Minimizing Trust in Hardware Wallets with Two
Factor Signatures

Antonio Marcedone!, Rafael Pass'*, and abhi shelat?**

! Cornell Tech {marcedone,rafael}@cs.cornell.edu
2 Northeastern University abhi@neu.edu

Abstract. We introduce the notion of two-factor signatures (2FS), a
generalization of a two-out-of-two threshold signature scheme in which
one of the parties is a hardware token which can store a high-entropy se-
cret, and the other party is a human who knows a low-entropy password.
The security (unforgeability) property of 2FS requires that an external
adversary corrupting either party (the token or the computer the human
is using) cannot forge a signature.

This primitive is useful in contexts like hardware cryptocurrency wallets
in which a signature conveys the authorization of a transaction. By the
above security property, a hardware wallet implementing a two-factor
signature scheme is secure against attacks mounted by a malicious hard-
ware vendor; in contrast, all currently used wallet systems break under
such an attack (and as such are not secure under our definition).

We construct efficient provably-secure 2FS schemes which produce either
Schnorr signature (assuming the DLOG assumption), or EC-DSA signa-
tures (assuming security of EC-DSA and the CDH assumption) in the
Random Oracle Model, and evaluate the performance of implementations
of them. Our EC-DSA based 2FS scheme can directly replace currently
used hardware wallets for Bitcoin and other major cryptocurrencies to
enable security against malicious hardware vendors.

1 Introduction

Cryptocurrency hardware wallets are increasingly popular among Bitcoin and
Ethereum users as they offer seemingly stronger security guarantees over their
software counterparts. A hardware wallet is typically a small electronic device
(such as a USB device with an input button) that holds the secret key(s) to one
or more cryptocurrency “accounts”. It provides a simple interface that can be
used by client software on a computer or smartphone to request a signature on
a particular transaction; the wallet returns a signature to the client if the user

* Supported in part by NSF Award CNS-1561209, NSF Award CNS-1217821, NSF
Award CNS-1704788, AFOSR Award FA9550-15-1-0262, AFOSR Award FA9550-
18-1-0267, a Microsoft Faculty Fellowship, and a Google Faculty Research Award.

** Supported in part by NSF grants 1664445 and 1646671.

has authorized it by pressing the physical buttorEl Typically, the user also has
to enter a pin or password, either on the device itself or through the client. Some
hardware wallets like the Trezor include a screen that can be used by the user
to confirm the details of the transaction before authorizing it.

Ideally, a hardware wallet runs a firmware that is smaller and simpler than
the software running on a common laptop (and thus may be less vulnerable to
bugs and exploits), is built using tamper proof hardware that makes it difficult
to directly read its memory, and is designed to prevent the private keys it holds
from ever leaving the device. Thus, stealing funds from an address controlled by
a hardware wallet is considered to be harder than stealing from a software wallet
installed on the user’s laptop.

Can we trust the hardware manufacturer? However, most hardware wallets
suffer from a serious issue: since the wallet generates and holds the secret keys
for the user’s account, a compromised wallet might be used to steal the entirety
of the coins it controls. Consider, for instance, a malicious wallet manufacturer
who introduces a backdoored pseudorandom generator (to be used, for example,
to generate the signing keys) into a hardware wallet. Because of the tamperproof
properties of the hardware, such a backdoor might be extremely hard to detect
and go unnoticed even to a scrupulous user, especially if it only affects a small
portion of the company’s devices (perhaps those shipped to customers who hold
large coin balances). Yet, without the need of ever communicating with the
devices again, the manufacturer might suddenly steal all the money controlled
by those addresses before anyone has time to react! This is also true in the case
where the user picks a password to supplement the entropy generated by the
backdoored PRG, since passwords have limited entropy which can be bruteforced
and, as we detail later, the wallet can bias the randomness in the signatures to
leak information about such password.

Even if the company producing the wallet is reputable and trusted, supply
chain attacks by single employees or powerful adversaries are still hard to rule
out for customers. For example, the NSA reportedly intercepts shipments of
laptops purchased online in transit to install malware/backdoors [I6]. Indeed,
trust in a wallet manufacturer, its supply chain, and the delivery chain are a
serious concern.

One possible solution is to store the funds in a multi-signature account con-
trolled by a combination of hardware (and possibly software) wallets from differ-
ent manufacturers. However, the above is inconvenient and limiting. It may also
be possible for a single supplier to corrupt multiple manufacturers of hardware
wallets.

A Formal Treatment of Hardware Wallets In this paper, we initiate a
formal study of the security of hardware wallets. As discussed above, completely
relying on the token to perform key generation and signing operations requires a
strong trust assumption on the hardware manufacturer. To avoid this, we focus

3 The physical button prevents malware from abusing the wallet without cooperation
from the user.

on a scenario in which the user has both a single hardware token and a (low-
entropy) password, and formally define appropriate an appropriate cryptographic
primitive, which we name two factor signature scheme (2FS).

Roughly speaking, a 2F'S scheme can be thought of a special type of two-out-
of-two threshold signature scheme [4] but where one of the parties (the user) only
has a (potentially low-entropy) password, whereas the other party (the hardware
token) can generate and store high-entropy secrets. Even defining unforgeability
properties of such 2FS schemes turns out to be a non-trivial task; we provide
the first such definitions. Our notions of unforgeability consider both malicious
clients, malicious tokens, and attackers that may have selective access to honestly
implemented tokens.

As already mentioned, as far as we know, in all currently known /used schemes,
unforgeability does not hold when the hardware token can be maliciously de-
signed, and thus no currently known schemes satisfies even a subset of our un-
forgeability definitions. Our main contribution is next the design of 2F'S that sat-
isfy them. In fact, we present a general transformation from any two-out-of-two
threshold signature scheme which satisfies some additional technical property—
which we refer to as statistical Non-Signalling—into a 2FS in the random oracle
model, which produces public keys and signatures of the same form as the un-
derlying threshold signature scheme.

We note that it may be possible to generically modify any TS to become Non-
Signalling by having the parties perform coin-tossing to generate the random-
ness, and then prove in zero knowledge that they executed the signing protocol
consistently with the pre-determined (and uniform) randomness. Using such a
method, however, would result in a (polynomial-time but) practically inefficient
scheme. In contrast, in the full version of this work, we show how to adapt two
existing threshold signature schemes to satisfy this new technical property with
very little overhead. Using our transformation, this gives secure 2FS schemes
which efficiently generate Schnorr and ECDSA signatures.

Theorem (Informal). Assuming the discrete logarithm assumption, there ex-
ists a secure 2FS scheme in the Random Oracle model which generates Schnorr
Signatures.

Theorem (Informal). Assuming the DDH assumption holds and that EC-
DSA is unforgeable, there exists a secure 2FS scheme in the Random Oracle
model that generates EC-DSA signatures.

The first construction is based on the Schnorr TS signature scheme of Ni-
colosi et al [14], while the second one is a slight modification of an EC-DSA
threshold scheme of Lee et al. [5]. As EC-DSA signature are currently used in
Bitcoin, Ethereum and most other major crypto currencies, our 2FS for EC-DSA
can be directly used for hardware wallets supporting those crypto currencies. To
demonstrate its practicality, we evaluate such scheme and estimate its perfor-
mance on hardware tokens that are much less powerful than the CPUs on which
we can benchmark the protocol. We confirm that running the protocol on two
server-class CPUs (Intel) requires roughly 3ms to sign a message. When one of

the parties is run on a weak computer (e.g., a Raspberry Pi 3b) and the other is
run on a server, the protocol requires roughly 50ms. Our estimates confirm that
the bottleneck in our scheme will be the processing capacity of the hardware
token. Using a very secure, but weak 8-bit 1Mhz ATECC family processor [13],
we estimate that ECDSA keys can be produced in under a minute and signa-
tures can be completed in 3s. The entire signing process requires human input
to complete (button press), and thus is likely to take seconds overall anyway.

1.1 Technical overview

The Definition. At a high level, in a Two Factor Signature scheme the sig-
natures are generated by two parties: a client C' who receives a (typically low
entropy) password as input from a user, and a token 7', which can store and gen-
erate secrets of arbitrary length, can produce signatures for multiple public keys
and as such keeps a state which can be modified to add the ability to sign for new
public keys. It consists of a tuple of algorithms (KeyGenc, KeyGent, PKc,
PKr, Signc, Signt, Ver), where KeyGenr (17, s7) and KeyGenc (pwd) are
an interactive protocol used by the token and client respectively to produce a
public key and to accordingly update the token state s by “adding a share
of the corresponding secret key”; PK¢(pwd) and PKr(sr) are two algorithms
used by the client and the token (on input the password and the current to-
ken state sp respectively) interacting with each other to retrieve a public key
pk which was previously generated using the first two algorithms; Signc(pwd,
m) and Signr(s7, m) are similarly used to produce signatures; Ver(pk, m, o) is
used to verify the signatures.

We proceed to outline the unforgeability properties we require from such
Two Factor Signature scheme. We consider 4 different attack scenarios, and
define “best-possible” unforgeability properties for each of them. The first two
are simply analogs of the standard unforgeability (for “party 1”7 and “party 2”)
properties of two-out-of-two threshold signatures.

1. For the Client: The simplest and most natural attack scenario is when the
user’s laptop is compromised (i.e. by malware), even before the key generation
phase. We require that, except with negligible probability, such an adversary
cannot forge signatures on a message m with respect to a public key which
the token outputs (and would typically show to the user on its local screen)
unless it asked the token to sign m. This notion mirrors the classic one of
unforgeability (for party 1) of threshold signature schemes.

2. For the Token: We next consider an attack scenario in which the adversary
can fully control the token 7. We let it interact arbitrarily with an honest
client, and receive the signatures and public keys output by such client during
these interactions. We require that the probability that such an adversary can
produce a forgery on a message m that would verify with respect to one of the
public keys output by the client (during a KeyGen execution) without asking
the client to sign m, is bounded by the min-entropy of the user’s password.
Again, this notion mirrors the classic notion of unforgeability of threshold

signatures (for party 2), except that since the user only has a low-entropy
password, we cannot require the probability of forging to be negligible; instead,
we bound it by ¢/2™ where ¢ is the number of random oracle queries performed
by the adversary, and m is the min-entropy of the password distribution.

Note that the unforgeability for the token security bound is rather weak (when
the password has low entropy), but is necessarily so because the only secret
held by the client is the password, and thus an attacker that “fully controls the
token” (i.e., controls its input/outputs while at the same time participating in
other outside interaction) and gets to see public keys, can simply emulate the
client algorithm with a guessed password and attempt to create a forgery. Yet,
note that to carry out this type of attack (which leads to the “unavoidable”
security loss) and profit from it is quite non-trivial in practice as it requires the
token to be able to somehow communicate with an attacker in the outside world
(which is challenging given that a hardware wallet is a physically separate entity
without a direct network connection).

Consequently, we consider two alternative attack scenarios that leverage the
fact that often the token cannot communicate with the adversary and capture
more plausible (i.e weaker) attack models. Yet, in these weaker attack models,
we can now require the forging probability bounds to be significantly stronger.

3. For the Token Manufacturer: We consider an adversary who cannot fully con-
trol the T' party, but can specify ahead of time a program II which the T" party
runs. For example, this models the case of a malicious token manufacturer who
embeds a PRG with a backdoor. Program II can behave arbitrarily, but its
answers to the interactions with any client have to satisfy the correctness prop-
erties of the scheme with overwhelming probability (if the token aborted or
caused the client to return signatures which do not verify w.r.t. the expected
public keys, the user could easily identify such token as faulty or malicious).
The adversary can then have an honest client interact arbitrarily with I7 (A
is given the resulting public keys and signatures), and should not be able to
produce a forgery on a message m that would verify with respect to one of
the public keys output by the client (during a KeyGen execution) unless it
received a signature on m as a result of such an interaction. We require the
forging probability to be negligible (as opposed to bounded by ¢/2™).

4. With Access to the Token: An alternative scenario is one where the token is
not corrupted, but the attacker can get access to it (for example, in the case of
a lost/stolen token, or a token shared between multiple users). More precisely,
the adversary can interact with an honest T' and may also interact with an
honest client C' (which itself interacts with 7') and has to produce forgeries on a
message m (which C' did not sign, but on which T can be queried) w.r.t. a pub-
lic key which C' output during an interaction with 7. Whereas unforgeability
for the token implies that the above-mentioned adversary’s forging probability
is bounded by ¢/2™ where ¢ is the number of random oracle queries, we here
sharpen the bound to ¢’ /2™ where ¢’ is the number of invocations of T'. (As T
could rate-limit its answers by e.g., 1 sec, ¢’ will be significantly smaller than
g in practice.)

As far as we know, no previously known scheme satisfies all of the the above
properties; in fact, none satisfy even just (1) and (2), or (1) and (3)E|

The Construction The high-level idea behind our construction is natural (al-
though the approach is very different from Trezor and other currently used hard-
ware wallets). We would like to employ a two-out-of-two threshold signature
(TS) scheme where the token is one of the parties and the client is the other.
The problem is that the client only has a low-entropy password and cannot keep
any persistent state. In fact, even if it had a high-entropy password, it wouldn’t
be clear how to directly use the threshold schemes as in general (and in partic-
ular for EC-DSA), secret key shares for threshold schemes are generated in a
correlated way.

To overcome this issue, the key generation algorithm begins by running the
key generation procedure for the TS: the token and the client each get a secret
key share (which we denote sky and sk respectively), as well as the public
key pk. Next, since the client cannot remember pk, skc, it encrypts pk, sko
using a key that is derived—by using a random oracle (RO)—from its password;
additionally, the client generates (deterministically) a random “handle” as a
function of its password, again by applying the RO to the password. It then
sends both the handle and the (password-encrypted) ciphertext to the token for
storage.

Later on, when a client wants to get a signature on a message m, it first
asks the token to retrieve its password-encrypted ciphertext: the token will only
provide it if the client provides the correct handle (which the honest client having
the actual password can provide). Next, the client decrypts the ciphertext (again
using the password), and can recover its public and secret key. Finally, using its
secret key, and interacting with the token the client can engage in the threshold
signing process to obtain the desired signature on m.

The Analysis: Exploiting Non-Signalling and Exponential-time Simu-
lation While we can show that the above construction satisfies properties 1,2
and 4 assuming the underlying threshold scheme is secure, demonstrating prop-
erty 3—that is, security against malicious token manufacturers, which in our
opinion is the most cruicial property—turns out to be non-trivial.

The issue is the following: as already mentioned, if the token is fully con-
trolled by the attacker (which participates in outside interactions), then we can
never hope to show that unforgeability happens with negligible probability as
the attacker can always perform a brute-force attack on the password. In partic-
ular, in our scheme, the attacker can simply brute-force password guesses against
the ciphertext ¢ to recover the client’s threshold secret key share. However, a
malicious manufacturer which generates a malicious token but cannot directly
communicate with it, would have more trouble doing so. Even if the malicious
token program can perform a brute-force attack, it cannot directly communicate
the correct password (or the client key share) to the manufacturer! If the token

4 Although we are not aware of any formal analysis of Trezor, it would seem that it
satisfies (1) and (4), but there are concrete attacks against the other properties.

could somehow signal these information to the manufacturer, then the manu-
facturer could again break the scheme. And in principle, with general threshold
signatures, there is nothing that prevents such signalling. For example, if the
token could cause the threshold signing algorithm to output signatures whose
low-order bits leak different bits of ¢, after sufficiently many transactions that
are posted on a blockchain, the adversary could recover ¢ and brute force the
password himself.

Towards addressing this issue, we define a notion of Non-Signalling for TS:
roughly speaking, this notion says that even if one of the parties (the token)
is malicious, as long as they produce accepting signatures (with overwhelming
probability), they cannot bias the distribution of the signatures generated—i.e.,
such signatures will be indistinguishable from honestly generated ones. In fact,
to enable our proof of security—which proceeds using a rather complex sequence
of hybrid arguments relying on exponential-time simulation—we will require the
TS scheme to satisfy a statistical notion of Non-Signalling which requires that
the distribution of signatures generated interacting with the malicious party is
statistically close to the honest distribution.

We next show that if the underlying TS indeed satisfies statistical Non-
Signalling, then our 2FS also satisfies property 3. Towards doing this, we actu-
ally first show that our 2FS satisfies an analogous notion of Non-Signalling, and
then show how to leverage this property to prove unforgeability for the token
manufacturer. We mention that the notion of Non-Signalling for 2FS is inter-
esting in its own right: it guarantees that a maliciously implemented token IT
(whose answers are restricted to satisfy the correctness properties of the scheme
with overwhelming probability) cannot leak (through the public keys and the
signatures which it helps computing) to an attacker any information which an
honestly implemented token would not leak. In particular, if the honest token
algorithm generates independent public keys and uses stateless signing (as the
ones we consider do), even a malicious token cannot leak correlations between
which public keys it has been used to create, or what messages it has signed.

1.2 Related Work

Threshold Signatures Threshold signatures [AI7IT52JT] are signature schemes
distributing the ability to generate a signature among a set of parties, so that
cooperation among at least a threshold of them is required to produce a sig-
nature. Nicolosi et al. [14] present a threshold signature scheme for the Schnorr
signature scheme. Particularly relevant to the cryptocurrency application are the
works of Goldfeder et al. [8J6], Lindell [9/10], and Lee et al. [5] which propose
a threshold signature scheme to produce ECDSA signatures, which is already
compatible with Bitcoin and Ethereum.

Passwords 4+ Threshold signatures MacKenzie and Reiter [IT/12] and Ca-
menish et al. [3] consider notions somewhat similar to the one of a password-
based threshold signature scheme: as in our setting, signing requires knowledge
of a password and access to an external party (in their case a server rather than

a hardware token), but in contrast to our setting the signer may additionally
hold some high-entropy secret state (and indeed, the schemes considered in those
papers require such secret state). This rules out the usage of such schemes in
our scenario, as we want the user to be able to operate his wallet from any client
without relying on any external state beyond its password.

1.3 Organization of the paper

After introducing some notation in Section [2] we recall the definition of Thresh-
old Signature scheme and introduce the Non-Signalling property in Section
Section [4] defines Two Factor Signature schemes and Section [b| presents our main
construction and a sketch for some of the security proofs.

Due to lack of space, some of the security definitions (introduced earlier in the
introduction), the full proofs of security, as well as the two modified TS schemes
(based on Schnorr and EC-DSA) are deferred to the full version of this paper.
There, we also discuss an additional useful Unlinkability property satisfied by
our construction.

2 Notation

If X is a probability distribution, we denote with = <— X the process of sampling
x according to X. When, in a probabilistic experiment, we say that an adversary
outputs a probability distribution, we mean that such a distribution is given as
a poly-time randomized program such that running the program with no in-
put (and uniform randomness) samples from such distribution. For two party
(randomized) algorithms we denote with («;) < (A(a); B(b)) the process of
running the algorithm A on input a (and uniform randomness as needed) inter-
acting with algorithm B on input b (and uniform randomness), where « is the
local output of A and § is the local output of B. Whenever an algorithm has
more than one output, but we are interested in only a subset of such outputs,
we will use - as a placeholder for the other outputs (for example we could write
(-, pk) + KeyGen(1") to denote that pk is a public key output by the KeyGen
algorithm of a signature scheme in a context where we are not interested in the
corresponding secret key).

Token Oracles. In our definitions, we will often model a party/program im-
plementing party 7. We say that a Token Oracle is a stateful oracle which can
answer KeyGen, PK, Sign queries. Initially, its state is set to L. To answer
such queries, the oracle interacts with its caller by running the KeyGent, PKr,
Signr algorithms respectively using its own inner state (and a message m sup-
plied by the caller for Sign queries). As a result of KeyGent queries, its state is
also updated. Moreover, when explicitly specified, the oracle could also return to
the caller the public keys pk which are part of its local output during KeyGenr
and Signt queries.

3 Threshold Signature scheme

This section recalls the definition of a Threshold Signature scheme. The formal-
ization presented here is for a 2-party setting (C and 7') and the key shares
are computed by the parties using a distributed key generation algorithm (as
opposed to being provided by a trusted dealer).

Definition 1. A (2-out-of-2) Threshold Signature scheme consists of a tuple of
distributed PPT algorithms defined as follows:

— (TS.GC(1%); TS.GT(1%)) — (skc¢, pk; skr,pk) are two randomized algorithms
which take as input the security parameter and, after interacting with each
other, produce as output a public key pk (output by both parties) and a se-
cret key share for each of them. We use TS.Gen(1%) — (skc, skr,pk) as a
compact expression for the above computation.

— (TS.SC(skc,m); TS.ST(skr,m)) — (o; L) are two randomized algorithms
interacting to produce as output a signaturd’| o. We use TS.Sign(skc,m,
skr) — o as as a compact expression for the above computation.

— TS.Ver(pk,m,0) — 0V 1 is a deterministic algorithm. It takes as input a
public key, a message and a signature and outputs 1 (accept) or 0 (reject).

These algorithms have to satisfy the following correctness property: for all
messages m

(skc, skr,pk) < TS.Gen(1") :

Pr TS.Ver(pk, m, TS.Sign(skc, m, skr)) = 1

=1

The definitions of Unforgeability for the two parties (T and C) we require
are quite standard and are deferred to the full version. In the following, we intro-
duce a new security definition, which we call Non-Signalling. It consists of two
properties. First, we require that a malicious token cannot bias the distribution
of the public keys output by TS.Gen when interacting with an honest client (as
long as such token does not make the TS.Gen execution abort). More in detail,
we require that for any polynomial sized circuit II (which does not make the
execution of TS.Gen abort with more than negligible probability), the distri-
bution of public keys output by an execution of the TS.GC interacting with IT
in the role of T is statistically indistinguishable from the distribution obtained
by running T'S.Gen with both parties implemented honestly. This is formalized
as an experiment where an adversary A (not necessarily running in polynomial
time) outputs a PPT program IT and then has to distinguish whether it is given
a public key generated by an honest client interacting with II or by an honest
client interacting with an honest token.

Analogously, the second property requires that a malicious token cannot bias
the distribution of signatures output by the T'S.Sign algorithm. An adversary

® This definition states that party T does not output the signature. However, in our
construction we do not rely on o being “hidden” from 7T, so threshold schemes where
both parties learn the signature can also be used in our construction.

A outputs a public key pk, a message m, a secret key for the client sk and a
polynomial sized circuit IT which can interact with a client running T'S.SC(sk¢,
m), such that (with all but negligible probability) the output for the client
interacting with I7 is a valid signature on m w.r.t. pk. We require that A cannot
distinguish between the output of such an interaction and a valid signature on
m w.r.t. pk sampled uniformly at random.

Definition 2. Let TS = (TS.GC, TS.GT,TS.SC, TS.ST, TS.Ver) be a Thresh-
old Signature scheme. Consider the following two experiments between an adver-
sary A and a challenger, each parameterized by a bit b:

TS.NS14%b(17) :

1. A(1%) outputs a polynomial size (in k) circuit II, such that Pr[{-,pk;-)
(TS.GC(1%);II) : pk #1] > 1 — p(k) (i.e. running the circuit interacting
with an honest TS.GC implementation results in such honest implementation
outputting L with at most negligible probability).

2. If b = 0, the challenger computes (-, pk;-) < (TS.GC(1%); IT); otherwise it
computes (-, pk;-) <+ (TS.GC(1%); TS.GT(1%)). Then it returns pk to A.

3. A outputs a bit b, which defines the output of the experiment.

TS.NS2750(17) :

1. A(1%) outputs a polynomial size (in k) circuit II, a secret key share skc, a
message m and a public key pk, such that Pr[{c;-) < (TS.SC(skc,m);) :
TS.Ver(pk,m,o) = 1] > 1 — pu(k) (i-e. running the circuit interacting with
an honest TS.SC implementation on input skco, m results in such honest im-
plementation outputting a valid signature for m under pk with overwhelming
probability).

2. If b= 0, the challenger computes (o;-) < (TS.SC(1%); IT); otherwise it sam-
ples a valid signature at random, i.e. it samples o < {0 : Ver(pk, m,o) = 1}.
Then it returns o to A.

3. A outputs a bit b, which defines the output of the experiment.

TS is said to be Non-Signalling if for all PPT adversaries A there exist a
negligible function p such that

| Pr[TS.NS1%%%(1%) = 1] — Pr[TS.NS17%' (1%) = 1]| < u(k)
| Pr[TS.NS2%%0(1%) = 1] — Pr[TS.NS27%' (1%) = 1]| < u(k)

If the above equations hold even for adversaries A which are not bounded to be
PPT (but that output circuits IT which still have to be polynomially sized), the
TS is said to be Statistically Non-Signalling.

4 Two Factor Signature Schemes

A Two Factor Signature scheme is similar to a 2-out-of-2 threshold signature
scheme, where signatures are generated by two parties: a client C' whose only

long term state is a (typically low entropy and independently generated) pass-
word, and a token 7', who can store and generate secrets of arbitrary length. We
envision the token party T to be implemented on a hardware token (which a
user would carry around) with a dedicated screen and button which would ask
the user for confirmation before producing signatures.

The semantics of the scheme are designed to capture the fact that a token
party T has a single state sy which can be used as input to produce signa-
tures according to different public keys (for which an initialization phase was
previously performed). This is useful, as typically a hardware wallet would offer
support for multiple cryptocurrency accounts, and therefore such semantics al-
low us to design a scheme which natively supports multiple such accounts and
reason about the security of the whole system.

More specifically, one can think of each public key that the scheme can pro-
duce signatures for as being associated with both a password and a (not nec-
essarily private) mnemonic key identifier (or account identifier in the hardware
wallets application) chosen by the user (i.e.“savings” or “vacation_fund”). In
order to generate a new public key the client executes the KeyGen algorithm
with a token T'. The client’s inputs are the key identifier and its password pwd,
while the token updates its state sy as a result of running this algorithm. Later,
the client can produce signatures for that public key on a message m by run-
ning the Sign algorithm (interacting with the same token) on input m and the
same password and key identifier. Additionally, the PK algorithm can be used
to reconstruct a previously generated public key (both the password and the key
identifier are required in this case as well). In our formal description, for the
sake of simplicity and w.l.o.g., we consider such key identifier to be part of the
password itself.

Definition 3. A Two Factor Signature scheme (2FS) consists of a tuple of PPT
algorithms:

— (KeyGeng(pwd); KeyGenr(sr)) — (pk;pk, sh) are two randomized algo-
rithms interacting with each other to produce as output a public key pk (output
by both parties). sy represents the state of party T before running the algo-
rithm (which would be L on the first invocation), and si. represents its new
updated state. We use KeyGen(pwd, st) — (pk, s’) as a compact expression
for the above computation.

— (PKc(pwd); PKr(st)) — (pk;pk) are two algorithms interacting with each
other to produce as output a public key. We use PK(pwd, sid, sp) — pk as a
compact expression for the above computation.

— (Signc(pwd, m); Signr (s, m)) — (o; L) are two randomized algorithms in-
teracting with each other to produce as output a signature o, output by the
first party only. We use Sign(pwd, m, sy) — o as as a compact expression for
the above computation.

— Ver(pk,m,c) — 0V 1 is a deterministic algorithm. It takes as input a public
key, a message and a signature and outputs 1 (accept) or 0 (reject).

These algorithms have to satisfy the following correctness properties. Let st
be any valid token state (i.e. any state obtained by starting with L as the ini-

tial state and then updating it through several executions of KeyGen on input
arbitrary passwords), pwd be any password which was used in at least one such
execution of KeyGen, pk be the output of the KeyGeng algorithm in the most
recent of the executions of KeyGen on input pwd. We require that both

Pr[PK(pwd, sT) = pk] = 1, Pr[Ver(pk, m, Sign(pwd, m,sr)) =1] =1

Security notions. We define five notions of security for a 2FS, all introduced
in the introduction. Unforgeability for the Token, and Unforgeability with access
to the Token are formalized in the full version. Here, we define Unforgeability
for the Client, Unforgeability for the Token Manufacturer and Non-Signalling.

Definition 4 (Unforgeability for the Client). Given a Two Factor Signa-
ture scheme 2FS = (KeyGeng, KeyGent, PKc, PKrT, Signc, Signr, Ver),
consider the following experiment between an adversary A and a challenger:
ExpForgeC%*(1%) :

1. The challenger runs the adversary A, giving it access to a token oracle T (A is
given the pk values output by such oracle during KeyGen and PK queries).
A can interact with the oracle arbitrarily. In addition, the challenger records
the pk wvalues locally output by the token oracle for KeyGen queries on an
(initially empty) list g, and for PK queries on an (initially empty) list p.

2. A halts and outputs a message m and a list of forgeries (pk1,01),..., (pkn,
on). We define the output of the experiment as 1 if either there exists a pk
that belongs to p but not to g, or if for all i € {1,...,n}, Ver(pk;,m,0;) =1,
all the pk; are distinct and are in g, and A made at most n — 1 Sign queries
to the oracle T on input m.

2FS is said to be Unforgeable for the Client if for all PPT adversaries A
there exist a megligible function p such that for all

Pr[ExpForgeC%*(1") = 1] < u(x).

The purpose of the two lists g and p in the experiment above is to ensure
that either the adversary can cause the honest token to output a public key pk
during a PK query which it did not output during a KeyGen query, or that all
the forgeries returned by the adversary are w.r.t. public keys which were output
by the honest token oracle, that the number of forgeries on m is greater than
the number of signing queries which the challenger answered for m.

The next definition, Unforgeability for the Token Manufacturer, is formalized
as an experiment where the adversary first outputs a stateful program I7, and
then can ask an honest client (simulated by the challenger) to interact with such
program in arbitrary KeyGen, PK and Sign queries (where the adversary can
pick the pwd and m inputs for such client and receives its outputs). The definition
requires that (except with negligible probability) the adversary cannot produce
a forgery on a message m valid w.r.t. one of the public keys pk output by the
client, unless it previously received a valid signature on m w.r.t. pk as the output
of a Sign query.

We restrict such definition to adversaries which satisfy a compliance property.
Informally, an adversary is compliant if during any execution of the unforgeabil-
ity experiment, with overwhelming probability, it outputs programs IT such that
the outputs of the honest client (simulated by the challenger) on the adversary’s
queries respect the same correctness conditions as if the simulated client was
interacting with an honestly implemented token. In particular, running a PK
query on input some password pwd, the client should obtain the same pk which it
output during the most recent KeyGen query on input the same pwd; similarly,
the output of a Sign query on input m and pwd should be a valid signature w.r.t.
the public key pk which was output during the most recent KeyGen query for
pwd.

Remark 1. Restricting to compliant adversaries is a reasonable limitation: if a
user notices that her hardware token is not producing signatures or public keys
correctly, for example by selectively aborting during signature generation or by
returning invalid signatures or inconsistent public keys, such abnormal behavior
would be easy to detect or even impossible to go unnoticed. For example, if a 2FS
was used to sign a cryptocurrency transaction, but the client output an invalid
signature for the user’s expected public key/source address of the transaction,
then even if the client side software did not check the signature and it got
broadcasted to the network, the receiver of the funds would eventually complain
that the funds were never transferred.

Definition 5. Let 2FS = (KeyGenc, KeyGent, PK¢, PKT, Signc, Signr,
Ver) be a Two Factor Signature scheme. Consider the following experiment

between a PPT adversary A and a challenger, parameterized by a bit b:
ExpForgeTokMan?(1%) :

1. A(1%) outputs a polynomial size circuit II, which implements the same inter-
face as a Token Oracle. We stress that this program is not bound to implement
the honest algorithms, but may deviate in arbitrary ways (subject to A being
compliant as specified below).

2. A can now ask an arbitrary number of KeyGen, PK and Sign queries to

the challenger. In each query, the challenger simulates an honest client C
interacting with II in the role of T on input a pwd and possibly a message m
both arbitrarily chosen by the adversary (in the case of a Sign query, IT is
also given as input m), and gives A such client’s output.
In addition, for each KeyGen query, the challenger records the simulated
client’s output pk in an (initially empty) list g, and for each Sign query on
input some message m where the client’s output is o, the challenger adds a
record (pk,m) to an (initially empty) list s for any pk € g such that Ver(pk,
m,o) =1 (if such a pk exists).

3. A halts and outputs a triple (pk',m’,o’). The output of the experiment is 1 if
Ver(pk',m',c’) =1, pk’ € g and (pk',m’) & s. Otherwise, the output is 0.

During an execution of ExpForgeTokMan®®, we say that a query asked

by A (i.e. an execution of either KeyGen,PK or Sign where the challenger

executes the algorithm for C interacting with II in the role of T) is compli-
ant if the output of the challenger in this interaction satisfies the same cor-
rectness conditions that interacting with an honest token implementation would.
In more detail, the query is compliant (with respect to a specific execution of
ExpForgeTokMan) if:

— in the case of a KeyGen query, the output of the client (simulated by the chal-
lenger) is a pk #L (which implies that II did not abort or send an otherwise
invalid message)

— in the case of a PK query on input some password pwd, the simulated client
output the same pk which it output the most recent time it executed a KeyGen
query on input the same pwd (or L if the adversary never asked any KeyGen
query on input pwd)

— in the case of a Sign query on input m and pwd, the simulated client outputs a
valid signature w.r.t. the pk which was output during the most recently executed
KeyGen query on input pwd (or L if the adversary never asked any KeyGen
query on input pwd).

We say that an execution of ExpForgeTokMan??® is compliant if all the queries
in that execution are compliant. We say that an adversary A is compliant if,
with all but negligible probability, any execution of EprorgeTokManifs(l“)
is compliant.

2FS is said to be Unforgeable for the Token Manufacturer if for all
PPT compliant adversaries A there exist a negligible function p such that for all
K

Pr[ExpForgeTokManZ*(1%) = 1] < u(k)

Towards proving unforgeability for the token manufacturer, it will be use-
ful to first show that our scheme satisfies a notion of Non-Signalling, which is
of independent interest. This property is formalized as an indistinguishability
definition: the adversary outputs a circuit I7, and then asks the challenger to
interact with such circuit on arbitrary KeyGen, PK and Sign queries. The
challenger either uses IT to answer all such queries, or an honest implementation
of the token algorithms; we require that no adversary can notice this difference
with better than negligible probability. As in the previous definition, we restrict
our attention to compliant adversaries.

Definition 6. Let 2FS = (KeyGenc, KeyGent, PK¢, PKT, Signc, Signr,
Ver) be a Two Factor Signature scheme. Consider the following experiment
between an adversary A and a challenger, parameterized by a bit b:
ExpNonSignalfs’b(l") :

1. A(1%) outputs a polynomial sized circuit II, which implements the same inter-
face as a Token Oracle. We stress that this program is not bound to implement
the honest algorithms, but may deviate in arbitrary ways (subject to A being
compliant as specified below).

2. A can now ask an arbitrary number of KeyGen, PK and Sign queries to the
challenger. In each query, the adversary provides the inputs for C (i.e. pwd
and possibly m). If b = 0, the challenger interacts with program II using the
appropriate algorithms for C and the inputs given by A (note that in the case
of a Sign query, II is also given the message m supplied by the adversary as an
input), and gives A the local output of the C algorithm in such computation.
If b = 1, instead, the challenger answers the queries by interacting with an
honestly implemented Token Oracle.

3. A halts and outputs a bit V', which defines the output of the experiment.

Note that in an ezecution of ExpNonSignal®°, A’s view has ezactly the
same distribution as in an execution of ExpForgeTokMan. Thus, we can de-
fine a compliant query asked by A w.r.t. an ExpNonSignal®>° ezecution, a
compliant ezecution of ExpNonSignal®>°® and a compliant adversary as in
Definition 3,

2FS is said to be Non-Signalling if for all compliant PPT adversaries A
there exist a megligible function p such that for all k

|Pr[ExpN0nSignaIi{S’O(1"‘) =1]- Pr[ExpNonSignaljFS’l(l”) =1]| < p(k)

5 Constructing a Two Factor Signature Scheme

In this section, we show how to construct a secure Two Factor Signature scheme
(in the random oracle model), by combining any IND-CPA and INT-CTXT
secure Symmetric Encryption scheme, a hash function (modelled as a random
oracle) and any Unforgeable and Statistically Non-Signalling Threshold Signa-
ture scheme.

Let TS = (TS.GC, TS.GT, TS.SC, TS.ST, TS.Ver) be a Threshold Signa-
ture scheme, SE = (SE.G, SE.E, SE.D) be a Symmetric Encryption scheme, and
RO,; be hash function which maps strings of arbitrary length to {0, 1}" x {0, 1}".
Our proposed construction depends on a security parameter x, which is given as
implicit input to all algorithms.

The token state sp is structured as a key-value store (map), where the keys
are strings in {0,1}" called handles and the values are tuples of strings. Ini-
tially, the KeyGenrt algorithm can be supplied L, which is treated as an empty
store. We define sp.Add(handle, y) as the map obtained from st by adding the
key-value pair (handle,y) (which overwrites any previous value associated with
handle), and s7.Find(handle) as the value associated to handle by sr, or L if
no such pair exists.

All algorithms will abort (i.e. return L) if any of their sub-algorithms abort
(for example if decrypting a ciphertext fails or the store sy does not contain the
expected value) or the other party aborts or sends a malformed message. Using
these conventions, we can define a Two Factor Signature scheme as follows (the
scheme is also illustrated in Fig. :

— KeyGenc(pwd) — pk: Run TS.GC(1%) interacting with KeyGent and ob-
tain (skc, pk) as the local output. Then, compute (ek, handle) + RO (pwd),
¢ < SE.E(ek, (skc, pk)) and send (handle, ¢) to T. Output pk.

— KeyGent(sr) — s: Run TS.GT(1") interacting with KeyGenc and ob-
tain skr,pk as the local output. Then, receive (handle,c) from KeyGenc,
set shp « sp.Add(handle, (¢, skr,pk)) and output (s7., pk).

— PKc(pwd): Compute (ek, handle) < RO, (pwd), send handle to PKr. Upon
receiving ¢ in response, compute (skc, pk) < SE.D(ek, ¢) and output pk.

— PKr(s7): Upon receiving handle from PKc, retrieve from the state (¢, ske,
pk) < sr.Find(handle), send ¢ to PK¢ and output pk.

— Signc(pwd, m): Compute (ek, handle) < RO, (pwd) and send handle to
Signt. Upon receiving ¢ in response, compute (sk¢, pk) + SE.D(ek, ¢), then
execute TS.SC(skc,m) (interacting with Signr) and output the resulting o.

— Signr(st,m): Upon receiving handle from PKc, compute (¢, sko,pk) +
sr.Find(handle), send ¢ to Signe and run TS.ST(skr, m).

— Ver(pk, m,o0): Output TS.Ver(pk, m, o).

KeyGenc (pwd) : KeyGenr(sr) :
(skc, pk) +— TS.GC(1%) “ TS.GT(1"%) — (skr,pk)
(ek, handle) < RO, (pwd)

¢ < SE.E(ek, (skc, pk)) handie,c st < sr.Add(handle, (c, skr, pk))
Output pk Output (s7, pk)
PKc(pwd) : PKr(sr):
handle

(ek, handle) < RO, (pwd)
(skc, pk) < SE.D(ek, c) e
Output pk Output pk

(¢, sk, pk) < sr.Find(handle)

Signc(pwd, m) : Signr(sr,m) :
(ek, handle) < RO, (pwd) (¢, sk, pk) < sr.Find(handle)
(skc,pk) < SE.D(ek, c) s
o < TS.SC(skc, m) “~ TS.ST(skr, m)
Output o

handle

Fig. 1. The Two Factor Signature scheme construction. The verification algorithm is
the one of the underlyihg TS.

The security of the scheme is established by the following theorems. We
provide a proof sketch for some of them, and defer the details to the full version.

Theorem 1. If the underlying Threshold Signature scheme is Unforgeable for
the Client, the Two Factor Signature scheme described above is Unforgeable for
the Client.

Proof Sketch. This is essentially a reduction to the unforgeability for C' of the
Threshold Signature scheme. The adversary B (against the T'S) simulates for any
adversary A (against the 2FS) an execution of ExpForgeC; B guesses which
of the KeyGen queries by A will output a public key pk such that A outputs
a forgery on m w.r.t. pk but A does not ask any Sign queries “with respect
to pk” (see the full version for details). B makes A interact with its challenger
for such KeyGen query (and the related Sign queries), so that if its guess is
correct then the forgery produced by A can directly be used as a forgery to win
TS.ForgeC. a

Theorem 2. If TS is Unforgeable for the Token, and SE is both IND-CCA and
INT-CTXT secure, the Two Factor Signature scheme described above is Un-
forgeable for the Token.

Theorem 3. If the underlying Threshold Signature scheme is Unforgeable for
the Client, the Two Factor Signature scheme described above is Unforgeable with
Token Approval.

Theorem 4. Assuming the underlying Threshold Signature scheme is Statisti-
cally Non-Signalling, the Two Factor Signature scheme described above is Non-
Signalling.

Proof Sketch. The proof is structured as an hybrid argument on the number of
queries made by the adversary. Starting from the experiment where the chal-
lenger always uses the circuit IT output by the adversary to answer all queries,
we progressively substitute such answers one at a time, starting from the last
query. Signing queries on a message m which should be produced w.r.t. a pub-
lic key that the adversary has already seen are substituted with a randomly
sampled signature on m with respect to the same public key, while queries for
new public keys are answered by running (sk¢, sk, pk) < TS.Gen(1") (i.e. by
running the threshold key generation algorithm honestly and without interact-
ing with IT) and returning the resulting pk to A. We prove that an adversary
who can distinguish between two adjacent hybrids can contradict one of the two
Non-Signalling property of the Threshold Signature scheme. Moreover, in the
last hybrid the view of the adversary does not depend on the circuit I7, and
so we can switch in an analogous way to an experiment where the challenger
always uses an honest token oracle. Note that sampling signatures at random
without knowing the corresponding secret key shares makes the reduction re-
quire exponential time, but this is not a problem because the Non-Signalling
properties of the Threshold Signature scheme hold even against an exponential
time adversary. a

Theorem 5. Assuming the underlying Threshold Signature scheme is Statisti-
cally Non-Signalling and Unforgeable for the Client, the TFS described above is
also Unforgeable for the Token Manufacturer.

Proof Sketch. The proof is structured as an hybrid argument. First, instead of
using the circuit IT output by the adversary, all queries by A are answered using

an honestly implemented token oracle. Due to the Non-Signalling property of the
2F'S, this cannot affect A’s view and therefore its success probability. Given that
A is now interacting with an honest token, we can prove that A cannot forge

using a similar argument as in the proof of Unforgeability for the Client. a
References
1. Jestis F Almansa, Ivan Damgard, and Jesper Buus Nielsen. Simplified threshold

10.

11.

12.

13.
14.

15.

16.

RSA with adaptive and proactive security. In Eurocrypt, volume 4004, pages 593—
611. Springer, 2006.

Dan Boneh, Xuhua Ding, Gene Tsudik, and Chi-Ming Wong. A method for fast
revocation of public key certificates and security capabilities. In USENIX Security
Symposium, pages 22—22, 2001.

Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Virtual smart
cards: how to sign with a password and a server, 2016.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryp-
tology — CRYPTO 1989, pages 307-315. Springer, 1990.

J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ECDSA
from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 595-612, 2018.

. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast

trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1179-1194. ACM, 2018.

Rosario Gennaro, Stanistaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and
efficient sharing of RSA functions. In Advances in Cryptology — CRYPTO 1996,
pages 157-172. Springer, 1996.

Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua A
Kroll, Edward W Felten, and Arvind Narayanan. Securing bitcoin wallets via a
new DSA/ECDSA threshold signature scheme, 2015.

Yehuda Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology
- CRYPTO 2017, pages 613—-644. Springer, 2017.

Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practical dis-
tributed key generation and applications to cryptocurrency custody. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 1837-1854. ACM, 2018.

Philip MacKenzie and Michael K Reiter. Delegation of cryptographic servers for
capture-resilient devices. Distributed Computing, 16(4):307-327, 2003.

Philip MacKenzie and Michael K Reiter. Networked cryptographic devices resilient
to capture. International Journal of Information Security, 2(1):1-20, 2003.
Microchip. Atecc608a datasheet, 2018.

Antonio Nicolosi, Maxwell N Krohn, Yevgeniy Dodis, and David Mazieres. Proac-
tive two-party signatures for user authentication. In NDSS, 2003.

Tal Rabin. A simplified approach to threshold and proactive RSA. In Advances in
Cryptology — CRYPTO 1998, pages 89-104. Springer, 1998.

T.C. Sottek. Nsa reportedly intercepting laptops purchased online to install
spy malware, December 2013. [Online; posted 29-December-2013; https://www.
theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy].

https://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy
https://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy

	Minimizing Trust in Hardware Wallets with Two Factor Signatures

