
Statement Voting

Bingsheng Zhang1 and Hong-Sheng Zhou2

1 Lancaster University, UK
b.zhang2@lancaster.ac.uk

2 Virginia Commonwealth University, USA
hszhou@vcu.edu

Abstract. The conventional (election) voting systems, e.g., representa-
tive democracy, have many limitations and often fail to serve the best
interest of the people in a collective decision-making process. To address
this issue, the concept of liquid democracy has been emerging as an al-
ternative decision-making model to make better use of “the wisdom of
crowds”. However, there is no known cryptographically secure e-voting
implementation that supports liquid democracy.
In this work, we propose a new voting concept called statement voting,
which can be viewed as a natural extension of the conventional vot-
ing approaches. In the statement voting, instead of defining a concrete
election candidate, each voter can define a statement in his/her ballot
but leave the vote “undefined” during the voting phase. During the tally
phase, the (conditional) actions expressed in the statement will be car-
ried out to determine the final vote. We initiate the study of statement
voting under the Universal Composability (UC) framework, and propose
several construction frameworks together with their instantiations. As
an application, we show how statement voting can be used to realize a
UC-secure liquid democracy voting system. We remark that our state-
ment voting can be extended to enable more complex voting and generic
ledger-based non-interactive multi-party computation. We believe that
the statement voting concept opens a door for constructing a new class
of e-voting schemes.

1 Introduction

Elections provide people with the opportunity to express their opinions in the
collective decision making process. The existing election/voting systems can be
mainly divided into two categories: direct democracy and representative democ-
racy. Unfortunately, either approach has many limitations, and it often fails to
serve the best interest of the people. For example, to make correct decisions,
the voters have to invest tremendous effort to analyze the issues. The cost of
identifying the best voting strategy is high, even if we assume that the voter has
collected all the necessary information accurately. In addition, misinformation
campaigns often influence the voters to select certain candidates which could be
against the voters’ true interests. We here ask the following challenging question:

Is it possible to introduce new technologies to circumvent the implemen-
tation barriers so that more effective democracy can be enabled?

A new concept. We could approach the above problem via multiple angles.
In this paper, we propose a new powerful concept: statement voting. Statement
voting can be viewed as a natural extension of traditional candidate voting. In-
stead of defining a fixed election candidate, each voter can define a statement
in his/her ballot but leave the vote “undefined” during the voting phase. Dur-
ing the tally phase, the (conditional) actions expressed in the statement will be
carried out to determine the final vote. More specifically, in a statement vot-
ing, the ballots typically contain a conditional statement that requires external
inputs (a.k.a. parameters and/or arguments) to be executed. For simplicity of
illustration, here we consider (nested) if-statements or switch-statements: If A
and B then C1 else C2, where A,B are conditions and C1, C2 are election
candidates. We emphasize that A and B are usually not defined yet at the time
this ballot is created; In the case that, A and B are defined, i.e., all the nec-
essary information is readily collected during the voting phase, the voter can
evaluate such a statement himself, and statement voting boils down to conven-
tional voting. Thus, statement voting can be viewed as a non-trivial extension
of conventional voting. We note that statement voting can be very flexible. For
instance, a ballot statement could be “if tomorrow is rainy, I vote for ‘staying
at home’; otherwise, I vote for ‘hiking’.” Note that the ballot can be cast today
without even being aware of tomorrow’s weather.

Single Transferable Vote (STV) is a special case of statement voting, where
the voters rank the election candidates instead of naming only one candidate in
their ballots. The ranked candidate list together with the STV tally rule can be
viewed as an outcome-dependent statement. Roughly speaking, the statement
declares that if my favorite candidate has already won or has no chance to win,
then I would like to vote for my second favorite candidate, and so on3.

Modeling statement voting. We provide a rigorous modeling for statement
voting. More concretely, we model statement voting in the well-known Universal
Composability (UC) framework, via an ideal functionality FSV. The function-
ality interacts with voters and trustees, where trustees are the set of voting
committee members who prepare the election and calculate the tally result.
In our formulation, we introduce a family of functionalities to facilitate vari-
ous realizations. In practice, there is a trade-off between efficiency and privacy
guarantees; typically, more efficient constructions yield more privacy leakage. To
capture various leakage scenarios, in our ideal functionality, a working table W
is introduced to trace the election transcripts. Depending on which parties are
corrupted (and which scheme is considered), some part of the working table will
be leaked to the adversary.

Realizing statement voting. In this work, we provide several methods to
implement statement voting. Similar to most conventional e-voting systems, we
3 Note that this is not a complete description of STV. For those readers who are
unfamiliar with STV, please see its full definition to avoid misunderstanding.

2

assume a trusted Registration Authority (RA) to ensure voter eligibility and a
consistent Bulletin Board (BB) where the voting transactions and result will be
posted. The protocol involves a set of voters and a set of trustees, where the
trustees are the set of voting committee members who prepare the election and
compute the tally.

A fully homomorphic encryption (FHE) based scheme. Intuitively, in this scheme,
the trustees first run a distributed key generation protocol to setup the voting
public key pk. Each voter Vi then encrypts, signs and submits their voting
statements, xi (in forms of (PIDi,Encpk(xi))) to the BB. To prevent re-play at-
tacks, non-interactive zero-knowledge (NIZK) proofs are necessary to ensure the
voter knows the plaintext included in his/her submitted ciphertext. After that,
the tally processing circuit is evaluated over {(PIDi,Encpk(xi))}i∈[n] by every
trustee. The final tally ciphertext is then decrypted by the trustees and the
result will be announced on the BB.

A publicly auditable MPC based scheme. Intuitively, we can adopt BDO-type
of publicly auditable MPC [4], where the trustees form the MPC system. Dur-
ing the preparation phase, they pre-compute sufficiently many correlated ran-
domness (e.g., Beaver triples), and also set up a voting public key. Each voter
Vi then encrypts, signs and submits their voting statements, xi (in forms of
(PIDi,Encpk(xi))) together with necessary NIZK proofs to the BB. After that,
the trustees perform MPC online computation to first decrypt those encrypted
ballots and then evaluate the tally processing circuit over the secretly shared
ballots. Finally, the tally result will be posted on the BB. Note that during the
online phase, the BDO MPC scheme also posts audit information on the BB to
enable public verifiability.

Application: liquid democracy. In the past decades, the concept of liquid
democracy [16] has been emerging as an alternative decision making model to
make better use of collective intelligence. Liquid democracy is a hybrid of di-
rect democracy and representative democracy, where the voters can either vote
directly on issues, or they can delegate their votes to representatives who vote
on their behalf. Due to its advantages, liquid democracy has received high at-
tentions since the spread of its concept; however, there is no provably secure
solution in the form of either paper-voting or e-voting yet. Liquid democracy
can be viewed as a special case of statement voting. The vote delegation can
be expressed as a target-dependent statement, where a voter can define that
his/her ballot is the same as the target voter’s ballot. Therefore, we can have
an immediate construction for liquid democracy based on the above FHE-based
and MPC-based schemes. In addition to those “generic” constructions, we also
show how to realize liquid democracy with a more efficient construction. In Sec-
tion 3.1, we first define an ideal functionality for liquid democracy, and we then
provide a mix-net based construction. Note that the tally processing function
must be symmetric, otherwise we cannot use mix-net.

Further remarks. In this work, we initiate the study of statement voting and
liquid democracy. Our statement voting concept can be significantly extended

3

to support much richer ballot statements. It opens a door for constructing a new
class of e-voting schemes. This area of research is far from being completed, and
our design and modeling ideas can be further improved. For example, if there is
a delegation loop in which a set of voters delegate their votes to each other while
no one votes, then what should be the “right” policy? One possible approach is
to extend the delegation statement to include a default vote. When a delegation
loop exists, the involved ballots could be counted as their default votes. On the
other hand, if we don’t allow delegation loop in a liquid democracy voting, to
what extend can we guarantee voter privacy? How to refine the conventional
e-voting privacy to fit liquid democracy is still an open problem. We emphasize
that, voting policies can be heavily influenced by local legal and societal con-
ditions. How to define “right” voting policy itself is a very interesting question.
We believe our techniques have the potential to help people to identify suitable
voting policies which can further eliminate the barriers to democracy. Finally,
we note that several important security requirements, e.g., coercion resilience,
have not been investigated in this work. See more details in Sec. 4.

Related work. To our best knowledge, Ford [16] first officially summarized the
main characteristics of liquid democracy and brought it to the vision of computer
science community. However, in terms of implementation/prototyping, there was
no system that can enable liquid democracy until very recently. All the exist-
ing liquid democracy voting systems only focus on the functionality aspect of
liquid democracy, and no privacy or some other advanced security properties
were considered. For instance, Google Votes [20] is a decision-making system
that can support liquid democracy, and it is built on top of social networks, e.g.,
the internal corporate Google+ network. Similarly, systems such as LiquidFeed-
back [23], Adhocracy [1], GetOpinionated, [15] also fail to offer provable security
guarantees. It is worth mentioning that Sovereign [26] is a blockchain-based vot-
ing protocol for liquid democracy; therefore, its privacy is inherited from the
underlying blockchain. In terms of UC modeling on e-voting. Groth [18] gave
the first UC definition for an e-voting system, and he proposed a protocol using
(threshold) homomorphic encryption. Moran and Naor [24] later studied the pri-
vacy and receipt-freeness of an e-voting system in the stand-alone setting. Unruh
and Muller-Quade [27] gave a formal study of e-voting coerciability in the UC
framework. Alwen et al. [3] considered stronger versions of coerciability in the
MPC setting under UC framework. Almost all the end-to-end verifiable e-voting
systems [2,13,21,22] requires a consistent bulletin board. Finally, our temporary
ID matching technique is closely related to the queried term matching technique
used in UnLynx [17] and the anonymous ID linking technique used in [28].

2 Modeling

The parties involved in a statement voting system are a set of trustees T :=
{T1, . . . ,Tk}, and a set of voters V :=

{
V1, . . . ,Vn

}
.

The statement voting functionality. The ideal functionality for statement
voting, denoted as FSV, is formally described in Fig. 1. Let Vhonest, Vcorrupt and

4

The functionality FSV interacts with voters V, trustees T, and the adversary S. It is
parameterized by an algorithm TallyProcess (see Fig. 2), a working table W, and variables
result, T1, T2, and Bi for all i ∈ [n]. Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set
of honest/corrupt voters and trustees, respectively.
Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.
Table W consists of n entries, and each entry consists of voter’s real ID, voter’s alter-
native ID, and the statement that the voter submitted; for all i ∈ [n], the ith entry
W[i] := (Vi, wi, statementi), where wi ← {0, 1}λ, statementi := ∅.

Preparation:

1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set
T1 := T1 ∪ {Tj}, and send (InitialTrusteeNotify, sid,Tj) to S.

Ballot Casting:

1. Upon receiving input (Cast, sid, (si, w∗i)) from Vi ∈ V, if |T1| < k, ignore it.
Otherwise,

if Vi is honest (w∗i := ⊥), update W[i] := (Vi, wi, si); send
(CastNotify, sid,Vi) to S.
if Vi is corrupt, then update W[i] := (Vi, w

∗
i , si).

If |Tcorrupt| = k, then additionally send a message (Leak, sid,W[i]) to S.

Tally:

1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, set T2 := T2 ∪ {Tj} and
set U := W; then eliminate all Vi’s in U; sort the entries in U lexicographically.
define L. For example, set L := TallyProcess(U) or L := U or L := W.

Send a notification message (TallyNotify, sid,Tj) to S.
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send a leakage message (Leak, sid, L) to S.
If |T2| = k, compute result ← TallyProcess(U).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore
the input. Otherwise, return (ResultReturn, sid, result) to Vi.

Functionality FSV

Fig. 1. The voting functionality FSV.

Thonest, Tcorrupt denote the set of honest/corrupt voters and trustees, respectively.
FSV consists of three phases—Preparation, Ballot Casting, and Tally. The func-
tionality uses a working table W to track the voters’ behavior during the entire
ideal execution. The working table W stores each voter’s information including
the voter’s original ID, his alternative/temporary ID, and the voting statement
that he submitted.

Preparation phase. During the preparation phase, the trustees needs to indicate
their presence to FSV by sending (InitialTrustee, sid) to it. The election will
not start until all the trustees have participated in the preparation.

Ballot Casting phase. During the ballot casting phase, each voter can submit
his voting statement, and this voting statement will be recorded in the corre-
sponding entry. If a voter is corrupt, then he is also allowed to revise his own
alternative/temporary ID in the working table. More concretely, based on the in-
put (Cast, sid, (si, w∗i)) from voter Vi, the corresponding entry will be updated,
i.e., W[i] := (Vi, wi, si) if the voter is honest, and W[i] := (Vi, w

∗
i , si) if Vi is

corrupt. When all the trustees are corrupted, the functionality FSV leaks the
entire working tape of the election transcript (i.e., W), to the adversary.

5

Input: a set of ballots B := (B1, . . . , Bn)

Output: the tally result result

Statement interpretation:

– Compute (v1, . . . , vn)← StatementProcess(B1, . . . , Bn), where StatementProcess takes
input as the set of statements and outputs the voters’ final votes.

Tally computation:

– Compute result ← TallyAlg(v1, . . . , vn), where TallyAlg(·) is the tally algorithm that
takes input as the votes and outputs the tally result.

– Return result.

TallyProcess

Fig. 2. The extended tally processing algorithm.

Tally phase. Voters’ information in the working table W will be used in the tally
phase to define the privacy leakage as well as the final result. More concretely,
we compute a new table U by first eliminating all Vi’s in W, and then sorting all
the entries lexicographically. This carefully sanitised table U can now be used
to define (1) the final result via applying a circuit TallyProcess on U, and (2)
certain level of privacy leakage L. This formulation allows us to define a class of
statement voting functionalities. For instance, to define a functionality with full
privacy guarantees, we can set L := TallyProcess(U); we can also set L := U to
define a functionality with relatively weaker privacy guarantees, or set L := W
to define a functionality without privacy guarantees.

The Liquid Democracy Ideal Functionality. Given that liquid democracy
is the special case of statement voting, we can easily derive an ideal functionality
for liquid democracy from FSV. The full description of the concrete functionality
for liquid democracy, FLiquid, can be found in the full version. At a high level,
FLiquid uses the following statement interpretation step in the TallyProcess. Each
ballot is in form of either Bi = (wi, ui,⊥) or Bi = (wi,⊥, xi), where wi and ui
are temporary ID’s, and xi is a vote. To resolve the delegation, the algorithm
needs to follow the “chain of delegation”, i.e., for each ballot Bi:

– If Bi is in form of (wi, ui,⊥), try to locate a ballot Bj in form of (ui, X, Y).
If founded, replace Bi := (wi, X, Y).

– Repeat the above step, until Bi is in form of (wi,⊥, Z). If there is a delegation
loop, define Bi := (wi,⊥,⊥).

In case of delegation loop, we set the ballot to blank ballot. Of course, we can
enrich the statement by adding another variable to indicate whether a voter
wants to be delegated. When the “chain of delegation” breaks by Vi wants to
delegate his vote to Vj , while Vj does not want to be delegated. In this case,
Vi’s ballot will be re-set to a blank ballot. The most preferable statement for
liquid democracy in practice shall be determined by computational social choice
theory, which is outside the scope of this paper.

6

3 Constructions

Due to space limitation, we present the two generic constructions – (i) FHE-
based construction and (ii) MPC-based construction, in the full version. In the
former one, the voters use FHE to encrypt and upload their statements to the
BB. The tally evaluation circuit can be then publicly evaluated over the en-
crypted statements by any party. After that the trustees will jointly decrypt the
final ciphertext(s). In the latter one, any public key encryption scheme can be
adopted, so it is more efficient. Similarly, during the voting, the voters encrypt
their statements and post them on the BB. The trustees will then participate the
MPC evaluation to jointly decrypt the submitted statements and then compute
the tally algorithm in the shared format with privacy assurance.

3.1 A Practical Construction for Liquid Democracy

The construction is based on mix-net, and the privacy that it achieves is known as
pseudonymity. We emphasize that this level of privacy has been widely accepted
and is consistent with the existing paper-based voting systems.

As mentioned before, liquid democracy is an emerging type of voting system
that receives high attentions since the spread of its concept; however, there is no
provably secure solution in the form of either paper-voting or e-voting yet.4 We
now show that how to define a simple statement to enable liquid democracy.

In a generic statement voting, the ballot can be defined in the following form:
(ID, targets, statement), where ID is the voter’s ID, targets is a set of target voters’
IDs which will be referenced in the statement, and statement is the (conditional)
statement. To realize liquid democracy voting, we can define the following simple
statement: (i) if voter Vi wants to delegate his vote to Vj , then the ballot is
B := (Vi, {Vj}, delegate); (ii) if voter Vi wants to vote directly for election
option x, then the ballot is B := (Vi,⊥, vote x); and (iii) if the voter does not
want to be delegated, then he can set his own ID to ⊥. To obtain the basic
intuition, let’s first leave privacy aside and consider the following toy example.
Toy example. Take the Yes/No election as an example. Suppose there are 7 bal-
lots: B1 := (V1,V7, delegate), B2 := (V2,⊥, vote Yes), B3 := (V3,⊥, vote No),
B4 := (⊥,⊥, vote Yes), B5 := (V5,V4, delegate), B6 := (⊥,V3, delegate) and
B7 := (V7,V3, delegate). Here, the effective vote of B1 is defined by B7, which
is further defined by B3; note that B3 votes for No; that means, B1 and B7 vote
for No by following B3. Now let’s consider B6: B6 follows B3; however, B6 is

4 All the existing liquid democracy implementations do not consider pri-
vacy/anonymity. This drawback prevents them from being used in serious elections.
Here, we note that straightforward blockchain-based solutions cannot provide good
privacy in practice. Although some blockchains (e.g., Zerocash [5]) can be viewed
as a global mixer, they implicitly require anonymous channels. In practice, all the
implementations of anonymous channels suffer from time leakage, i.e., the user’s ID
is only hidden among the other users who are also using the system at the same
time. Subsequently, the adversary may easily identify the users during quiet hours.

7

not willing to be followed by anyone; as a result, B6 also votes for No. Finally,
let’s consider B5: B5 follows B4; however, B4 is not willing to be followed by
anyone; as a consequence, B5 is re-defined as blank ballot, ⊥. After interpreting
the delegation statements, the final votes are (No,Yes,No,Yes,⊥,No,No).
Intuition. At the beginning of each election, the voters Vi, i ∈ [n], are assigned
with a temporary random ID, denoted as IDi. Let I := {ID1, . . . , IDn} be the
set of all the voter’s random IDs. The voter’s statement takes the input as an
ID in I, and use it as a reference to point to the corresponding ballot that will
be involved in the statement execution, i.e., the potential vote delegation of
liquid democracy. To ensure privacy, the voters cannot post their temporary
IDs publicly on the bulletin board ḠBB; however, the voters should be allowed
to freely refer to any voter’s ID.

To address this challenge, we introduce the following technique. Before the
ballot casting phase, each voter picks a random ID and posts the (re-randomizable)
encryption of the ID on the ḠBB. If a voter wants to refer to another voter in
the statement, he/she simply copies and re-randomizes the ciphertext of the
corresponding voter’s ID. At the tally phase, all the ballots are passing through
re-encryption based mix-net, and then are decrypted to calculate the statements
and tally result. We remark that in practice the mix-net servers can be different
from talliers (a.k.a. decrypters). As such, they could have different threshold.

Building blocks. Our protocol utilises a bulletin board functionality, a cer-
tificate functionality, a threshold re-randomizable encryption scheme, and the
corresponding non-interactive zero-knowledge proofs. Their formal descriptions
and defintions can be found in the full version.
Bulletin board functionality. The public bulletin board (BB) is modeled as a
global functionality ḠBB. The functionality is parameterized with a predicate
Validate that ensures all the newly posted messages are consistent with the
existing BB content w.r.t. Validate. Any party can use (submit, sid,msg) and
(read, sid) to write/read the BB.
Certificate functionality. We adopt the multi-session version of certificate func-
tionality following the modeling of [7]. The multi-session certificate functionality
F̂Cert can provide direct binding between a signature for a message and the
identity of the corresponding signer. This corresponds to providing signatures
accompanied by “certificates” that bind the verification to the signers’ identities.
Threshold re-randomizable encryption. A threshold re-randomizable encryption
scheme TRE consists of a tuple of algorithms: (Setup,Keygen,Enc,Dec,CombinePK,
CombineSK,ShareDec,ShareCombine,ReRand) as follows.

– param ← Setup(1λ). The algorithm Setup takes input as the security pa-
rameter λ, and outputs public parameters param. All the other algorithms
implicitly take param as input.

– (pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public
parameter param, and outputs a public key pk, a secret key sk.

– c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the
message m, and outputs the ciphertext c.

8

– c′ ← ReRand(pk, c). The algorithm ReRand takes input as the public key pk

and a ciphertext c, and outputs a re-randomized ciphertext c′.
– m ← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a

ciphertext c, and outputs the decrypted plaintext m.
– pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a

set of public keys (pk1, . . . , pkk), and outputs a combined public key pk.
– sk← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a

set of secret key (sk1, . . . , skk), and outputs combined secret key sk.
– µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key

ski and a ciphertext c, and outputs a decryption share µi.
– m ← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input

as a ciphertext c and k decryption shares (µ1, . . . , µk), and outputs a plain-
text m.

– c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext
c ← TRE.Enc(pkj ,m) and a set of secret keys {ski}i∈[k]\{j}, and outputs a
ciphertext c′.

– {µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes
as input a ciphertext c, a plaintext m, and a set of decryption shares {µi}i∈I
and outputs a set of decryption shares {µj}j∈[k]\I . Here I ([k].

In App. A, we provide the corresponding TRE security definitions.

Non-interactive zero-knowledge proofs/arguments. Here we briefly introduce non-
interactive zero-knowledge (NIZK) schemes in the Random Oracle (RO) model.
Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we
call x the statement and w the witness. Let LR be the language consisting of
statements in R, i.e. LR = {x|∃w s.t. (x,w) ∈ R}. An NIZK scheme includes
following algorithms: a ppt algorithm Prov that takes as input (x,w) ∈ R and
outputs a proof π; a polynomial time algorithm Verify takes as input (x, π) and
outputs 1 if the proof is valid and 0 otherwise.

Definition 1 (NIZK Proof in the ROModel). NIZKro
R .{Prov,Verify, Sim,Ext}

is an NIZK Proof of Membership scheme for the relation R if the following holds:
- Completeness: For any (x,w) ∈ R,

Pr
[
ζ ← {0, 1}λ;π ← ProvRO(x,w; ζ) : VerifyRO(x, π) = 0

]
≤ negl(λ).

- Zero-knowledge: If for any ppt distinguisher A we have∣∣Pr[ARO,O1(1λ) = 1]− Pr[ARO,O2(1λ) = 1]
∣∣ ≤ negl(λ).

The oracles are defined as follows: O1 on query (x,w) ∈ R returns π, where
(π, aux)← SimRO(x); O2 on query (x,w) ∈ R returns π, where π ← ProvRO(x,w; ζ)
and ζ ← {0, 1}λ.
- Soundness: For all ppt adversary A,

Pr
[

(x, π)← ARO(1λ) : x 6∈ LR ∧ VerifyRO(x, π) = 1
]
≤ negl(λ).

9

Upon receiving (InitialTrustee, sid) from the environment Z, the trustee Tj , j ∈ [k],
operates as the follows:

Generate (pkj , skj)← TRE.Keygen(param;αj) where αj is the fresh randomness, and
then compute

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives

(Signature, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) from F̂Cert, where ssid = (Tj , ssid

′) for some
ssid′.
Send (Submit, sid, 〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉) to ḠBB.

Preparation

Fig. 3. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, F̂Cert}-hybrid world (Part I)

Definition 2 (NIZK PoK in the ROModel). NIZKro
R .{Prov,Verify, Sim,Ext}

is an NIZK Proof of Knowledge scheme for the relation R if the completeness,
zero-knowledge, and extraction properties hold, where the extraction is defined
as follows. For all ppt adversary A, the following is 1− negl(λ).

Pr
[

(x, π)← ARO(1λ);w ← ExtRO(x, π) : (x,w) ∈ R if VerifyRO(x, π) = 1
]

Protocol description. The protocol is designed in the {ḠBB, F̂Cert}-hybrid
world and it consists of three phases: preparation, ballot casting, and tally. For
the sake of notation simplicity, we omit the processes of filtering invalid messages
on ḠBB. In practice, ḠBB contains many messages with invalid signatures, and
all those messages should be ignored. We will use threshold re-randomizable
encryption (TRE) as a building block.
Preparation phase. As depicted in Fig. 3, in the preparation phase, each trustee
Tj , j ∈ [k] first picks a randomness generates αj and generates a partial public
key using (pkj , skj)← TRE.Keygen(param;αj). It then generates an NIZK proof

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}
to show that this process is executed correctly; namely, it shows knowledge of
(αj , skj) w.r.t. to the generated partial public key pkj . It then signs and posts
(pkj , π

(1)
j) to ḠBB.

Ballot casting phase. As depicted in Fig. 4, the ballot casting phase consists of
two rounds. In the first round, each voter Vi, i ∈ [n] first fetches the trustees’
partial public keys {pkj}kj=1 from ḠBB. She then checks the validity of their
attached NIZK proofs. If all the NIZK proofs are verified, she computes and
stores the election public key as pk ← TRE.CombinePK({pkj}kj=1). In addition,
the voter Vi picks a random temporary ID wi ← {0, 1}λ. She then uses the
election public key pk to encrypt wi as Wi ← TRE.Enc(pk, wi;βi) with fresh
randomness βi. She also computes the corresponding NIZK

π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi;βi)

}
10

Upon receiving (Cast, sid, (si,⊥)) from the environment Z, the voter Vi does:

◦ Round 1:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉

}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive

(Verified, sid, ssid, (pkj , π
(1)
j), b

(1)
j) from F̂Cert; If

∏k
j=1 b

(1)
j = 1, check

NIZKR4
.Verify(pkj , π

(1)
j) = 1 for j ∈ [k].

Compute and store pk← TRE.CombinePK({pkj}
k
j=1).

Randomly selects wi ← {0, 1}λ and compute Wi ← TRE.Enc(pk, wi; βi) with fresh
randomness βi together with

π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi; βi)

}
.

Send (Sign, sid, ssid, (Wi, π
(2)
i)) to F̂Cert, and receive

(Signature, sid, ssid, (Wi, π
(2)
i), σ

(2)
i) from F̂Cert, where ssid = (Vi, ssid

′) for some
ssid′.
Send (Submit, sid, 〈ssid, (Wi, π

(2)
i), σ

(2)
i 〉) to ḠBB.

◦ Round 2:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For ` ∈ [n], if
〈ssid, (W`, π

(2)
`), σ

(2)
` 〉 is contained in state, then send

(Verify, sid, ssid, (W`, π
(2)
`), σ

(2)
`) to F̂Cert, and receive

(Verified, sid, ssid, (W`, π
(2)
`), b

(2)
j) from F̂Cert; For ` ∈ [n], set

W` ← TRE.Enc(pk,⊥; 0) if W` is missing or b(2)` = 0 or
NIZKR5

.Verify((pk,W`), π
(2)
`) = 0.

(i) If si = (⊥, vi): compute
– Vi ← TRE.ReRand(pk,W0; γi) and
π
(3)
i ← NIZKR6

{
(pk, (W0, . . . ,Wn), Vi), (γi, 0) : Vi = TRE.ReRand(pk,W`; γi)

}
.

– Ui ← TRE.Enc(pk, vi; δi) and
π
(4)
i ← NIZKR5

{
(pk, Ui), (δi, vi) : Ui = TRE.Enc(pk, vi; δi)

}
.

(ii) If si = (Vj ,⊥): compute
– Vi ← TRE.ReRand(pk,Wj ; γi) and
π
(3)
i ← NIZKR6

{
(pk, (W0, . . . ,Wn), Vi), (γi, j) : Vi = TRE.ReRand(pk,W`; γi)

}
.

– Ui ← TRE.Enc(pk,⊥; δi) and
π
(4)
i ← NIZKR5

{
(pk, Ui), (δi,⊥) : Ui = TRE.Enc(pk,⊥; δi)

}
.

Send (Sign, sid, ssid, (Ui, Vi, π
(3)
i , π

(4)
i)) to F̂Cert and receive

(Signature, sid, ssid, (Ui, Vi, π
(3)
i , π

(4)
i), σ

(3)
i) from F̂Cert, where ssid = (Vi, ssid

′) for
some ssid′.
Send (Submit, sid, 〈ssid, (Ui, Vi, π(3)

i , π
(4)
i), σ

(3)
i 〉) to ḠBB.

Ballot Casting

Fig. 4. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, F̂Cert}-hybrid world (Part II)

to show she is the creator of this ciphertext. Voter Vi then signs and posts
(Wi, π

(2)
i) to ḠBB. In the second round, each voter Vi, i ∈ [n] first fetches all

the posted encrypted temporary IDs from ḠBB, and checks their attached NIZK
proofs. For any missing or invalid (encrypted) temporary IDs, the voters replace
them with TRE.Enc(pk,⊥; 0), which is the encryption of ⊥ with trivial random-
ness. Moreover, the voters also defines W0 ← TRE.Enc(pk,⊥; 0). The statement
for liquid democracy, si, can be parsed as either (i) (Vj ,⊥) or (ii) (⊥, vi).

11

Upon receiving (Tally, sid) from the environment Z, the trustee Tj , where j ∈ [k], oper-
ates as the follows:

◦ Round 1 to k:
If j = 1, send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For
` ∈ [n]:

– If 〈ssid, (W`, π
(2)
`), σ

(2)
` 〉 is contained in state, then send

(Verify, sid, ssid, (W`, π
(2)
`), σ

(2)
`) to F̂Cert, and receive

(Verified, sid, ssid, (W`, π
(2)
`), b

(2)
j) from F̂Cert;

– If 〈ssid, (U`, V`, π(3)
` , π

(4)
`), σ

(3)
` 〉, is contained in state, then send

(Verify, sid, ssid, (U`, V`, π
(3)
` , π

(4)
`), σ

(3)
`) to F̂Cert, receive

(Verified, sid, ssid, (U`, V`, π
(3)
` , π

(4)
`), b

(3)
j) from F̂Cert;

Set i = 0. For ` ∈ [n], define e(0)i := (W`, U`, V`) and i = i+ 1 if the following holds:
– W`, U`, V` exist in state and b(2)` · b(3)` = 1;

– NIZKR5
.Verify((pk,W`), π

(2)
`) = 1;

– NIZKR6
.Verify((pk, (W0, . . . ,Wn), V`), π

(3)
`) = 1;

– NIZKR5
.Verify((pk, U`), π

(4)
`) = 1;

(Set n′ := i after the above process.)
(If j > 1, Tj sends (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB; Tj
then fetches (e

(j−2)
i,t)n

′
i=1, e

(j−1)
i,t)n

′
i=1, π

(5)
j−1 from state and check

NIZKR7
.Verify((pk, (e

(j−1)
1,t , . . . , e

(j−1)

n′,t), (e
(j)
1,t, . . . , e

(j)

n′,t)), π
(5)
j) = 1, for t ∈ [3].)

Tj randomly picks a permutation Πj over [n’]; For i ∈ [n′], set
e
(j)
i,1 ← TRE.ReRand(pk, e

(j−1)

Πj(i),1
; r

(j)
i,1), e(j)i,2 ← TRE.ReRand(pk, e

(j−1)

Πj(i),2
; r

(j)
i,2), and

e
(j)
i,3 ← TRE.ReRand(pk, e

(j−1)

Πj(i),3
; r

(j)
i,3), where r(j)i,1 , r

(j)
i,2 , r

(j)
i,3 are fresh randomness.

Compute

π
(5)
j ← NIZKR7



(
pk, (e

(j−1)
1 , . . . , e

(j−1)

n′), (e
(j)
1 , . . . , e

(j)

n′)
)
,(

Πj , (r
(j)
i,1 , r

(j)
i,2 , r

(j)
i,3)i∈[n′]

)
:

∀i ∈ [n′] : e
(j)
i,1 = TRE.ReRand

(
pk, e

(j−1)

Πj(i),1
; r

(j)
i,1

)
∧
e
(j)
i,2 = TRE.ReRand

(
pk, e

(j−1)

Πj(i),2
; r

(j)
i,2

)
∧
e
(j)
i,3 = TRE.ReRand

(
pk, e

(j−1)

Πj(i),3
; r

(j)
i,3

)


Send (Sign, sid, ssid, (e(j)i,1 , e

(j)
i,2 , e

(j)
i,3)n

′
i=1, π

(5)
j)) to F̂Cert and receive

(Signature, sid, ssid, (e(j)i,1 , e
(j)
i,2 , e

(j)
i,3)n

′
i=1, π

(5)
j), σ

(4)
j) from F̂Cert, where

ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (e(j)i,1 , e
(j)
i,2 , e

(j)
i,3)n

′
i=1, π

(5)
j , σ

(4)
j 〉) to ḠBB.

Tally (Part I)

Fig. 5. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, F̂Cert}-hybrid world (Part III)

In Case (i) (Vj ,⊥), i.e. delegating to voter Vj , the voter produces Vi as a
re-randomized Wj and Ui as encryption of ⊥. She then gives a NIZK proof
showing that Vi is re-randomized from one of the ciphertexts in (W0, . . . ,Wn)
and another NIZK proof showing Ui is created by her. Denote the corresponding
proofs as π(3)

i and π(4)
i , respectively. Vi signs and posts (Ui, Vi, π

(3)
i , π

(4)
i) to ḠBB.

In Case (ii) (⊥, vi), i.e. voting directly vi, analogous to Case (ii), the voter
produces Vi as a re-randomized W0 and Ui as encryption of vi. Meanwhile,

12

◦ Round k + 1:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For j ∈ [k], if
〈ssid, (e(j)i,1 , e

(j)
i,2 , e

(j)
i,3)n

′
i=1, π

(5)
j , σ

(4)
j 〉 is contained in state, then send

(Verify, sid, ssid, (e(j)i,1 , e
(j)
i,2 , e

(j)
i,3)n

′
i=1, π

(5)
j), σ

(4)
`) to F̂Cert, and receive

(Verified, sid, ssid, (e(j)i,1 , e
(j)
i,2 , e

(j)
i,3)n

′
i=1, π

(5)
j), b

(4)
j) from F̂Cert; if b

(4)
j = 1, check

NIZKR7
.Verify((pk, (e

(j−1)
1,t , . . . , e

(j−1)

n′,t), (e
(j)
1,t, . . . , e

(j)

n′,t)), π
(5)
j) = 1, for t ∈ [3]. If any

of the above checks is invalid, halt.
For i ∈ [n′], t ∈ [3] compute m(j)

i,t ← TRE.ShareDec(pk, skj , e
(k)
i,t). and

π
(6)
j,i,t ← NIZKR8


(pkj , e

(k)
i,t ,m

(j)
i,t), (αj , skj) :

m
(j)
i,t ← TRE.ShareDec(sk, e

(k)
i,t)

∧ (pkj , skj)← TRE.Keygen(αj)


Send (Sign, sid, ssid, (m(j)

i,t , π
(6)
j,i,t)i∈[n′],t∈[3]) to F̂Cert and receives

(Signature, sid, ssid, (m(j)
i,t , π

(6)
j,i,t)i∈[n′],t∈[3], σ

(5)
j) from F̂Cert, where ssid = (Tj , ssid

′)

for some ssid′.
Send (Submit, sid, 〈ssid, (m(j)

i,t , π
(6)
j,i,t)i∈[n′],t∈[3], σ

(5)
j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z, the voter Vi, where i ∈ [n],
operates as the follows:

Send (Read, sid) to ḠBB, and and obtain (Read, sid, state) from ḠBB.
For j ∈ [k], if 〈ssid, (m(j)

i,t , π
(6)
j,i,t)i∈[n′],t∈[3], σ

(5)
j 〉 is contained in state, send

(Verify, sid, ssid, (m(j)
i,t , π

(6)
j,i,t)i∈[n′],t∈[3], σ

(5)
j) to F̂Cert, and receive

(Verified, sid, ssid, (m(j)
i,t , π

(6)
j,i,t)i∈[n′],t∈[3], b

(5)
j) from F̂Cert. If

∏k
j=1 b

(5)
j = 1, for all

j ∈ [k], i ∈ [n′], t ∈ [3], check NIZKR8
.Verify((e

(k)
i,t ,m

(j)
i,t , pki), π

(6)
i,j,t) = 1. If any of the

above checks is invalid, return (Error, sid) to the environment Z and halt.

For i ∈ [n′]: compute mi,t ← TRE.ShareCombine((k, k), e
(k)
i,t , {m

(j)
i,t }

k
j=1), t ∈ [3];

define Bi := (mi,1,mi,2,mi,3).
Calculate election result result ← TallyProcess({Bi}i∈[n′]), and return
(ReadResultReturn, sid, result) to Z.

Tally (Part II)

Fig. 6. Mix-net based liquid democracy scheme Πmix-Liquid in {ḠBB, F̂Cert}-hybrid world (Part IV)

she also gives a NIZK proof showing that Vi is re-randomized from one of the
ciphertexts in (W0, . . . ,Wn) and another NIZK proof showing Ui is created by
her. Denote the corresponding proofs as π(3)

i and π(4)
i , respectively. Vi signs and

posts (Ui, Vi, π
(3)
i , π

(4)
i) to ḠBB.

Tally phase. The tally phase is depicted in Fig. 5 and Fig. 6. The trustees first
fetches (Wi, Vi, Ui) (which is viewed as the submitted ballot for voter Vi) from
ḠBB and check their attached NIZK proofs. All the invalid ballots will be discard.
Let n′ be the number of valid ballots. All the trustees then jointly shuffle the
ballots via a re-encryption mix-net. More specifically, each trustee sequentially
permutes (Wi, Vi, Ui) as a bundle using shuffle re-encryption. To ensure correct-
ness, the trustee also produces a NIZK proof showing the correctness of the
shuffle re-encryption process. After that, upon receiving (Tally, sid) from the
environment, all the trustees Tj check the correctness of the entire mix-net and

13

then jointly decrypt the mixed ballots using TRE.ShareDec. More specifically,
each trustee will sign and post its decryption shares to ḠBB.

Each voter can then compute the tally result as follows. The voter first fetches
all the decryption shares and checks their validity using NIZKR8 .Verify. Upon
success, the voter uses TRE.ShareCombine to reconstruct the messages. She then
use TallyProcess as described in Fig. 2 to calculate the final tally.

Remark 1. The re-randmonizable encryption (TRE) scheme used in this protocol
can be replaced by a re-randomizable RCCA encryption scheme. Here RCCA is
the short name for replayable CCA defined by Canetti, Krawczyk, and Nielsen [9].
Several RCCA constructions can be found in literature [11, 12, 19, 25]. In our
construction, it is possible to distribute a publicly verifiable RCCA encryption
scheme, e.g. [12] and then use it as an enhanced version of TRE. Subsequently,
NIZKR6 can be removed. Since the running time of proving/verifying NIZKR6

is linear in the number of voters n, it is more efficient to use RCCA instead of
TRE for large n in practice.

Theorem 1. Protocol Πmix-Liquid described in Figure 3, Figure 4, Figure 5 and
Figure 6 UC-realizes FLiquid in the {ḠBB, F̂Cert}-hybrid world against static
corruption.

4 Further Discussions

Statement policy.We initiate the study of statement voting and liquid democ-
racy in this work. Our statement voting concept can be significantly extended to
support much richer ballot statements, which opens a door for designing a new
class of e-voting schemes. A natural question to ask is what type of statements
are allowed. For correctness, the (deterministic) TallyProcess function should be
a symmetric function in the sense that its output does not depend on the order of
the ballots to be counted. Moreover, the voting statement has a maximum run-
ning time restriction to prevent DoS, and it should not depend on partial tally
result. This is known as fairness. Namely, the statement execution cannot be
conditional on the partial tally result at the moment when the ballot is counted.
On the other hand, the statement can take input as external information oracles,
such as News, Stock market, etc. When statement voting is integrated with a
blockchain infrastructure, our scheme can be used to enable offline voting or
smart voting. In particular, the voters may submit their statement ballot any
time before the election on the blockchain; during the tally phase, the voter’s
ballots will be decrypted, and their statements will define their final votes based
on the latest information provided by News oracles on the blockchain.

This line of research is far from being completed. We also remark that, voting
policies can be heavily influenced by local legal and societal conditions. How to
define “right” voting policy itself is a very interesting question. We believe our
techniques here have the potential to help people to identify suitable voting
policies which can further eliminate the barriers to democracy.

14

Trusted setup. Typically, trusted setup assumptions5 are required for con-
structing UC-secure e-voting systems. Common Reference String (CRS) and
Random Oracle (RO) are two popular choices in practice. If an e-voting system
uses CRS, then we need to trust the party who generates the CRS, which, in
our opinion, is a stronger assumption than believing no adversary can break a
secure hash function, e.g., SHA3. Therefore, in this work, we realize our liquid
democracy voting system in the RO model. As a future direction, we will con-
struct more solutions to liquid democracy. For example, an alternative approach
is as follows: we first use MPC to generate a CRS; then we construct liquid
democracy voting system by using the CRS. As argued above, we need to trust
the parties who generate the CRS; e.g., at least one honest MPC player.

Privacy and coercion resilience. Both statement voting and liquid democ-
racy voting extend (deviate) from the conventional e-voting; therefore, the con-
ventional privacy definitions are no longer suitable for these new types of voting
schemes. For instance, if delegation loop is not allowed in the liquid democracy,
how much voter privacy can be possibly achieved? We will investigate the privacy
of statement voting and liquid democracy in depth in our future work.

Finally, we note that coercion resilience is critical in many scenarios. We will
investigate this strong security requirement in our future work, too. Recently,
Daian et al. [14] discussed the difficulty to achieve coercion resilience in the on-
chain voting. We remark that Daian et al. only excluded a special class of voting
protocols that “users can generate their own keys outside of a trusted environ-
ment”. A potential approach is to follow our preliminary result [3]; there, very
different technique has been explored for achieving coercion resilience: voters’
keys and correlated secret information are generated inside a trusted hardware
which cannot be obtained by the coercer.

Voter’s complexity. In our FHE-based and MPC-based solutions, the voter’s
complexity is constant in the number of ballots; the voting tally members have
linear (or superlinear) complexity with respect to the number of voters, which
is asymptotically the same as many existing voting schemes. In our mix-net
based protocol, the voter’s complexity is linear in the number of ballots; we
remark that, this is our implementation choice for small scale, statement vot-
ing. As already discussed in Remark 1 in previous section, we can replace the
TRE encryption with an RCCA encryption [11,12,19,25] to achieve better (i.e.,
constant) voter’s complexity in the mix-net based protocol.

Acknowledgement

We thank Jeremy Clark and the anonymous reviewers for their constructive com-
ments. The first author was partially supported by EPSRC grant EP/P034578/1.
The second author was partially supported by NSF award #1801470. This work
is also supported by Ergo platform, Fractal Platform, and Blockchain institute.

5 Most non-trivial functionalities (including the e-voting functionality) cannot be UC-
realized in the plain model [6, 8, 10].

15

References

1. Adhocracy. Adhocracy official website. Online; date last accessed: 2017-10-21.
2. B. Adida. Helios: Web-based open-audit voting. In USENIX Security, 2008.
3. J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas. Incoercible multi-party compu-

tation and universally composable receipt-free voting. In R. Gennaro and M. J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 763–780.
Springer, Heidelberg, Aug. 2015.

4. C. Baum, I. Damgård, and C. Orlandi. Publicly auditable secure multi-party
computation. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of
LNCS, pages 175–196. Springer, Heidelberg, Sept. 2014.

5. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May
2014.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct.
2001.

7. R. Canetti. Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239, 2003. http://eprint.iacr.org/
2003/239.

8. R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg,
Aug. 2001.

9. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In
D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer,
Heidelberg, Aug. 2003.

10. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. In E. Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 68–86. Springer, Heidelberg,
May 2003.

11. P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo. Beleniosrf: A non-
interactive receipt-free electronic voting scheme. In CCS ’16, pages 1614–1625,
New York, NY, USA, 2016. ACM.

12. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof
systems and applications. In D. Pointcheval and T. Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 281–300. Springer, Heidelberg, Apr.
2012.

13. D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical voter-verifiable election
scheme. In S. D. C. di Vimercati, P. F. Syverson, and D. Gollmann, editors,
ESORICS 2005, volume 3679 of LNCS, pages 118–139. Springer, Heidelberg, Sept.
2005.

14. P. Daian, T. Kell, I. Miers, and A. Juels. On-Chain Vote Buying and
the Rise of Dark DAOs, 2018. http://hackingdistributed.com/2018/07/02/
on-chain-vote-buying/.

15. J. Degrave. Getopinionated. GitHub repository; date last accessed: 2017-10-21.
16. B. Ford. Delegative democracy. 2002. http://www.brynosaurus.com/deleg/

deleg.pdf.
17. D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. V. Mouchet,

B. Ford, and J.-P. Hubaux. Unlynx: A decentralized system for privacy-conscious
data sharing. Proceedings on Privacy Enhancing Technologies, 4:152–170, 2017.

16

18. J. Groth. Evaluating security of voting schemes in the universal composability
framework. In M. Jakobsson, M. Yung, and J. Zhou, editors, ACNS 04, volume
3089 of LNCS, pages 46–60. Springer, Heidelberg, June 2004.

19. J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 152–
170. Springer, Heidelberg, Feb. 2004.

20. S. Hardt and L. Lopes. Google votes: A liquid democracy experiment on a corporate
social network. Technical Disclosure Commons, 2015. http://www.tdcommons.
org/dpubs_series/79.

21. A. Kiayias, T. Zacharias, and B. Zhang. DEMOS-2: Scalable E2E verifiable elec-
tions without random oracles. In I. Ray, N. Li, and C. Kruegel:, editors, ACM
CCS 15, pages 352–363. ACM Press, Oct. 2015.

22. A. Kiayias, T. Zacharias, and B. Zhang. End-to-end verifiable elections in the
standard model. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part
II, volume 9057 of LNCS, pages 468–498. Springer, Heidelberg, Apr. 2015.

23. LiquidFeedback. LiquidFeedback official website. Online; date last accessed: 2017-
10-21.

24. T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting
privacy. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 373–
392. Springer, Heidelberg, Aug. 2006.

25. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 517–534.
Springer, Heidelberg, Aug. 2007.

26. Democracy Earth. The social smart contract. an open source white paper., Septem-
ber 1, 2017. Online; date last accessed: 2017-10-21.

27. D. Unruh and J. Müller-Quade. Universally composable incoercibility. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 411–428. Springer, Heidelberg,
Aug. 2010.

28. E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford. Anonrep: Towards
tracking-resistant anonymous reputation. In NSDI 16, pages 583–596, 2016.

A Security Definition for TRE

Definition 3. We say TRE = {Setup,Keygen,Enc,Dec,CombinePK,CombineSK,
ShareDec,ShareCombine,ReRand} is a secure threshold re-randomizable public
key encryption if the following properties hold:

Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs,
pk := TRE.CombinePK({pki}i∈[k]) and sk := TRE.CombineSK({ski}i∈[k]),
then (pk, sk) is also a valid key pair. For all ciphertext c ∈ Cpk, where Cpk is
the ciphertext-space defined by pk, we have

TRE.Dec(sk, c) = TRE.ShareCombine(c,TRE.ShareDec(sk1, c), . . . ,TRE.ShareDec(skk, c))

Ciphertext transformative indistinguishability:
There exists a ppt algorithm Trans such that if {(pki, ski)}i∈[k] are all valid
key pairs, pk := TRE.CombinePK({pki}i∈[k]) and sk := TRE.CombineSK({ski}i∈[k]),
then for all message m, for any j ∈ [k], the following holds.(

param,TRE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TRE.Enc(pk,m)

)
17

IND-CPA security: We say that a TRE scheme achieves indistinguishability
under plaintext attacks (IND-CPA) if for any ppt adversary A the following
advantage AdvCPA is negligible.

ExperimentCPA(1λ)

1. Run param← TRE.Setup(1λ).
2. Run (pk, sk)← TRE.Keygen(param);
4. A(pk) outputs m0,m1 of equal length;
5. Pick b←

{
0, 1
}
; Run c← TRE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We define the advantage of A as

AdvCPAA(1λ) =

∣∣∣∣Pr[ExperimentCPA(1λ) = 1]− 1

2

∣∣∣∣ .
Unlinkability: We say a TRE scheme is unlinkable if for any ppt adversary
A the following advantage AdvUnlink is negligible.

ExperimentUnlink(1λ)

1. A outputs a set I ⊂
{

1, . . . , k
}
of up to k − 1 corrupted indices.

2. For i = [n], run (pki, ski)← TRE.Keygen(1λ;ωi);
3. A(

{
pkj
}
j∈[k]\I) outputs c0, c1;

4. b←
{

0, 1
}
; c′ ← TRE.ReRand(pk, cb;ω);

5. A(c′) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We define the advantage of A as

AdvUnlinkA(1λ) =

∣∣∣∣Pr[ExperimentUnlink(1λ) = 1]− 1

2

∣∣∣∣ .
Share-simulation indistinguishability: We say TRE scheme achieves share-

simulation indistinguishability if there exists a ppt simulator SimShareDec
such that for all valid key pairs {(pki, ski)}i∈[k], all subsets I ([k], all mes-
sage m, the following two distributions are computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param← TRE.Setup(1λ), c← TRE.Enc(pk,m) and µj ← TRE.ShareDec(skj , c)
for j ∈ [k] \ I.

18

