B̂N [1]/
∏
i∈Q∩B g

tNi·Λi,B
pke)Λ

−1
j,B , B̂′N [j] = (B̂′N [1]/

∏
i∈Q∩B h

tNi·Λi,B
pke)Λ

−1
j,B

for j > 1. Let ĈN = ([0]y, . . . , [0]y), Ĉ′N = ([0]y, . . . , [0]y), D̂N =
(D̂N0, . . . , D̂N(2`−2)) where D̂Nk = [γk]y −

∑
i,j∈Q\{N}

∑
f+g=k Ĉif Ĉ

′
jg −∑

i∈Q\{N} D̂ik. Let ε̂N ← S2(τN , ĈN , Ĉ
′
N , D̂N , ÂN , B̂N). Broadcast

{Âi, B̂i, Â′i, B̂′i, Ĉi, Ĉ′i, D̂i, ε̂i} for i ∈ B.
5. Check that Equation 2 holds and that published proofs are valid on behalf

of Pi ∈ B. If (sji, s
′
ji, tji) does not satisfy this equation for some Pj ,

broadcast (Pi, complain, Pj).
6. For every player Pj for which a valid complaint (Piα , complain, Pj) was

made, the simulator reconstructs sj , s
′
j , tj , Aj , A

′
j , Bj , B

′
j , Cj , C

′
j , Dj ac-

cordingly.
7. The simulator runs distributed CF decryption on behalf of Pi ∈ B.

Fig. 15. Simulator for the key generation protocol for one-time homomorphic cryp-
tosystem.

43

Simulator for πSWITCH

Input : (pk1, c, c), threshold t.

– Let B be the set of corrupted players. Assume |N\B| > t.

1. Let ck ← K′(1λ). Pass (setup, 1λ) to FSUM.
2. Let (σ̂N , τN)← S1(1λ).
3. Perform Steps 1–3 on behalf of honest players N\B except that (send, C′i) and

(send, Ci) are passed to FSUM.
4. Let C′N = Enc1(0) and CN = Enc2(0). Pass (send, C′N) and (send, CN) to
FSUM and let C′ and C be the output.

5. Perform Steps 4–5 on behalf of the honest players except that ξi are simulated,
i.e., let d ← c · C′, di ← dski , ξi ← Σ.sim(d, di, pk, vki), m̂ ←

∏T
i=1 di and

ĉ = Enc∗2(m̂) · C−1
. Output ⊥ if ĉ 6= c.

Fig. 16. Simulator for protocol πSWITCH.

44

