削除された内容 追加された内容
文を明示的にしたのみ。
タグ: 差し戻し済み
m 外部リンクの修正 (www.titech.ac.jp) (Botによる編集)
 
(27人の利用者による、間の46版が非表示)
1行目:
{{出典の明記|date=2019-12}}
{{Chembox
| ImageFile1 = Carbon-dioxide-2D-dimensions.svg
| ImageFile2 = Carbon-dioxide-3D-vdW.png
| ImageFile3 = Dry Ice Pellets Subliming.jpg
| ImageSize3 = 250px
| ImageName3 = Sample of solid carbon dioxide or "dry ice", pellets
| IUPACName = 二酸化炭素<br />Carbon dioxide
| SystematicName =
| OtherNames = 炭酸ガス<br />[[ドライアイス]]([[固体]])
| Section1 = {{Chembox Identifiers
| Abbreviations =
| CASNo = 124-38-9
| EINECS = 204-696-9
| EINECSCASNO =
| PubChem =
| SMILES = C(=O)=O
| InChI = 1/CO2/c2-1-3
| RTECS = FF6400000
| MeSHName =
| ChEBI =
| KEGG = D00004
| ATCCode_prefix =
| ATCCode_suffix =
| ATC_Supplemental =
}}
| Section2 = {{Chembox Properties
|C=1|O=2
| Formula = CO<sub>2</sub>
|Appearance = 無色気体
| MolarMass = 44.01 g/mol
|Density = 1.562 g/cm{{sup|3}}(固体、1 atm, −78.5 {{℃}})<br />0.770 g/cm{{sup|3}}(液体, 56 atm, 20 {{℃}})<br />0.001977 g/cm{{sup|3}}(気体, 1 atm, 0 {{℃}})
| Appearance = 無色気体
|MeltingPt = −56.6 {{℃}}, 216.6 K,-69.88{{°F}}
| Density = 1.562 g/cm<sup>3</sup> (固体, 1 atm, −78.5 {{℃}})<br />0.770 g/cm<sup>3</sup> (液体, 56 atm, 20 {{℃}})<br />0.00184 g/cm<sup>3</sup> (気体, 1 atm, 0 {{℃}})
|Melting_notes = 5.2 atm<ref name=Merck>Merck Index 12th ed., 1857.</ref>, [[三重点]]
| MeltingPt = −56.6 {{℃}}, 216.6 K,-69.88{{°F}}
|BoilingPt = −78.5 {{℃}}, 194.7 K,-109.3{{°F}}
| Melting_notes = 5.2 atm<ref name=Merck>Merck Index 12th ed., 1857.</ref>, [[三重点]]
|Boiling_notes = 760 mmHg<ref name=Merck>Merck Index 12th ed., 1857.</ref>, [[昇華 (化学)|昇華点]]
| BoilingPt = −78.5 {{℃}}, 194.7 K,-109.3{{°F}}
|Solubility = 0.145 g/100cm{{sup|3}} (25 {{℃}}, 100 kPa)
| Boiling_notes = 760 mmHg<ref name=Merck>Merck Index 12th ed., 1857.</ref>, [[昇華 (化学)|昇華点]]
|SolubleOther =
| Solubility = 0.145 g/100cm<sup>3</sup> (25 {{℃}}, 100 kPa)
|Solvent =
| SolubleOther =
| SolventLogP =
|VaporPressure =
| LogP =
|HenryConstant =
| VaporPressure =
|AtmosphericOHRateConstant =
| HenryConstant =
|pKa = 6.35
| AtmosphericOHRateConstant =
| pKapKb = 6.35
| pKb =
}}
| Section3 = {{Chembox Structure
| CrystalStruct = [[立方晶系]](ドライアイス)
| Coordination =
| MolShape = 直線型
| Dipole = 0 D
}}
| Section4 = {{Chembox Thermochemistry
| DeltaHf = −393.509 kJ mol<sup>−1</sup>
| DeltaHc =
| Entropy = 213.74 J mol<sup>−1</sup>K<sup>−1</sup>
| HeatCapacity = 37.11 J mol<sup>−1</sup>K<sup>−1</sup>
}}
| Section5 = {{Chembox Pharmacology
| AdminRoutes =
| Bioavail =
| Metabolism =
| HalfLife =
| ProteinBound =
| Excretion =
| Legal_status =
| Legal_US =
| Legal_UK =
| Legal_AU =
| Legal_CA =
| PregCat =
| PregCat_AU =
| PregCat_US =
}}
| Section6 = {{Chembox Explosive
| ShockSens =
| FrictionSens =
| ExplosiveV =
| REFactor =
}}
| Section7 = {{Chembox Hazards
| ExternalMSDS = {{ICSC-small|0021}}
| EUClass =
| EUIndex =
| MainHazards =
| NFPA-H =
| NFPA-F =
| NFPA-R =
| NFPA-O =
| RPhrases = {{R-phrases| }}
| SPhrases = {{S-phrases| }}
| RSPhrases =
| FlashPt = 不燃性
| Autoignition =
| ExploLimits =
| LD50 =
| PEL =
}}
| Section8 = {{Chembox Related
| OtherAnions = [[二硫化炭素]]
| OtherCations = [[二酸化ケイ素]]<br />[[二酸化ゲルマニウム]]<br />[[二酸化スズ]]<br />[[二酸化鉛]]
| OtherFunctn = [[一酸化炭素]]<br />[[炭酸]]
| Function = 化合物
| OtherCpds =
}}
}}
|Section3 = {{Chembox Structure
'''二酸化炭素'''(にさんかたんそ、{{lang-en-short|carbon dioxide}})は、[[炭素]]の[[酸化物]]の一つで、[[分子式|化学式]]が <chem>CO2</chem> と表される[[無機化合物]]である。化学式から「シーオーツー」と呼ばれることもある。[[温室効果ガス]]であり、[[地球温暖化]]対策の文脈では、本来は炭素そのものを指す「カーボン」と略されることもある(「カーボンフリー<ref>[http://www.enecho.meti.go.jp/about/special/johoteikyo/suisokihonsenryaku.html カーボンフリーな水素社会の構築を目指す「水素基本戦略」][[経済産業省]][[資源エネルギー庁]](2018年2月13日)2019年1月27日閲覧</ref>」「[[カーボンニュートラル]]」など)。
|CrystalStruct = [[立方晶系]](ドライアイス)
|Coordination =
|MolShape = 直線型
|Dipole = 0 D
}}
|Section4 = {{Chembox Thermochemistry
|DeltaHf = −393.509 kJ mol{{sup|−1}}
|DeltaHc =
|Entropy = 213.74 J mol{{sup|−1}}K{{sup|−1}}
|HeatCapacity = 37.11 J mol{{sup|−1}}K{{sup|−1}}
}}
|Section5 = {{Chembox Pharmacology
|AdminRoutes =
|Bioavail =
|Metabolism =
|HalfLife =
|ProteinBound =
|Excretion =
|Legal_status =
|Legal_US =
|Legal_UK =
|Legal_AU =
|Legal_CA =
|PregCat =
|PregCat_AU =
|PregCat_US =
}}
|Section6 = {{Chembox Explosive
|ShockSens =
|FrictionSens =
|ExplosiveV =
|REFactor =
}}
|Section7 = {{Chembox Hazards
|ExternalMSDS = {{ICSC-small|0021}}
|EUClass =
|EUIndex =
|MainHazards =
|NFPA-H =
|NFPA-F =
|NFPA-R =
|NFPA-O =
|RPhrases = {{R-phrases| }}
|SPhrases = {{S-phrases| }}
|RSPhrases =
|FlashPt = 不燃性
|Autoignition =
|ExploLimits =
|LD50 =
|PEL =
}}
|Section8 = {{Chembox Related
|OtherAnions = [[二硫化炭素]]
|OtherCations = [[二酸化ケイ素]]<br />[[二酸化ゲルマニウム]]<br />[[二酸化スズ]]<br />[[二酸化鉛]]
|OtherFunctn = [[一酸化炭素]]<br />[[炭酸]]
|Function = 化合物
|OtherCpds =
}}
}}
'''二酸化炭素'''(にさんかたんそ、{{lang-en-short|carbon dioxide}})は、[[炭素]]の[[酸化物]]の一つで、[[分子式|化学式]]が <chem>CO2</chem> と表される[[無機化合物]]である。化学式から「シーオーツー」とも呼ばれる。[[地球温暖化]]対策の文脈などで、「カーボンフリー<ref>[http://www.enecho.meti.go.jp/about/special/johoteikyo/suisokihonsenryaku.html カーボンフリーな水素社会の構築を目指す「水素基本戦略」][[経済産業省]][[資源エネルギー庁]](2018年2月13日)2019年1月27日閲覧</ref>」「[[カーボンニュートラル]]」など「[[炭素|カーボン]]」が使われることがあるが、これは二酸化炭素由来の[[炭素]]を意味する<ref>{{Cite web|和書|url=https://www.eic.or.jp/ecoterm/?act=view&serial=4734 |title=環境用語 |publisher=環境イノベーション情報機構 |accessdate=2022-03-23}}</ref>。
 
二酸化炭素は[[温室効果]]を持ち、地球の気温を保つのに必要な[[温室効果ガス]]の一つである。しかし、濃度の上昇は[[地球温暖化]]の原因となる<ref>{{Cite journal|和書 |author=玉置元則 |author2=正賀 充 |author3=平木隆年 |author4= 守富寛 |year=1994 |title=地球温暖化ガス: 亜酸化窒素の人為的排出 (1) |journal=環境技術 |volume=2 |issue=9 |pages=47-53 |publisher=環境技術学会 |doi=10.5956/jriet.23.575 |ref=harv}}</ref><ref>{{Cite web|和書|url=https://www.data.jma.go.jp/cpdinfo/chishiki_ondanka/p04.html#:~:text=二酸化炭素は地球温暖,年々増加しています。|title=温室効果ガスの種類 |publisher=気象庁 |accessdate=2022-03-19}}</ref>。
 
[[地球大気中の二酸化炭素]]をはじめ[[地球]]上で最も代表的な炭素の酸化物であり、炭素単体や[[有機化合物]]の[[燃焼]]によって容易に生じる。[[気体]]は'''炭酸ガス'''、[[固体]]は'''[[ドライアイス]]'''、[[液体]]は液体二酸化炭素、[[水溶液]]は'''[[炭酸]]'''や'''[[炭酸水]]'''と呼ばれる。また、[[金星の大気|金星]]、[[火星の大気|火星]]は大気の主成分が二酸化炭素であることが知られている。
 
多方面の産業で幅広く使われている([[#用途|後述]])。[[日本]]では[[高圧ガス保安法]]容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。<!--ここから二酸化炭素のボンベが'''ミドボン'''と呼ばれることもある。{{要出典|date=2011年4月|}}無出典でおもてに出さないこと。-->
[[温室効果ガス]]の排出量を示すための換算指標でもあり、[[メタン]]や[[亜酸化窒素]](一酸化二窒素)、[[フロン]]ガスなどが変換される。日本では2014年度で13.6億[[トン]]が総排出量として算出された<ref>{{PDFlink|[httphttps://www.env.go.jp/earth/ondanka/ghg/2014_kakuho_gaiyou.pdf 2014 年度(平成26年度)の温室効果ガス排出量(確報値)<概要>][[環境省]]}}</ref>。
 
== 性質 ==
[[ファイル画像:Carbon dioxide pressure-temperature phase diagram international.svg|left|275px|thumb|left|二酸化炭素の[[相図|状態図]] 1:[[固体]]、2:[[液体]]、3:[[気体]]、4:[[超臨界状態]]、A:三重点、B:臨界点]]
[[常温]]常圧では無色無臭の[[気体]]。常圧では[[液体]]にならず、-79−79 {{℃}} で[[昇華 (化学)|昇華]]して[[固体]](ドライアイス)となる。水に比較的よく溶け、水溶液(炭酸)は弱酸性を示す。このため[[アルカリ金属]]および[[アルカリ土類金属]]の[[水酸化物]]の水溶液および固体は二酸化炭素を吸収して、[[炭酸塩]]または[[炭酸水素塩]]を生ずる。高圧で二酸化炭素の[[飽和]]水溶液を冷却すると[[水和物|八水和物]] <chem>CO2 \cdot .8H2O </chem> を生ずる。
 
[[第1族元素|アルカリ金属]]など反応性の強い物質を除いて[[助燃性]]はない。[[炭素]]を含む物質([[石油]]、[[石炭]]、[[木材]]などの[[燃焼]]、動植物の[[呼吸]]や[[微生物]]による[[有機物]]の分解、[[火山]]活動などによって発生する。反対に安定な物質で、[[マグネシウム]]など還元性の強い金属を除けば二酸化炭素中で燃焼は起こらない。また[[植物]]の[[光合成]]によって二酸化炭素は様々な[[有機化合物]]へと[[炭素固定|固定]]される。
 
また、[[三重点]] (-56−56.6 {{℃}}、0.52 [[メガパスカル|MPa]]) 以上の温度と圧力条件下では、二酸化炭素は液化する。さらに温度と圧力が[[臨界点]] (31.1 {{℃}}、7.4 MPa) を超えると[[超臨界状態]]となり、気体と液体の特徴を兼ね備えるようになる。これらの状態の二酸化炭素は'''圧縮二酸化炭素'''または'''高密度二酸化炭素'''と呼ばれている。
 
=== 毒性 ===
<!--(暫定的メモ)節ごと大きく消すならば、せめて理由説明を要約やノート等でお願いします。-->
二酸化炭素は[[空気]]など地球の環境中にごくありふれた物質で、その有毒性が問題となることはまずない。しかし、空気中の二酸化炭素濃度が高くなると、[[ヒト]](人間)は危険な状態に置かれる。濃度が 3 - 4 % を超えると[[頭痛]]・[[めまい]]・[[嘔吐|吐き気]]などを催し、7 % を超えると[[炭酸ガスナルコーシス]]のため数分で意識を失う。この状態が継続すると[[麻酔]]作用による[[呼吸中枢]]の抑制のため呼吸が停止し、[[死]]に至る(二酸化炭素中毒)<ref>{{PDFlink|[http://www.nonrisk.co.jp/co2jintai-eikyou.pdf 二酸化炭素(CO2)の人体における影響] 沖縄CO2削減推進協議会}}</ref>。比較的苦痛を感じないまま死に到るとされ、[[脊椎動物]]の[[屠殺]]や[[殺処分]]の法規制においては、二酸化炭素による[[安楽死|安楽殺]]のみが許されることも多い。また、[[湖水爆発]]や、締め切った部屋で大量のドライアイスを昇華させる行為、また、二酸化炭素を使用した消火設備の誤作動や誤操作により、人間が二酸化炭素中毒で死傷する事故もある(前者湖水爆発については「[[ニオス湖#1986年の災害]]」が有名)<ref>{{Cite journal|author=佐藤暢,飯野守男|year=2016|title=厚労省も陥ったか,ヒューマンエラーと二酸化炭素中毒事故にまつわる謎|url=https://jsta.net/pic/magic.pdf|journal=麻酔・集中治療とテクノロジー|volume=2016|pages=87-96}}</ref>
 
[[ストレス (生体)|ストレス]]や疲労で、呼吸(換気)をし過ぎたり、呼吸(換気)が速くなり過ぎたりして、人体の血中の二酸化炭素濃度が異常に低くなることがある。これを[[過呼吸]]、あるいは[[過換気症候群]](過呼吸症候群)と呼ぶ。過換気症候群の病態自体が命に関わる事は無いが、背景に身体疾患が隠れていることがあるので注意を要する。
 
=== 反応性 ===
138 ⟶ 139行目:
: <chem>CO2 + H2 <=> CO + H2O</chem>
 
なお、[[学校教育]]の[[理科]][[実験#教育の場で|実験]]などで、二酸化炭素を[[石灰水]]に通すと白濁する性質広く知られている。これは難溶性の[[炭酸カルシウム]]を生成するために白濁するものである。
: <chem>Ca(OH)2 + CO2 <=> CaCO3 + H2O</chem>
 
さらに、白濁した石灰水に二酸化炭素を通し続けると反応が進み、液体は透明に変化する。これは水溶性の[[炭酸水素カルシウム]]を生成するためであるし濁りが消えていく
: <chem>CaCO3 + CO2 + H2O <=> Ca(HCO3)2</chem>
 
== 生産 ==
日本で工業原料としての利用される炭酸ガスは、[[石油化学]][[プラント]]などから排出されたものを回収し、洗浄・精製を繰り返すことで生産される<ref>[httphttps://www.sdkrgp.coresonac.jp/gasprocom/dryice/process.html 昭和電工株式会社レゾナック・ガスプロダクツによる解説]または[http://www.n-eco.co.jp/company/environment/index.html 日本液炭による解説]</ref>。[[清涼飲料水]]で使用する炭酸ガスも石油由来のものを回収して使用している。<!--統計項目と合致させるために炭酸ガスの語を使用する-->工業製品としての炭酸ガスの 2018 年度日本国内生産量は 991,138 [[トン|t]]<ref group="注釈">肥料、清涼飲料製造用の自家使用分は除く。</ref>、工業消費量<ref group="注釈">当該工場で他の製品の原材料用、加工用、燃料用として消費されたものをいう。従って他の工場での生産に消費した量は含まない。</ref>は 149,035 t である<ref>[httphttps://www.meti.go.jp/statistics/tyo/seidou/result/ichiran/08_seidou.html#menu5 『経済産業省生産動態統計年報 化学工業統計編』]</ref>。実験室レベルで的製法は[[石灰石]]に薄い[[塩酸]]を加えるか、[[炭酸水素ナトリウム]]加熱すること発生させる。[[清涼飲料水]]で使用する炭酸ガスも石油由来のものを回収して使用している。
 
[[イギリス]]では、[[アンモニア]]を製造する際の副産物を利用している<ref>{{Cite web |date= 2018.-06.-28 |url= https://www.cnn.co.jp/business/35121589.html |title= W杯観戦のビールが飲めない?炭酸ガス不足、英で業界を直撃 |publisher= [[CNN (アメリカの放送局)|CNN]] |accessdate=2018-06-30}}</ref>。
 
== 用途 ==
155 ⟶ 156行目:
* [[造船]]・[[橋]]・[[高層建築物]]など、鋼構造物の[[溶接]]作業には[[炭酸ガスアーク溶接]]が一般的である。
* 温室効果ガスである二酸化炭素の削減が急務となっていることから、触媒を使うなどして二酸化炭素を直接または一酸化炭素に変換するなどして、様々な化学品の原料とする技術が研究されている<ref>[http://www.nedo.go.jp/activities/EV_00296.html 二酸化炭素原料化基幹化学品製造プロセス技術開発] 国立研究開発法人[[新エネルギー・産業技術総合開発機構]](2018年7月6日閲覧)</ref>。
* [[フロン類|フロン]]系[[冷媒]]の代替として、CO<{{sub>|2</sub>}} [[冷媒]][[コンプレッサ]]が主に[[自動販売機]]などで実用化されつつあるが、高圧にする必要があるため費用面での課題が残る。またり、エネルギー効率も悪い。
* 生産工場における冷却用[[ドライアイス]]の新しい利用方法として、[[ドライアイス洗浄]]にも使用されている。これは[[ペレット]]状のドライアイスを[[タービン]]などの構造物に噴射することによって付着した対象物を取り除くもので、ショット[[ブラスト]]などと呼ばれる<ref>{{PDFlink|[http://www.n-eco.co.jp/blast/product/pdf/blast-general-catalog.pdf ドライアイスブラスト] 日本液炭}}</ref>。
 
161 ⟶ 162行目:
[[農業]]においては、以下の用途がある。
* [[イチゴ]]の[[促成栽培]]、観賞用水槽の[[水草]]など、植物の成長を加速させる二酸化炭素施肥に使用されている。
* 鮮農産物のCA貯蔵(controlled (controlled atmosphere storage)storage) にも二酸化炭素が使用される。<!--二酸化炭素の役割は生鮮農産物から発生する[[エチレン]]の後熟作用を抑制するためで、エチレンの[[酵素]]反応に於ける[[酵素阻害剤]]の中の[[拮抗阻害(競争阻害,competitive inhibition)]]剤として作用すると推定される(村田敏、農産物貯蔵の基本原理、冷凍、vol.72,no.832,1997)。-->
 
;その他
* [[炭酸飲料]]や[[入浴剤]]、消火剤などの発泡用ガスとして用いられている。
* 冷却用ドライアイスとして広く用いられている。またドライアイスとエタノールとの混合物は寒剤として利用できる。
* [[自転車]]の緊急補充用エアーとしても使われるようになった。
* [[超臨界状態]]の二酸化炭素は[[カフェイン]]の[[抽出]][[溶媒]]として、[[コーヒー]]の[[デカフェ]]などに利用されている。
* [[げっ歯類]]や小動物などの動物を[[殺処分]]する方法にも使われる。通常は[[麻酔]]状態になった後に意識を喪失し、そのまま死に至るため[[安楽死]]の手段として使われる。十分な時間、二酸化炭素に曝露した上で、心肺停止を確認する必要がある。新生子は[[酸素]]に対する[[ヘモグロビン]]の親和性が高いため、15分以上かかることもある<ref>[http://www.med.akita-u.ac.jp/~doubutu/ouu/euthanasia2.html 安楽死法] 動物実験手技</ref>。
* ドライアイスは[[昇華 (化学)|昇華]]時に白煙を生じることから、舞台やパレードでの演出などでも用いられる。これを放送業界などでは俗に「炭ガス」と呼ぶ。この白煙は二酸化炭素そのものではなく、雰囲気の温度低下に伴いより空気中の水分が[[氷結]]して見えものからである。
* CO2からブドウ糖・油脂へ<ref>{{Cite journal|last=Zhang|first=Shanshan|last2=Sun|first2=Jiahui|last3=Feng|first3=Dandan|last4=Sun|first4=Huili|last5=Cui|first5=Jinyu|last6=Zeng|first6=Xuexia|last7=Wu|first7=Yannan|last8=Luan|first8=Guodong|last9=Lu|first9=Xuefeng|date=2023-06-09|title=Unlocking the potentials of cyanobacterial photosynthesis for directly converting carbon dioxide into glucose|url=https://www.nature.com/articles/s41467-023-39222-w|journal=Nature Communications|volume=14|issue=1|pages=3425|language=en|doi=10.1038/s41467-023-39222-w|issn=2041-1723}}</ref><ref>{{Cite web|和書|title=中国の科学者、CO2からブドウ糖・油脂への人工合成を実現 {{!}} Science Portal China |url=https://spc.jst.go.jp/news/220404/topic_5_04.html |website=spc.jst.go.jp |access-date=2023-07-28}}</ref>、[[澱粉]]へ<ref>{{Cite web|和書|title=二酸化炭素からでんぷんを人工合成するプロセスを開発――農業によるでんぷん生産を置換する - fabcross for エンジニア |url=https://engineer.fabcross.jp/archeive/211110_starch-synthesis-from-co2.html |website=fabcross for エンジニア - エンジニアのためのキャリア応援マガジン |date=2021-11-10 |access-date=2023-07-28}}</ref>、プラスチックへ<ref>{{Cite web|和書|title=常圧二酸化炭素からプラスチックの直接合成に世界で初めて成功 |url=https://www.osaka-cu.ac.jp/ja/news/2021/210727 |website=Osaka City University |access-date=2023-07-28 |language=ja}}</ref>合成する実験が報道された。
 
== 二酸化炭素による温室効果 ==
[[ファイル画像:CO2-Mauna-Loa.png|300px|right|thumb|[[ハワイ島]][[マウナ・ロア山|マウナロア火山]]で観測された二酸化炭素の大気中濃度(Y軸が 310 [[ppm]] から始まっていることに注意。また周期的に濃度が上下しているのは、冬と夏とで植物が吸収する二酸化炭素の量が異なるためである。植物が枯れる冬は、夏に比べ植物の二酸化炭素の吸収量は低下する)。]]
二酸化炭素は[[赤外線]]の 2.5 - 3 [[マイクロメートル|μm]]、4 - 5 μm の波長帯域に強い吸収帯を持つため、地上からの熱が宇宙へと拡散することを防ぐ、いわゆる[[温室効果ガス]]として働く。
 
二酸化炭素の[[温室効果]]は、同じ体積あたりでは[[メタン]]や[[フロン類|フロン]]に比べ小さいものの、排出量が莫大であることから、[[地球温暖化]]の最大の原因とされる。
{{seealsoSee also|地球温暖化の原因}}
[[世界気象機関]] (WMO) は2015年に世界の年平均二酸化炭素濃度が400[[ppm]]に到達したことを報じたが<ref>{{Cite web|和書|url=https://www.data.jma.go.jp/gmd/env/info/wdcgg/GHG_Bulletin-12_j.pdf |title=WMO温室効果ガス年報の和訳 12号 |accessdate=2019-04-03 |publisher=気象庁}}</ref>、[[氷床コア]]などの分析から[[産業革命]]以前は、およそ280 ppm (0.028 %) の濃度であったと推定されている。濃度増加の要因は、主に[[化石燃料]]の大量消費と考えられている。
 
{{See also|IPCC第4次評価報告書}}
[[世界気象機関]](WMO)は2015年に世界の年平均二酸化炭素濃度が400[[ppm]]に到達したことを報じたが<ref>{{Cite web|url=https://www.data.jma.go.jp/gmd/env/info/wdcgg/GHG_Bulletin-12_j.pdf|title=WMO温室効果ガス年報の和訳 12号|accessdate=2019年4月3日|publisher=気象庁}}</ref>、[[氷床コア]]などの分析から[[産業革命]]以前は、およそ280 ppm(0.028 %)の濃度であったと推定されている。濃度増加の要因は、主に[[化石燃料]]の大量消費と考えられている。{{seealso|IPCC第4次評価報告書}}
また、二酸化炭素そのものの[[海水]]中への溶存量が増えることによって海水が酸性化し、[[生態系]]に悪影響を与える[[海洋酸性化]]も懸念されている。
 
{{See also|地球温暖化の影響}}
また、二酸化炭素そのものの[[海水]]中への溶存量が増えることによって海水が酸性化し、[[生態系]]に悪影響を与える[[海洋酸性化]]も懸念されている。{{seealso|地球温暖化の影響}}
 
[[1997年]]には[[京都議定書]]によって二酸化炭素を含めた各国の温室効果ガス排出量の削減目標が示され、各国でその削減を努力することを締結した。
 
その手法は多岐に亘る。[[エネルギー]]や農業・[[畜産業]]など人為起源の二酸化炭素の排出量を抑制する努力、および[[森林]]の維持・育成や[[二酸化炭素貯留|二酸化炭素回収貯留]](CCS) (CCS) 技術の開発など、二酸化炭素を固定する努力が進められている。また[[排出量取引|排出権取引]]などを活用して、世界的に二酸化炭素の排出量を削減を促進する努力も行われている。
{{seealsoSee also|地球温暖化への対策}}
2013年5月、[[アメリカ合衆国|米国]][[ハワイ州]]の[[マウナロア観測所]]、[[サンディエゴ]]のスクリップス海洋研究所の観測で日間平均二酸化炭素量が人類史上初めて400ppmを突破したことが発表された<ref>{{Cite web|和書|url=https://www.afpbb.com/articles/-/2943370?pid=10723482 |title=大気中のCO2量が歴史的水準を突破、専門家らが行動を呼びかけ |publisher=[[フランス通信|AFP]] |date=2013-05-11 |accessdate=2013-05-11}}</ref>。
 
2013年5月、[[アメリカ合衆国|米国]][[ハワイ州]]の[[マウナロア観測所]]、[[サンディエゴ]]のスクリップス海洋研究所の観測で日間平均二酸化炭素量が人類史上初めて400ppmを突破したことが発表された<ref>{{cite web|url=http://www.afpbb.com/article/environment-science-it/environment/2943370/10723482 |title=大気中のCO2量が歴史的水準を突破、専門家らが行動を呼びかけ |publisher=[[フランス通信|AFP]] |date=2013-05-11 |accessdate=2013-05-11}}</ref>。
 
=== 世界平均濃度の算出 ===
二酸化炭素濃度は様々な研究機関によって世界各地で測定されているが、それらは必ずしも統一的な基準で測定されているとは限らない(つまり各測定値の比較可能性が保証されていない場合がある)。世界気象機関(WMO) (WMO) の[[全球大気監視計画|全球大気監視]](Global (Global Atmosphere Watch)Watch) プログラムは世界各地で統一した基準や手法で二酸化炭素濃度を含む様々な[[地球の大気]]成分の測定を行っている<ref>{{Cite journal |author=堤 之智 |year=2017 |title=新たなWMO/GAW 実施計画:2016-2023について |journal=天気 |volume=64 |page=607-614}}</ref>。そして、それを用いた世界平均された二酸化炭素濃度は、[https://www.data.jma.go.jp/env/info/wdcgg/wdcgg_bulletin.html WMO温室効果ガス年報]([https://public.wmo.int/en/resources/library/wmo-greenhouse-gas-bulletin WMO Greenhouse Gas bulletin])で発表されている。これは[[気候変動枠組条約|気候変動枠組み条約]]の締約国会議に合わせて毎年1回刊行され、この世界平均濃度は世界の主要メディアによって報道されている。また、全球大気監視プログラムにおける各地の測定データは、[https://gaw.kishou.go.jp/jp/ WMO温室効果ガス世界データセンター](World (World Data Centre for Greenhouse Gases)Gases) から無償で公開されている(データを利用する場合には利用ポリシーに従う必要がある)。このデータセンターはWMOから委託を受けて日本の[[気象庁]]が運営している。
 
== 二酸化炭素の回収・資源化・分離 ==
上記のような地球温暖化を抑制するため、二酸化炭素の新たな排出を減らす努力だけでなく、[[工場]]・[[火力発電所]]などの排気に含まれる二酸化炭素の回収(前述のCCS)のほか、[[直接空気回収技術|大気からの二酸化炭素回収]](DAC=Direct Air Capture, ダイレクト・エア・キャプチャー)により、大気から切り離す技術が開発されている。二酸化炭素の新たな排出抑制だけでは地球温暖化の緩和には不十分で、植林による[[光合成]]促進やCCS、DACといった「負の排出」(ネガティブ・エミッション)が必要という危機感が技術開発の背景にある。DACは[[アメリカ合衆国]]や[[カナダ]]、[[スイス]]など15カ所の施設があり(2021年時点)、日本も『グリーン成長戦略』で2050年の実用化を掲げた。スイスのクライムワークスのように[[排出権取引]]を利用して既に商業化した企業も登場している。DACには以下の方式がある<ref>【サイエンスReport】挑戦 カーボンゼロ/CO2削減 究極の技術「DAC」海外で商業化『[[読売新聞]]』朝刊2021年9月5日くらしサイエンス面</ref>。
#溶液を使う化学吸収・吸着法
#固体に吸着させる物理吸着法
#膜分離法
#空気を冷やしてドライアイス化させる深冷法
こうして得られた二酸化炭素は地中に貯留したり、[[プラスチック]]や医薬品などの原料として利用したりする。[[アミン]]や[[水酸化カリウム]]に吸収させる手法のほか、[[九州大学]]では大気中の[[窒素]]を通しにくく、二酸化炭素を通しやすい膜を開発した<ref name="日経20210201">[https://www.nikkei.com/article/DGXZQOHD068CY0W1A100C2000000/ 「CO2 大気から直接回収/脱炭素の救世主に 経済活動に制約なく」]『[[日本経済新聞]]』朝刊2021年2月1日(科学技術面)同日閲覧</ref>。
 
[[東京工業大学]]などは、[[電気化学]]触媒として[[レニウム]][[錯体]]を使うことで、二酸化炭素の濃度が低くても効率よく回収できる手法の開発を2018年に発表している<ref>[https://www.titech.ac.jp/news/2018/043049 「希薄な二酸化炭素を捕捉して資源化できる新触媒の発見 低濃度二酸化炭素の直接利用に道」]東工大ニュース(2018年12月4日)2019年1月27日閲覧。</ref>。東京工業大学ではこれに先立ち、[[岩澤伸治]]らが、二酸化炭素を[[炭化水素]]と反応させる有機合成反応を開発した。触媒として[[ロジウム]]を用い、炭素と水素の結合を弱めて反応させる。大気圧で反応が進むが、特定の化合物や[[アルミニウム]]が必要になるなどの実用化に向けた課題もある<ref>「※記事名不明※」『[[朝日新聞]]』朝刊2011年1月25日22面</ref>。
こうして得られた二酸化炭素は地中に貯留したり、[[プラスチック]]や医薬品などの原料として利用したりする。[[アミン]]や[[水酸化カリウム]]に吸収させる手法のほか、[[九州大学]]では大気中の[[窒素]]を通しにくく、二酸化炭素を通しやすい膜を開発した<ref name="日経20210201">[https://www.nikkei.com/article/DGXZQOHD068CY0W1A100C2000000 「CO2 大気から直接回収/脱炭素の救世主に 経済活動に制約なく」]『[[日本経済新聞]]』朝刊2021年2月1日(科学技術面)同日閲覧</ref>。
{|class="wikitable"
 
|+CCUS/カーボンリサイクル<ref>{{Cite report |author=経済産業省 |authorlink=経済産業省 |title=カーボンリサイクル技術ロードマップ |date=2019-06-07 |url=https://www.enecho.meti.go.jp/category/others/carbon_recycling/pdf/20190607002-1.pdf}}</ref><ref>{{Cite web|和書|url=https://cs2.toray.co.jp/news/tbr/newsrrs01.nsf/0/45DB346601DA7A3E4925852D00257270 |title=資源としてのCO2の利用は温室効果ガス削減の切り札となるか |author=福田佳之 |publisher=東レ経営研究所 |accessdate=2021-11-16}}</ref>
[[東京工業大学]]などは、[[電気化学]]触媒として[[レニウム]][[錯体]]を使うことで、二酸化炭素の濃度が低くても効率よく回収できる手法の開発を2018年に発表している<ref>[https://www.titech.ac.jp/news/2018/043049.html 「希薄な二酸化炭素を捕捉して資源化できる新触媒の発見 低濃度二酸化炭素の直接利用に道」]東工大ニュース(2018年12月4日)2019年1月27日閲覧。</ref>。東京工業大学ではこれに先立ち、[[岩澤伸治]]らが、二酸化炭素を[[炭化水素]]と反応させる有機合成反応を開発した。触媒として[[ロジウム]]を用い、炭素と水素の結合を弱めて反応させる。大気圧で反応が進むが、特定の化合物や[[アルミニウム]]が必要になるなどの実用化に向けた課題もある。<ref>「※記事名不明※」『[[朝日新聞]]』朝刊2011年1月25日22面</ref>
|-
!rowspan="7"|CO{{sub|2}}回収!!rowspan="6"|利用
|rowspan="4"|カーボンリサイクル||
'''化学品'''<br />含酸素化合物(ポリカーボネート、ウレタンなど)<br />バイオマス由来化学品<br />汎用物質(オレフィン、BTXなど)
|-
|'''燃料'''<br />微細藻類バイオ燃料(ジェット燃料・ディーゼル)<br />CO2由来燃料またはバイオ燃料(微細藻類由来 を除く)(メタノール、エタノール、ディーゼルなど)<br />ガス燃料(メタン)
|-
|'''鉱物'''<br />コンクリート製品・コンクリート構造物<br />炭酸塩 など
|-
|'''その他''' <br />ネガティブ・エミッション(BECCS, ブルーカーボンなど)
|-
|CO{{sub|2}}の直接利用||溶接用途(シールドガス)<br />食品用途(米麦燻製、冷凍食品製造、ドライアイス)<br />飲料用途(ワイン醸造、炭酸飲料)<br />農業(施設園芸や植物工場における CO2 施肥)<br />溶剤用途(抽出溶媒としての超臨界 CO2)<br />赤泥処理用途(ボーキサイト残渣の中和)など
|-
|colspan="2"|石油増進回収法 EOR (Enhanced Oil Recovery)
|-
|colspan="3"|貯留
|}
 
== 関連画像 ==
<!-- 大変お手数をおかけしますが、画像の最適な説明文を加筆編集お願いします。-->
<gallery caption="二酸化炭素">
3D dioxyde de carbone.PNG|棒球モデル
ファイル:3-Sulfolen-3-carbonsäure Synthese.svg|二酸化炭素の反応
C+O2=CO2.svg|炭素の完全燃焼の反応式と模式図
ファイル:3D dioxyde de carbone.PNG|二酸化炭素の原子を3D表現にした画像
Carbon-dioxide-unit-cell-3D-balls.png|結晶
ファイル:C+O2=CO2.svg|[[化学結合]]
Carbon-exchange-and-loss-process-pia20163 (1).jpg|Carbon-exchange-and-loss-process-pia
ファイル:Carbon-dioxide-unit-cell-3D-balls.png|ドライアイスの結構
CO2 8737.JPG|原子の手を表現したもの。
ファイル:Carbon-exchange-and-loss-process-pia20163 (1).jpg|Carbon-exchange-and-loss-process-pia
ファイル:CO2 8737.JPG|原子の手を表現したもの。
</gallery>
 
216 ⟶ 235行目:
{{Commonscat|CO2 molecule}}
* [[二酸化炭素貯留]]
* [[二酸化炭素の電気分解]]
* [[炭素循環]]
* [[二酸化炭素飢餓]]
223 ⟶ 243行目:
* [[放射強制力]]
* [[湖水爆発]]
* {{ill2|カルバミノヘモグロビン|en|Carbaminohemoglobin}} - 二酸化炭素が[[ヘモグロビン]]のアミノ基と結合した形態。血中二酸化炭素輸送の約23%23%がこの形態で、70%70%が[[炭酸脱水酵素]]で変換された[[炭酸水素塩|炭酸水素イオン]]、7%7%が二酸化炭素として[[血漿]]に溶け込んだ状態で肺に送られる。
 
== 脚注 ==