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Abstract. We propose and compare two approaches to identify smart
contracts as token systems by analyzing their public bytecode. The first
approach symbolically executes the code in order to detect token systems
by their characteristic behavior of updating internal accounts. The second
approach serves as a comparison base and exploits the common interface
of ERC-20, the most popular token standard. We present quantitative
results for the Ethereum blockchain, and validate the effectiveness of both
approaches using a set of curated token systems as ground truth. We
observe 100% recall for the second approach. Recall rates of 89% (with
well explainable missed detections) indicate that the first approach may
also be able to identify “hidden” or undocumented token systems that
intentionally do not implement the standard. One possible application of
the proposed methods is to facilitate regulators’ tasks of monitoring and
policing the use of token systems and their underlying platforms.

1 Introduction

Arguably, it has been easier to create a virtual asset on Ethereum in 2017 than
a website on the Internet in 1997. In September 2018, the market valuation of
the well observable virtual assets (“tokens”) on the Ethereum platform amounts
to US$ 35 billion, not counting the US$ 17.6 billion of ether, the platform’s
hardwired cryptocurrency.3 These figures are the result of the 2017 boom of initial
coin offerings (ICOs), enabled by a combination of a hype around blockchain
technology, lack of attractive conventional investment alternatives, and greed.

The sheer amount of money involved calls for regulators to take note and,
where necessary, step in. While governments’ concerns with cryptocurrencies, such
as Bitcoin, were mainly focussed on tracking payment flows of criminal origin (e. g.,
from trade with illegal goods, ransomware, money laundering, terrorism financing),
the vast growth of an investment universe in virtual assets poses new challenges.
These include enforcement of security laws [10], consumer protection [28], and
prudential monitoring in the interest of financial stability [11]. These tasks require
proven methods and adequate tools to detect, classify, and monitor virtual assets
on platforms that can in principle host any kind of decentralized application.
Therefore, in this work we set out to offer a scientific approach for the relevant
case of token detection on Ethereum.
3 Sources: Etherscan.io and Coinmarketcap.com on 12 September 2018, own calculations
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In jargon, token is a shorthand for a transferrable virtual good. The community
distinguishes fungible from non-fungible tokens. Although the notion of fungibility
is not precisely defined for all corner cases, a token is said to be fungible if all units
are alike, i. e., each unit is interchangeable with every other unit. By contrast, a
non-fungible token has an identifying feature, such as a serial number, color, etc.

Typical token systems on Ethereum are computer programs that allow its
users to exchange tokens with each other in a decentralized, secure, and atomic
way, up to the extent enforceable by the underlying blockchain-based system.
Such tokens can be useful in many scenarios. For instance, fungible tokens can
serve as means of payment (e. g., sub-currencies), securitized rights (e. g., to vote
or claim profit), or store of value. Non-fungible tokens are virtual collectibles.

Our approach is novel in that we detect fungible token systems by the charac-
teristic program behavior, which is related to the secure exchange functionality.
The behavior is detected by combining symbolic execution and taint analysis, two
established static code analysis techniques, which were adapted to the application.
As a comparison base, we also propose a signature-based detection method that
searches for instances of standard interfaces for token systems. We compare
the effectiveness of both methods on a curated ground truth dataset before we
generalize and present results for the entire Ethereum blockchain.

The paper is organized as follows. The next Section 2 introduces necessary
background. Sections 3 and 4 present our behavior-based and signature-based
methods, respectively. Performance measurements are reported and discussed in
Section 5. Section 6 connects to relevant related work, before Section 7 concludes
with a discussion and an outlook to future applications and research directions.

2 Background and Principles

This section recalls relevant properties of the Ethereum platform, specifically its
virtual machine and calling conventions. It further sets up the static analysis
techniques: symbolic execution, taint analysis, and the Ethereum call graph.

2.1 Ethereum Virtual Machine (EVM)

Ethereum is a decentralized system that updates a global state in a public,
append-only data structure called blockchain [29]. At every point in time, the
global state is an injective mapping from addresses to account states. Account
states include the balance in ether, permanent storage, and optionally code
controlling the account. By convention, accounts with code are called smart

contracts, whereas accounts without code are called externally owned accounts.
Transactions sent to the Ethereum network update the global state. A transaction
can (1) transfer ether between accounts, (2) create new accounts, (3) invoke code
of any smart contract of the current state, or combinations thereof. Arguments
can be passed to code by supplying input data in the transaction.

The Ethereum Virtual Machine (EVM) is a stack-based virtual machine that
executes the bytecode in account states. Single-byte opcodes are followed by an
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optional immediate argument of length between 1 and 32 bytes. To prevent long-
running or infinite computations, Ethereum charges a fee for every instruction
executed, accounted in units of gas. Most developers program the EVM in Solidity,
a high-level imperative programming language.

2.2 Ethereum Application Binary Interface (ABI)

The Application Binary Interface (ABI) specifies the calling conventions between
smart contracts. Since the EVM has no native concept of functions, every transac-
tion sent to a contract starts the execution at the same entry point. Function-like
behavior is implemented by a function dispatching mechanism, which evaluates
the leading 4 bytes of the input data. Specifically, every function is identified
by a 4-byte function selector, which is deterministically derived from the hash
value of the function signature. A function signature is a concatenation of the
function name and a list of argument types as defined in Solidity. For example,
transfer(address,uint256) is a signature for a function called “transfer” accepting
two arguments of type “address” and unsigned 32-byte integer, respectively.

Listing 1 illustrates the function dispatching mechanism in EVM bytecode as
generated by the Solidity compiler. The full ABI definition can be found at [1].

4 : PUSH1 0x4 // Push constant 4 on stack

5 : CALLDATALOAD // Load f i r s t 4 bytes from input data

6 : PUSH4 0xa9059cbb // Function s e l e c t o r t r a n s f e r ( address , uint256 )

7 : EQ // Check equa l i t y

8 : PUSH1 0x20 // Push jump ta r g e t 0x20 = 32

9 : JUMPI // Jump i f t rue ( c f . l i n e 7)

1 0 : PUSH1 0x4 // I f not equal , cont inue with t h i s i n s t r u c t i o n

. . .

32: JUMPDEST // Implementation o f t r a n s f e r ( address , uint256 )

33: . . .

Listing 1: EVM bytecode illustrating the ABI function dispatching.

The ABI specification is not part of the Ethereum protocol. Anyone is free
to define their own calling conventions. However, to our knowledge, all popular
compilers targeting the EVM produce ABI-compliant bytecode.

2.3 Symbolic Execution and Taint Analysis

Symbolic execution is a program analysis technique [17]. In contrast to concrete
execution, symbolic execution does not only explore one execution path through
a program by using concrete inputs, but tries to explore all paths in a systematic
manner. Program inputs are therefore represented as symbols. The symbolic
execution engine executes instructions akin the actual runtime environment as
long as no symbolic values are involved. When an instruction depends on at least
one symbolic value, the symbolic execution engine cannot execute the instruction
directly, but builds a symbolic expression that describes the execution result.

Special consideration is needed when it comes to control flow. Whenever a
conditional branch is reached that depends on a symbolic branch condition 𝑐
within path 𝜋𝑛, the engine cannot decide which path to follow. Consequently,
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it follows both (𝜋𝑛|𝑡𝑟𝑢𝑒 ← 𝜋𝑛 ∧ 𝑐, 𝜋𝑛|𝑓𝑎𝑙𝑠𝑒 ← 𝜋𝑛 ∧ 𝑐) execution paths using
backtracking. To avoid the exploration of impossible paths, typical engines use
an SMT solver to find a satisfying assignment for the path condition in question.
If a suitable assignment is found the path is further explored.

For example, when the code in Listing 1 is symbolically executed with initial
path constraint 𝜋 ← 𝑡𝑟𝑢𝑒, the symbolic execution engine generates a path
constraint 𝜋𝑡𝑟𝑢𝑒 ← 𝛿 = 0xa9059cbb for the path ⟨..., 4, 5, 6, 7, 8, 9, 32, ...⟩, where
𝛿 is a symbolic variable representing the first four bytes of the input data.
When the symbolic execution of the path corresponding to 𝜋𝑡𝑟𝑢𝑒 completes,
the symbolic execution engine performs backtracking, generates a constraint
𝜋𝑓𝑎𝑙𝑠𝑒 ← 𝛿 ̸= 0xa9059cbb, and continues on the path ⟨..., 4, 5, 6, 7, 8, 9, 10, ...⟩.

In this work we mainly exploit two properties of symbolic execution. First,
we use the explored paths as input to static taint analysis [25]. Taint analysis is
a technique to trace data flows of interest through a program execution. More
concretely, we label user inputs with markers (“taint”) and track which storage
locations are affected by it. Our second use of symbolic execution is to access the
structure of symbolic expressions generated by the engine.

Symbolic execution faces many limitations in practice [12]: path explosion,
unbounded loops, and the NP-hardness of the SMT problem all require tradeoffs,
such as imposing timeouts and skipping paths. The success of symbolic execution
can be measured in terms of code coverage. Gladly, most smart contracts on
Ethereum are very short programs, gas makes unbounded loops expensive, and
therefore Ethereum is more amenable to symbolic execution than other platforms.

2.4 Ethereum Call Graph

Both detection methods introduced in this work operate locally. This means
we only analyze code of one address at a time. Consequently, the methods are
blind to behavior or signatures located outside the smart contract under analysis.
Recall from Section 2.1 that transactions can invoke code of any smart contract
active in the current state. Smart contracts can create transactions using the call
family4 of instructions. Such calls are used in smart contracts to (1) interact with
other parties (smart contracts), and (2) reuse code already deployed.

A useful tool to look beyond the local address is the Ethereum call graph [16].
It holds information on relationships between contracts obtained by parsing
all bytecode on the Ethereum blockchain and extracting all statically encoded
addresses used in instructions of the call family. Nodes in the graph are addresses
with code. Directed edges denote static calls from caller to callee.

The so-constructed call graph captures only statically encoded references.
References to other contracts set on construction, calculated at runtime, or
provided as user input are missed. The only practical way to work around this
limitation is dynamic analysis, which makes a different trade-off as it limits the
analysis to actually executed rather than all possible paths.

4 CALL, DELEGATECALL, CALLCODE, STATICCALL
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3 Behavior-based Token Detection

Now we describe our behavior-based heuristic detection method for fungible
token systems on the Ethereum platform. We first justify the behavioral pattern,
then present our detection method, and finally discuss known limitations.

3.1 Pattern

Fungiblity means that all tokens in a given token system are alike. As a result,
token systems do not need to store which specific token belongs to which party.
The only relevant information is who owns how many tokens. A straightforward
(and gas-efficient) way to implement the state of a token system is storing a
mapping of owners (identified by addresses) to a non-negative number of tokens.

An important property of token systems is the ability to transfer tokens. We
assume that a token system wants to preserve the total amount of tokens in
circulation as they are transferred. In order to detect smart contracts that behave
like token systems we define:

Definition 1. A token system according to its behavior, is a smart contract that

(1) stores users’ balances as integers in permanent storage, and (2) provides a

function to transfer tokens between users while keeping the total balance constant,

where (3) the transferred value is controlled by user input.

Fixing the data type to integers in (1) is reasonable as the EVM does not
natively support floating point or rational numbers.

1 cont rac t FungibleTokenPattern {

2 mapping ( addres s => uint ) ba lance ;

3
4 f unc t i on sendToken ( addres s to , u int va lue ) pub l i c {

5 r e qu i r e ( ba lance [msg . sender ] >= value ) ;

6 balance [msg . sender ] = balance [msg . sender ] - va lue ;

7 balance [ to ] = balance [ to ] + value ;

8 }

9 }

Listing 2: Transfer pattern in Solidity, typical for fungible tokens.

Listing 2 shows a Solidity implementation of a minimalistic token system
that complies with Definition 1.

3.2 Detection Method

We propose an approach that analyzes the behavior of potential token systems
based on symbolic execution and static taint analysis.

Our approach works as follows. We look for a possible execution path that
updates two integers in storage, one for the sender and recipient, by a value
defined as parameter. For (1) and (3) of Definition 1, we use taint analysis to find
storage write states (𝑠𝑤𝑠), where the value stored can be influenced by user input.
For each of those stores of input data 𝑠𝑤𝑠0, we try to find a matching store 𝑠𝑤𝑠1
that follows our tainted store on some possible execution path. Furthermore,
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we look for constraints in the path condition that check if the value in some
storage field is larger than or equal to some user input field (𝑐𝑔𝑒). This captures
the check that the sender’s balance cannot be negative. We organize our stores
and path constraint in triplets of the form (𝑠𝑤𝑠0, 𝑠𝑤𝑠1, 𝑐𝑔𝑒), meaning we found a
storage write 𝑠𝑤𝑠0 with its value influenced by user input. 𝑠𝑤𝑠0 is followed by
𝑠𝑤𝑠1 on some viable execution path. Additionally, we have a constraint 𝑐𝑔𝑒 on
this path that checks if some storage field is larger than a user input field. We
call such a triplet transfer candidate. What remains to verify is (2), i. e., whether
the operations on 𝑠𝑤𝑠0 and 𝑠𝑤𝑠1 are really transferring value and if 𝑐𝑔𝑒 is a
constraint on one of the fields written to. Here we apply a heuristic that looks at
the term structure of transfer candidates.

Algorithm 1 shows the analysis done for every possible transfer candidate
triplet. We use C and E to denote the proper subterm and subterm relation.

Algorithm 1 Analyzing transfer candidates.
function IsToken𝑠𝑦𝑚(𝑆) ◇ a set 𝑆 of triplets (𝑠𝑤𝑠0, 𝑠𝑤𝑠1, 𝑐𝑔𝑒)

𝑠𝑜𝑝𝑠 ← {+,−}
for (𝑠𝑤𝑠0, 𝑠𝑤𝑠1, 𝑐𝑔𝑒) ∈ 𝑆 do

𝑏𝑟𝑠𝑠, 𝑠𝑜𝑝𝑠𝐿𝑒𝑓𝑡, 𝑏𝑢𝑠𝑒𝑑𝐶 ← CheckStoreTerm(𝑠𝑤𝑠0, 𝑠𝑜𝑝𝑠, 𝑡𝑟𝑢𝑒)
if 𝑏𝑟𝑠𝑠 ∧ |𝑠𝑜𝑝𝑠𝐿𝑒𝑓𝑡| = |𝑠𝑜𝑝𝑠| − 1 then

𝑏𝑟𝑠𝑠, 𝑠𝑜𝑝𝑠𝐿𝑒𝑓𝑡, 𝑏𝑢𝑠𝑒𝑑𝐶 ← CheckStoreTerm(𝑠𝑤𝑠1, 𝑠𝑜𝑝𝑠𝐿𝑒𝑓𝑡,¬𝑏𝑢𝑠𝑒𝑑𝐶)
if 𝑏𝑟𝑠𝑠 ∧ 𝑠𝑜𝑝𝑠𝐿𝑒𝑓𝑡 = ∅ ∧ 𝑏𝑢𝑠𝑒𝐶 then

return 𝑡𝑟𝑢𝑒 ◇ Found a token-like behavior.
return 𝑓𝑎𝑙𝑠𝑒 ◇ None of the candidates indicates a tokens system.

function CheckStoreTerm(𝑠𝑤𝑠𝑛, 𝑐𝑔𝑒, 𝑠𝑜𝑝𝑠, 𝑏𝑐𝑇 𝑜𝐸𝑞𝐶)
𝑏𝑠𝑒𝑙𝑓𝑅𝑒𝑓 , 𝑏𝑐𝑎𝑙𝑙𝐷𝑎𝑡𝑎, 𝑏𝑡𝑜𝐸𝑞𝐶 ← 𝑓𝑎𝑙𝑠𝑒
𝑡𝑡𝑜, 𝑡𝑣𝑎𝑙 ← 𝑠𝑤𝑠𝑛.𝑡𝑜, 𝑠𝑤𝑠𝑛.𝑣𝑎𝑙𝑢𝑒 ◇ Store has an address and a value.
𝑠𝑜𝑝𝐹 𝑖𝑟𝑠𝑡 ← FindFirstOpBFS(𝑡𝑣𝑎𝑙, 𝑠𝑜𝑝𝑠) ◇ Get first matching function symbol.
𝑏𝑠𝑒𝑙𝑓𝑅𝑒𝑓 ← 𝑡𝑡𝑜 C 𝑡𝑣𝑎𝑙 ◇ Store updates itself?
𝑏𝑐𝑎𝑙𝑙𝐷𝑎𝑡𝑎 ← 𝑐𝑔𝑒.𝑠𝑚𝑎𝑙𝑙𝑒𝑟𝑇 𝑒𝑟𝑚 C 𝑡𝑣𝑎𝑙 ◇ Term contains input from constraint?
𝑏𝑡𝑜𝐸𝑞𝐶 ← 𝑡𝑡𝑜 E 𝑐𝑔𝑒.𝑙𝑎𝑟𝑔𝑒𝑟𝑇 𝑒𝑟𝑚 ◇ Is constraint on assignment?
return (𝑡𝑠𝑒𝑙𝑓𝑅𝑒𝑓 ∧ 𝑡𝑐𝑎𝑙𝑙𝑑𝑎𝑡𝑎, 𝑠𝑜𝑝𝑠 ∖ 𝑠𝑜𝑝𝐹 𝑖𝑟𝑠𝑡, (𝑏𝑐𝑇 𝑜𝐸𝑞𝐶 ∧ 𝑏𝑡𝑜𝐸𝑞𝐶) ∨ ¬𝑏𝑐𝑇 𝑜𝐸𝑞𝐶)

Example: We use the example contract in Listing 2 to illustrate how the
algorithm works. We refer to source code when possible, although the actual
analysis is done on bytecode. First we perform taint analysis to find storage
writes influenced by user input. We find stores in lines 6 and 7. Then we look
for followup stores along a viable execution path. Only for the store in line 6 we
find a following store, namely in line 7. Furthermore, we look at path conditions
at the program state of the first store in line 6. We find one suitable condition
that matches our restrictions that the condition checks if a storage field is larger
than (or equal to) some user input in line 5. This means we found one transfer
candidate to check (𝑙𝑖𝑛𝑒 6, 𝑙𝑖𝑛𝑒 7, 𝑙𝑖𝑛𝑒 5). First we execute CheckStoreTerm

on balance [msg . sender ] = balance [msg . sender ] - va lue with balance [msg . sender ]

>= value as a constraint and {+,−} as possible operations, and 𝑏𝑐𝑇 𝑜𝐸𝑞𝐶 = 𝑡𝑟𝑢𝑒 .
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Then we check if the right hand side (RHS) of the store term contains itself, which
it does. It follows a check if the RHS of the constraint va lue is a subterm of our
store term, meaning that the constraint and store refer to the same user input. If
that is the case, we check if we can either find an addition or subtraction in our
term. FindFirstOpBFS checks all function applications in the term against a
list of operations (starting with {+,−}) and returns a set with the first operation
to occur, or an empty set if the operations are not found. Finally, we check if the
storage field used in the constraint is the target of the store, which is true in our
case. The function then returns a tuple with (𝑡𝑟𝑢𝑒, {+}, 𝑡𝑟𝑢𝑒), since the terms
of our transfer candidate fulfill all conditions. We found that minus is the root
operation on the term and already found the constraint value to be written on.
We then continue with calling CheckStoreTerm again for the second term,
with a reduced list of operations, only looking for plus and no longer looking for
writes on our constraint values. This call returns (𝑡𝑟𝑢𝑒, ∅, 𝑡𝑟𝑢𝑒), thus we found
token-like behavior according to our definition.

3.3 Known Limitations

We inherit the limitations from symbolic execution (cf. Sect. 2.3). We use
mythril [6], a tool designed for security analyses that is known to reach high
accuracy [22] despite using heuristics. For our experiments, we run mythril with
a timeout of 60 seconds and a maximum path length of 58. Furthermore, mythril
is under active development and has a couple of limitations that may influence
our results and their replicability. For example in taint analysis, the current
version of mythril (0.18.11) cannot spread taint over storage or memory fields.
This can cause problems when function parameters are passed by reference.

The locality is dealt with in the following way: whenever the symbolic ex-
ecution reaches a call, we consider it as communication with the unknown
environment. Hence, the engine introduces a fresh unrestricted symbol for the
return value and carries on. That means the analysis is blind to everything that
happens outside of the code of the current address. We evaluate the impact of
this limitation empirically with the call graph in Section 5.3.

Another limitation lies in the definition of the pattern. It is not straightfor-
ward to find the best approximation for the behavior we search for, since the same
behavior can be implemented in various ways that may result in vastly different
bytecode. What eases this problem somewhat is that much of the bytecode
currently deployed on Ethereum is produced by a pretty homogeneous toolchain
(Solidity and solc). Moreover, gas favors simple programs, often rendering ab-
stractions that would complicate the underlying bytecode uneconomic.

4 Signature-based Token Detection

Now we present a simple signature-based heuristic to detect token systems. It
evaluates if the bytecode implements the ABI standard for the ERC-20 interface.
We need this method as a benchmark to evaluate the behavior-based approach.
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4.1 Pattern

To improve the interoperability of tokens in the Ethereum ecosystem, the com-
munity has established a set of standards for token systems. ERC-20 [3] is the
most popular standard for fungible tokens. It also serves as basis for extensions,
such as ERC-223 and ERC-621. Even ERC-777, while still at draft stage at the
time of writing, is backward compatible: a token can implement both standards
to interact with older systems that require the ERC-20 interface [2]. Given the
vast dominance of ERC-20 today, we restrict our analysis to this standard.

The standard defines six functions and two events that must be implemented
to be fully compliant. (Listing 3 in Appendix B shows the ERC-20 interface
skeleton in Solidity.) Since the applications of tradable tokens are diverse, the
standard does not define how tokens are created, initially distributed, or how
data storage should be organized. It only defines that ERC-20 tokens must have
functions to securely transfer tokens, and some helper functions to check balances.

4.2 Detection Method

A naïve way to detect tokens is to check if the code implements the methods
defined by the ERC-20 standard. From the ABI definition (see Sect. 2.2) we
know how function calls are encoded and how functions are dispatched. In order
to detect token systems based on a signature we define:

Definition 2. A token system according to its signature is a smart contract that

introduces at least 5 of the 6 function selectors defined by the ERC-20 standard.

We used five as a threshold to account for incomplete implementations of ERC-20.
We use Definition 2 and the fact that the only way to introduce constants

in the EVM are PUSH instructions. Since function selectors are 4 bytes long
according to the ABI, the detection method looks for PUSH4 instructions.
Algorithm 2 takes as input a list of EVM instructions, inspects all 4-byte constants
introduced, and checks membership in the pre-determined set of ERC-20 function
selectors (variable 𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠).

Algorithm 2 Detection method based on disassembly and signatures.
𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠 ← {18160𝑑𝑑𝑑, 70𝑎08231, 𝑑𝑑62𝑒𝑑3𝑒, 𝑎9059𝑐𝑏𝑏, 095𝑒𝑎7𝑏3, 23𝑏872𝑑𝑑}
function IsTokenSig(𝐼) ◇ 𝐼 is a list of instruction tuples 𝑡 ∈ (𝑜𝑝𝑐𝑜𝑑𝑒× 𝑎𝑟𝑔)

𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ← ∅
for (𝑖𝑜𝑝𝑐𝑜𝑑𝑒, 𝑖𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡) ∈ 𝐼 do

if 𝑖𝑜𝑝𝑐𝑜𝑑𝑒 = 𝑃 𝑈𝑆𝐻4 then

𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ← 𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ∪ {𝑖𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡}
return |𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ∩ 𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| ≥ 5
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4.3 Known Limitations

This method is obviously prone to false positives if a contract pushes all required
constants to the stack but never uses them. This may even happen in dead code.
Hence, we also get false positives if we analyze so-called factory contracts that
create new token systems when called [4]. The code of the factory includes the
code of the token system to create, and thus contains push instructions of the
required constants.5 The common cause for these weaknesses is that the method
considers neither data nor control flow.

Similar to the behavior-based method, the signature-based method is a local
heuristic. This can result in false negatives. For example, if the smart contract
does not implement the ERC-20 interface, but delegates calls to a suitable
implementation. This form of delegation is common practice on the Ethereum
platform because it makes deployments cheaper. Furthermore, it enables code
updates by swapping the reference to the actual implementation [7,8].

5 Measurements

5.1 Data and Procedure

To evaluate our two detection methods we study the Ethereum main chain from
the day of its inception until 30 May 2018.6 We extract all unique runtime

bytecode instances and the addresses they are deployed on. With runtime bytecode

we denote code that is executed when a transaction is sent to the contract after
its deployment. This means we do not analyze initialization code.

In total we found 6 684 316 addresses that hosted bytecode at one point in
time. From these addresses we extract 111 882 unique runtime bytecode instances,
henceforth referred to as bytecode instances for brevity, unless stated otherwise.
Observe that we do not double-count bytecode instances unlike it is often the case
in headline statistics on smart contracts. We do not exclude contracts that were
disabled by selfdestruct, i. e., we analyze all code ever deployed. Consequently,
we also analyze bytecode instances that are barely used.

To evaluate that our detection results are not biased towards barely used
or test code, we also define a subset of active instances. We define a bytecode
instance as active if all hosting addresses combined handled a volume of at least
1000 transactions until 30 May 2018.

To build a ground truth dataset (GTD) for the evaluation, we downloaded
612 Top ERC-20 tokens7 from Etherscan. Etherscan, a popular Ethereum block
explorer, curates its top list of ERC-20 tokens by only including systems that
are popular, supported by at least one major exchange, compliant with ERC-20,
and have a visible website. We exclude all token systems that were created after
30 May 2018, leaving us with a curated list of 595 ground truth token systems,
of which we extract 578 bytecode instances.
5 One such instance can be found at 0xbf209cd9f641363931f65c0e8ef44c79ca379301
6 Block number: 5 700 000
7 Ranked by market cap, retrieved on 23 Aug. 18 from https://etherscan.io/tokens
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Table 1: Recall of signature- and behavior-based detection methods against our GTD.

Detected

by Sig

Not Detected

by Sig

Detected

by Behav
87.89% (508) 0.87% (5) 88.75% (513)

Not Detected

by Behav
11.25% (65) 0.00% (0) 11.25% (65)

99.13% (573) 0.87% (5) 100.00% (578)

We run both of detection methods over all bytecode instances and evaluate
the results. The signature-based method (Sig) is able to process all of the input
contracts. The behavior-based method (Behav) fails to analyze 1373 (1.23%
of the total) instances. Failures occur if, for example, the bytecode contains
syntactic errors not handled in the engine. We consider those 1373 instances as
negative detection results. On the remaining 110 509 instances, our behavior-
based method reaches a mean (median) code coverage of 71.9% (82.2%). Over
70% of the instances reach a coverage above 50%, supporting the claim that
smart contracts are a very suitable for symbolic execution techniques.8

To confirm our restriction to the ERC-20 interface in the signature-based
method, we adapted our method to count the number of ERC-777 tokens. We
encounter only four systems implementing at least 4 of the 13 functions required
by ERC-777. All of them also implement ERC-20 for backward compatibility.

5.2 Validation on Ground Truth Data and Error Analysis

Table 1 presents the detection results of both methods evaluated against our
curated GTD. Observe that the signature-based method alone is pretty good at
detecting tokens, reaching 99.13% recall. The behavior-based method performs
visibly worse with a recall of 88.75% on our curated GTD. Since no token systems
remained undetected by both methods, the combination of both (Behav ∨ Sig)
gives us perfect 100% recall. Our GTD does not allow us to calculate the precision.

The behavior-based method is able to detect the exact five contracts that
are missed by the signature-based approach (Behav ∧ Sig). Further manual
investigation of these contracts shows that all of them do not implement ERC-20
up to our threshold. Fortunately, all of the five contracts published Solidity
source code. Thus, we could confirm that they are missed by the signature-
method because they implement only three of the six ERC-20 functions, namely
to ta lSupp ly ( ) , balanceOf ( addres s ), and t r a n s f e r ( address , uint256 ). This suggests
that our initial threshold is too high, or in other words that even major token
systems handle standards laxer than expected. Table 7 in Appendix C lists those
five contracts.
8 100% - #16 056, ≤ 75% - #50 874, ≤ 50% - #31 298, ≤ 25% - #5165, ≤ 10% - #1031
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The signature-based method identified 65 token systems that were not found by
the behavior-based method (Behav∧Sig). We conjecture that either those tokens
implement their internal state differently or they use libraries that implement
the bookkeeping of storage values, thereby escaping our local behavior-based
analysis. We try to answer why those tokens are not detected by manually
inspecting a random sample of 20 (out of 65) bytecode instances (listed in
Table 8 in Appendix C). We find that all of them are large and reasonably
complex contracts.9 We encountered three main causes for missed detection:

Delegation of Bookkeeping (6): We found 6 bytecode instances in our
sample that do not implement any asset management logic in the contract itself. It
is delegated to another contract. The front-end contract implements the ERC-20
interface, but many back-end bookkeeping contracts do not, e. g., the Digix Gold

Token. Delegation patterns (or “hooks”) like this one are often used to allow
updates (by reference substitution) of the asset management logic.

Violation of Definition 1 (10): The second reason concerns mainly tokens
that are derived from the popular MiniMeToken [5]. We found 9 of those in our
sample. MiniMe uses a different storage layout. Instead of a plain integer that is
updated over time, it writes a new checkpoint for every transfer into an array.
This violates our detection assumption (1) in Definition 1, or, more specifically,
fails our check that the field gets updated (self reference). Even though this
already defeats our detection method, we find that mythril was not able to
inspect the relevant paths in the transfer function. The average code coverage is
as low as 34.8% on the 9 MiniMe-based tokens in our sample.

Also the MakerDAO instance is not detected for a violation of Definition 1,
although it is not derived from MiniMe and reached high coverage (94.3%). It
does not implement a balance check before the actual transfer as required in
Definition 1. This can be fixed with an ad-hoc adjustment of the method, but we
are concerned about the (not observable) false positive risk of a relaxed behavioral
pattern.

Litations of Symbolic Execution and Taint Analysis (4): Four con-
tracts in our sample neither delegate the bookkeeping work nor are derived from
the MiniMeToken. All of them use a simple integer value to store the balance
of the participants. Storiqua (42.9%), LocalCoinSwap (34.82%), and LOCIcoin

(18.5%) suffer from low coverage. In the Storiqua instance, our method finds the
relevant paths in the transfer function but does not find a matching store. In the
case of LocalCoinSwap, we do not find a suitable constraint although the symbolic
execution engine explores the relevant paths in transfer. LOCIcoin has the lowest
coverage. The engine does not discover the relevant paths in the transfer method.
Finally, TrueUSD reaches high coverage (72.9%), but the behavior-based method
did not find a suitable constraint in the transfer function. All of those cases are
examples for known limitations of symbolic execution (reaching low coverage,
missing relevant paths), taint analysis (failing to find matching stores), as well
as our detection approach (missed constraints).

9 Mean (median) code size: all instances 3315.0 (2541), Behav ∧ Sig 8153.86 (7828)
Code coverage: 41.75% (40.25%)
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5.3 Generalization to All Smart Contracts on Ethereum

Table 2 reports detection statistics over all bytecode instances. We find that
33.17% of the bytecode instances on the Ethereum platform can be said to be
token systems with high confidence because they are detected by both methods
(Sig ∧ Behav). The interesting part is where both methods disagree.

Recall from our manual ground truth analysis that all instances missed
by the signature-based method but detected by the behavior-based method
(Behav ∧ Sig) are caused by our high threshold. So we re-run the analysis with a
lower threshold of 3, as our manual inspection suggested. Table 4 and Table 5
(both in Appendix A) show the updated results of Table 1 and Table 2, respectively.
With the lower threshold, the signature-based method detects 7193 more bytecode
instances as tokens. 3232 of those newly detected token systems were already
identified by the behavior-based method. The remaining tokens would have
been missed otherwise. We conjecture that the 1772 bytecode instances only
detected by the behavior-based method (Behav ∧ Sig) are either non-ERC-20
bookkeeping contracts, as found in the Digix Gold Token, or token systems that
do not implement ERC-20 for other reasons, such as obscuring their nature.

In the case of token systems detected by the signature-based but not by the
behavior-based method (Behav∧Sig), we found mixed reasons in our GTD. First,
we saw systems that implement the ERC-20 interface but delegate all bookkeeping
tasks to other contracts. In order to study if this pattern generalizes to the whole
dataset, we extract bytecode metrics, such as the number of call instructions.
We find that contracts that are detected by the signature-based method contain
an above-average number of call instructions. Table 6 (in Appendix A) presents
the mean and median values of call-family instructions for different subsets of
bytecode instances. The highlighted row stands out: Behav∧Sig instances have on
average 2.2 times as many calls as the average bytecode instance. This indicates
the use of delegation patterns as found in the Digix Gold Token. To further
strengthen this interpretation, we us the Ethereum call graph (cf. Sect. 2.4)
to find out if those instances have calls to other instances that are otherwise
classified as token systems. For 920 of 10 472 instances (Behav ∧ Sig) we find
static references. 563 have direct hardcoded calls to another instance classified
as token system, suggesting that the detectable behavior is implemented in the
callee. The second and third reason for missing tokens were inherent limitations
of symbolic execution, which we could not further evaluate on the entire dataset.

Table 3 shows detection results for all active bytecode instances. The results
are pretty comparable to Table 5. Note that the behavior-based method misses
relatively more instances detected via signature than on the complete dataset.
One interpretation is that high-profile tokens implement more complex logic,
therefore evading detection by symbolic execution. This conjecture is supported
by the observed bytecode sizes as well as code coverage reached: active bytecode
instances are on average around 1.6 times as large as the average bytecode
instance. Average code coverage also drops from 71.9 (82.2%) to 66.2 (69.6%).
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Table 2: Comparison of signature- and behavior-based detection methods on all bytecode
instances. (Note that this is not a performance measurement. We cannot expect 100%.)

Detected

by Sig

Not Detected

by Sig

Detected

by Behav
33.17% (37 114) 4.47% (5004) 37.65% (42 118)

Not Detected

by Behav
5.82% (6512) 56.53% (63 252) 62.35% (69 764)

38.99% (43 626) 61.01% (68 256) 100.00% (111 882)

Table 3: Comparison of signature- and behavior-based detection methods on all active
bytecode instances (with signature threshold ≥ 3).

Detected

by Sig

Not Detected

by Sig

Detected

by Behav
32.56% (2052) 0.73% (46) 33.29% (2098)

Not Detected

by Behav
18.15% (1144) 48.56% (3060) 48.56% (4204)

50.71% (3196) 49.29% (3106) 100.00% (6302)

5.4 Insights into the Token Ecosystem

The automatic detection of token systems allows us to shed more light into
the token ecosystem. Looking at bytecode reuse, for instance, puts the headline
numbers into perspective and informs us about the actual amount of innovation
happening in the ICO community. To this end, Figure 1 connects our technical
level of analysis (bytecode instances) to the publicly visible level of addresses
hosting token systems. The most frequently deployed bytecode instance of a token
system is a standard template by ConsenSys.10 It has been deployed 8729 times
to the Ethereum blockchain. 298 of these deployments have processed more than
100 transactions. Altogether 49 bytecode instances have been deployed more
than 100 times, and 16 bytecode instances have 10 or more “busy” deployments.11

These figures give some early intuition, but likely underestimate the extent of
code reuse as trivial modifications of template code (or the output of token
factories that deploy polymorphic code) are not consolidated.

10 https://github.com/ConsenSys/Token-Factory/blob/master/contracts/

HumanStandardToken.sol
11 Note that “busy” is similar to our notion of active, however on the level of addresses
rather than bytecode instances.



14 Michael Fröwis, Andreas Fuchs, and Rainer Böhme

1 5 10 15 20

10 K

1

10

100

1000

ConsenSys
Human Standard

Token

1 5 10 15 20

10 K

1

10

100

1000

Fig. 1: Bytecode reuse of Ethereum token systems: number of addresses hosting a unique
bytecode instance detected as token system. Top-20 ranked by total addresses (left)
and “busy” addresses handling more than 100 transactions (right). Note the log scale.

6 Related Work

As we are not the first to systematically analyze smart contracts on Ethereum or
to study tokens on the Ethereum platform, we summarize prior art by topic area.

Mapping the Smart Contract Ecosystem: Using source code provided
by Etherscan, Bartoletti and Pompianu [13] manually classify 811 smart contracts
by application domain (e. g., financial, gaming, notary) and identify typical design
patterns. Norvill et al. [21] propose unsupervised clustering to group 936 smart
contracts on the Ethereum blockchain. Zhou et al. [30] develop Erays a Ethereum
reverse engineering tool that lifts EVM bytecode to a human readable pseudocode
representation, for futher inspection. They conduct four case studies to show the
effectiveness of the approach.

Vulnerability Detection in Smart Contracts: Luu et al. [19] execute
19 366 smart contracts symbolically with the intention to uncover security vul-
nerabilities, which they find in 8833 cases. Tsankov et al. [27] build Securify, a
symbolic execution framework to uncover security problems in smart contracts.
Security patterns are specified in a domain-specific language based on Datalog.
Nikolic et al. [20] study so-called trace vulnerabilities that manifest after multiple
runs of a program. Introducing Maian, a symbolic execution framework to reason
about trace properties, they identify 3686 vulnerable smart contracts. Brent et
al. [14] present Vandal, a smart contract security analysis framework. It uses a
Datalog-based language tailored to describe static analysis checks.

Token Systems: Somin et al. [26] study network properties of token trades
and show that the degree distribution has power-law properties. They use a
simple token detection method based on ERC-20 events generated at runtime,
therefore relying on the standard compliance of the contracts. Etherscan identifies
token systems using a signature-based approach [9]. However, the details of the
method are proprietary and thus not available for replicable science. Etherscan’s
headline numbers count addresses with code, not bytecode instances.
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Symbolic Execution: Symbolic execution is a very mature discipline as
witnessed by the number of literature surveys published. For instance, Baloni
et al. [12] provide an overview of the main ideas and challenges in symbolic
execution. Păsăreanu et al. [23] offer a survey of trends in symbolic execution
research and applications with special focus on test generation and program
analysis. Person et al. [24] introduce differential symbolic execution to calculate
behavioral differences between versions of programs or methods.

Malware Detection: The prime application of symbolic execution in systems
security is malware analysis. Luo et al. [18] use symbolic execution compare code
based on behavior. Christodorescu et al. [15] have developed a semantics-aware
malware detection framework that uses templates to specify malicious patterns.

Financial Regulation: We are not aware of symbolic execution in tools that
support financial authorities in their monitoring and supervision tasks, although
some applications stand to reason given the prevalence of algorithmic trading.

In contrast to the above-mentioned work on smart contracts and symbolic
execution, we do not aim at generating test cases or show the absence of certain
conditions in programs, e. g., integer overflows. We apply symbolic execution to
explore all paths through a program and analyze whether that program can be
classified based on a given structure, or the presence of certain behavior.

7 Conclusion and Future Work

The idea of this work is to detect Ethereum token systems based on behavioral
patterns. We have presented a method and evaluated it as effective using curated
ground truth data and a reference method based on signatures.

Both methods have specific advantages. The signature-based approach is
simple, but limited to standard-compliant token systems. It is easy to defeat
detection by slightly deviating from the standard. The method bears a false
positive risk in case of factory contracts or dead code. Quantifying this risk is left
as future work. The method can be improved by taking data flow into account.

The behavior-based method does not depend on standard-compliance. It is
robust against reordering of parameters or renaming of functions. To which extent
it can deal with sophisticated obfuscation is left for future work. The effectiveness
of this method demonstrates that symbolic execution is practical on Ethereum.

Both methods fail if the detectable pattern spans over more than address. If
this limitation becomes problematic in practice, the use of concolic execution [12]
in conjunction with the current blockchain state is a way to overcome the locality.

In particular the behavior-based method is hand-crafted to the application
of token detection. A direction of future work is to generalize the approach by
building a domain-specific language in which behavioral patterns can be specified
on a high level of abstraction. This would facilitate extensions of our approach to
detect other kinds of behavior, such as smart contracts implementing non-fungible
tokens, decentralized exchanges, or gambling services. Evaluating the transactions
between the so-identified services would provide the necessary information to
draw a map of the Ethereum ecosystem.
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A Supplemental Result Tables

Table 4: Recall of signature- and behavior-based detection methods against our GTD
with lower signature threshold (≥ 3).

Detected

by Sig

Not Detected

by Sig

Detected

by Behav
88.75% (513) 0.00% (0) 88.75% (513)

Not Detected

by Behav
11.25% (65) 0.00% (0) 11.25% (65)

100.00% (578) 0.00% (0) 100.00% (578)

Table 5: Comparison of signature- and behavior-based detection methods on all bytecode
instances with lower signature threshold (≥ 3).

Detected

by Sig

Not Detected

by Sig

Detected

by Behav
36.06% (40 346) 1.58% (1772) 37.65% (42 118)

Not Detected

by Behav
9.36% (10 473) 52.99% (59 291) 62.35% (69 764)

45.42% (50 819) 54.58% (61 063) 100.00% (111 882)

Table 6: Call instructions statistics for different bytecode subsets (mean / median).

Subset CALLCODE CALL DELEGATECALL

- (0.05 / 0) (4.08 / 1) (0.56 / 0)
Behav ∨ Sig (0.05 / 0) (2.91 / 1) (0.10 / 0)
Behav ∧ Sig (0.05 / 0) (1.34 / 1) (0.70 / 0)
Behav ∧ Sig (0.05 / 0) (9.06 / 6) (0.20 / 0)
Behav ∧ Sig (0.01 / 0) (2.20 / 0) (0.04 / 0)
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B ERC-20 Interface Specification

1 cont rac t ERC20Interface {

2 // Function S ignature s

3 f unc t i on tota lSupp ly ( ) pub l i c constant r e tu rn s ( u int ) ;

4 f unc t i on balanceOf ( addres s tokenOwner )

5 pub l i c constant r e tu rn s ( u int ba lance ) ;

6 f unc t i on a l lowance ( addres s tokenOwner , addres s spender )

7 pub l i c constant r e tu rn s ( u int remaining ) ;

8 f unc t i on t r a n s f e r ( addres s to , u int tokens )

9 pub l i c r e tu rn s ( bool su c c e s s ) ;

10 f unc t i on approve ( addres s spender , u int tokens )

11 pub l i c r e tu rn s ( bool su c c e s s ) ;

12 f unc t i on trans ferFrom ( addres s from , address to , u int tokens )

13 pub l i c r e tu rn s ( bool su c c e s s ) ;

14 // Events

15 event Trans fe r ( address indexed from ,

16 addres s indexed to ,

17 uint tokens ) ;

18 event Approval ( address indexed tokenOwner ,

19 addres s indexed spender ,

20 uint tokens ) ;

21 }

Listing 3: ERC-20 interface in Solidity.

C Documentation of Manual Inspections

Table 7: Five smart contracts of the GTD missed by the signature-based but found by
the behavior-based method.

Name Address Code Hash # ERC-20

Functions

LatiumX 0x2f85e502a988af76f7ee6d� . . . 0xf30b6028435e� . . . 3
Pylon 0x7703c35cffdc5cda8d27aa� . . . 0x96858625adfa� . . . 3
Minereum 0x1a95b271b0535d15fa499� . . . 0x65d59c447f7c� . . . 3
All Sports Coin 0x2d0e95bd4795d7ace0da� . . . 0x1c57e11bbd6e7� . . . 3
Golem 0xa74476443119a942de498� . . . 0x35e72568bdaa� . . . 3
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Table 8: Random sample of 20 smart contracts in the GTD missed by the behavior-based
but found by signature-based method.

Delegation of Bookkeeping

Address Code Hash

EmphyCoin 0x50ee674689d75c0f88e8f� . . . 0x19780d1f0151fc� . . .
Digix Gold Token 0x4f3afec4e5a3f2a6a1a411d� . . . 0x941fab0f7c206� . . .
FunFair 0x419d0d8bdd9af5e606ae2� . . . 0xe29653f94e73� . . .
Education 0x5b26c5d0772e5bbac8b31� . . . 0xe359bf40848d� . . .
Devery.io 0x923108a439c4e8c2315c4� . . . 0x6b8bff0af6051� . . .
UniBright 0x8400d94a5cb0fa0d041a3� . . . 0x3058c20470fb� . . .

Violation of Definition 1

Address Code Hash

Ethbits 0x1b9743f556d65e757c4c6� . . . 0xd3f516225294� . . .
Aston X 0x1a0f2ab46ec630f9fd6380� . . . 0xc2b817789336� . . .
Sharpe Platform Token 0xef2463099360a085f1f10b� . . . 0xe0e29e2655db� . . .
FundRequest 0x4df47b4969b2911c96650� . . . 0x519dc5c0384b� . . .
SwarmCity 0xb9e7f8568e08d5659f5d2� . . . 0x88b20869ae32� . . .
Mothership 0x68aa3f232da9bdc23434� . . . 0x63e44909ce93� . . .
Ethfinex Nectar Token 0xcc80c051057b774cd7506� . . . 0x5c7c39e24430� . . .
DaTa eXchange Token 0x765f0c16d1ddc279295c1a� . . . 0xc4bfdc9026f14� . . .
Swarm Fund 0x9e88613418cf03dca54d6� . . . 0x56dd7cb818b4� . . .
MakerDAO 0x9f8f72aa9304c8b593d55� . . . 0xe69355035f77� . . .
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Address Code Hash

Storiqa 0x5c3a228510d246b78a37� . . . 0x93be59026507� . . .
LocalCoinSwap Cr. 0xaa19961b6b858d9f18a115� . . . 0x88b9c793a727� . . .
LOCIcoin 0x9c23d67aea7b95d80942e� . . . 0x9488b89a5ee6� . . .
TrueUSD 0x8dd5fbce2f6a956c3022b� . . . 0xf447f893b44fd� . . .


